bool DxfProfilesExporter::SaveVerticalProfiles( const QSharedPointer<DistanceMapGenerationTool::Map>& map, ccPolyline* profile, QString filename, unsigned angularStepCount, double heightStep, const Parameters& params, ccMainAppInterface* app/*=0*/) { #ifdef CC_DXF_SUPPORT assert(c_pageMargin_mm < c_profileMargin_mm); assert(2.0*c_profileMargin_mm < std::min(c_pageWidth_mm,c_pageHeight_mm)); if (!map || !profile || angularStepCount == 0 || heightStep <= 0) { //invalid parameters return false; } //Theoretical profile bounding box PointCoordinateType profileBBMin[3],profileBBMax[3]; profile->getAssociatedCloud()->getBoundingBox(profileBBMin,profileBBMax); //Mix with the map's boundaries along 'Y' double yMin = std::max(map->yMin,static_cast<double>(profileBBMin[1])); double yMax = std::min(map->yMin + static_cast<double>(map->ySteps) * map->yStep, static_cast<double>(profileBBMax[1])); const double ySpan = yMax - yMin; //For the 'X' dimension, it's easier to stick with the th. profile const double xMin = profileBBMin[0]; // const double xMax = profileBBMax[0]; const double xSpan = profileBBMax[0] - profileBBMin[0]; if (xSpan == 0.0 || ySpan == 0.0) { if (app) app->dispToConsole(QString("Internal error: null profile?!"),ccMainAppInterface::ERR_CONSOLE_MESSAGE); return false; } DL_Dxf dxf; DL_WriterA* dw = dxf.out(qPrintable(filename), DL_VERSION_R12); if (!dw) { if (app) app->dispToConsole(QString("Failed to open '%1' file for writing!").arg(filename),ccMainAppInterface::ERR_CONSOLE_MESSAGE); return false; } //write header dxf.writeHeader(*dw); //add dimensions dw->dxfString(9, "$INSBASE"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfReal(30,0.0); dw->dxfString(9, "$EXTMIN"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfReal(30,0.0); dw->dxfString(9, "$EXTMAX"); dw->dxfReal(10,c_pageWidth_mm); dw->dxfReal(20,c_pageHeight_mm); dw->dxfReal(30,0.0); dw->dxfString(9, "$LIMMIN"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfString(9, "$LIMMAX"); dw->dxfReal(10,c_pageWidth_mm); dw->dxfReal(20,c_pageHeight_mm); //close header dw->sectionEnd(); //Opening the Tables Section dw->sectionTables(); //Writing the Viewports dxf.writeVPort(*dw); //Writing the Linetypes (all by default) { dw->tableLineTypes(25); dxf.writeLineType(*dw, DL_LineTypeData("BYBLOCK", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BYLAYER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CONTINUOUS", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO02W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO03W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO04W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO05W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDER2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDERX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTER2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTERX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOTX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHED", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHED2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHEDX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDEX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOT", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOT2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOTX2", 0)); dw->tableEnd(); } //Writing the Layers dw->tableLayers(angularStepCount+3); QStringList profileNames; { //default layer dxf.writeLayer(*dw, DL_LayerData("0", 0), DL_Attributes( std::string(""), // leave empty DL_Codes::black, // default color 100, // default width (in 1/100 mm) "CONTINUOUS")); // default line style //theoretical profile layer dxf.writeLayer(*dw, DL_LayerData(PROFILE_LAYER, 0), DL_Attributes( std::string(""), DL_Codes::red, s_lineWidth, "CONTINUOUS")); //legend layer dxf.writeLayer(*dw, DL_LayerData(LEGEND_LAYER, 0), DL_Attributes( std::string(""), DL_Codes::black, s_lineWidth, "CONTINUOUS")); //vert. profile layers for (unsigned i=0; i<angularStepCount; ++i) { //default layer name QString layerName = QString(VERT_PROFILE_LAYER).arg(i+1,3,10,QChar('0')); //but we use the profile title if we have one! //DGM: nope, as it may be longer than 31 characters (R14 limit) //if (params.profileTitles.size() >= static_cast<int>(angularStepCount)) //{ // layerName = params.profileTitles[i]; // layerName.replace(QChar(' '),QChar('_')); //} profileNames << layerName; dxf.writeLayer(*dw, DL_LayerData(layerName.toStdString(), 0), DL_Attributes( std::string(""), i == 0 ? DL_Codes::green : -DL_Codes::green, //invisible if negative! s_lineWidth, "CONTINUOUS")); } } dw->tableEnd(); //Writing Various Other Tables //dxf.writeStyle(*dw); //DXFLIB V2.5 dxf.writeStyle(*dw,DL_StyleData("Standard",0,0.0,0.75,0.0,0,2.5,"txt","")); //DXFLIB V3.3 dxf.writeView(*dw); dxf.writeUcs(*dw); dw->tableAppid(1); dw->tableAppidEntry(0x12); dw->dxfString(2, "ACAD"); dw->dxfInt(70, 0); dw->tableEnd(); //Writing Dimension Styles dxf.writeDimStyle( *dw, /*arrowSize*/1, /*extensionLineExtension*/1, /*extensionLineOffset*/1, /*dimensionGap*/1, /*dimensionTextSize*/1); //Writing Block Records dxf.writeBlockRecord(*dw); //dxf.writeBlockRecord(*dw, "myblock1"); //dxf.writeBlockRecord(*dw, "myblock2"); dw->tableEnd(); //Ending the Tables Section dw->sectionEnd(); //Writing the Blocks Section { dw->sectionBlocks(); dxf.writeBlock(*dw, DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Model_Space"); dxf.writeBlock(*dw, DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Paper_Space"); dxf.writeBlock(*dw, DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Paper_Space0"); dw->sectionEnd(); } //Writing the Entities Section { dw->sectionEntities(); //we make the profile fit in the middle of the page (21.0 x 29.7 cm) double scale = std::min((c_pageWidth_mm - 2.0 * c_profileMargin_mm)/xSpan, (c_pageHeight_mm - 2.0 * c_profileMargin_mm)/ySpan); //min corner of profile area const double x0 = (c_pageWidth_mm - xSpan*scale) / 2.0; const double y0 = (c_pageHeight_mm - ySpan*scale) / 2.0; //write theoretical profile (polyline) { unsigned vertexCount = profile->size(); dxf.writePolyline( *dw, DL_PolylineData(static_cast<int>(vertexCount),0,0,0), DL_Attributes(PROFILE_LAYER, DL_Codes::bylayer, -1, "BYLAYER")); for (unsigned i=0; i<vertexCount; ++i) { const CCVector3* P = profile->getPoint(i); dxf.writeVertex(*dw, DL_VertexData(x0+(P->x-xMin)*scale,y0+(P->y-yMin)*scale,0.0)); } dxf.writePolylineEnd(*dw); } //write legend { DL_Attributes DefaultLegendMaterial(LEGEND_LAYER, DL_Codes::bylayer, -1, "BYLAYER"); //write page contour { dxf.writePolyline( *dw, DL_PolylineData(4,0,0,1), DefaultLegendMaterial); dxf.writeVertex(*dw, DL_VertexData( c_pageMargin_mm, c_pageMargin_mm, 0.0)); dxf.writeVertex(*dw, DL_VertexData( c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0)); dxf.writeVertex(*dw, DL_VertexData( c_pageWidth_mm-c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0)); dxf.writeVertex(*dw, DL_VertexData( c_pageWidth_mm-c_pageMargin_mm, c_pageMargin_mm, 0.0)); dxf.writePolylineEnd(*dw); } double xLegend = c_pageMargin_mm + 2.0*c_textHeight_mm; double yLegend = c_pageMargin_mm + 2.0*c_textHeight_mm; const double legendWidth_mm = 20.0; //deviation magnification factor QString magnifyStr = QString::number(params.devMagnifyCoef); dxf.writeText( *dw, DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation magnification factor: ")+magnifyStr).toStdString(),"STANDARD",0.0), DefaultLegendMaterial); //next line yLegend += c_textHeight_mm*2.0; //units QString unitsStr("mm"); dxf.writeText( *dw, DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation units: ")+unitsStr).toStdString(),"STANDARD",0.0), DefaultLegendMaterial); //next line yLegend += c_textHeight_mm*2.0; //true profile line (red) dxf.writeLine( *dw, DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0), DL_Attributes(LEGEND_LAYER, DL_Codes::green, -1, "BYLAYER")); dxf.writeText( *dw, DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendRealProfileTitle.toStdString(),"STANDARD",0.0), DefaultLegendMaterial); //next line yLegend += c_textHeight_mm*2.0; //theoretical profile line (red) dxf.writeLine( *dw, DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0), DL_Attributes(LEGEND_LAYER, DL_Codes::red, -1, "BYLAYER")); dxf.writeText( *dw, DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendTheoProfileTitle.toStdString(),"STANDARD",0.0), DefaultLegendMaterial); } //write vertical profiles for (unsigned angleStep=0; angleStep<angularStepCount; ++angleStep) { std::vector<VertStepData> polySteps; try { polySteps.reserve(map->ySteps); } catch(std::bad_alloc) { //not enough memory dw->dxfEOF(); dw->close(); delete dw; return false; } unsigned iMap = static_cast<unsigned>(static_cast<double>(angleStep * map->xSteps) / static_cast<double>(angularStepCount)); for (unsigned jMap=0; jMap < map->ySteps; ++jMap) { const DistanceMapGenerationTool::MapCell& cell = map->at(iMap + jMap * map->xSteps); VertStepData step; step.height = map->yMin + static_cast<double>(jMap) * map->yStep; if (step.height >= yMin && step.height <= yMax) { //find corresponding radius bool found = false; for (unsigned i=1; i<profile->size(); ++i) { const CCVector3* A = profile->getPoint(i-1); const CCVector3* B = profile->getPoint(i); double alpha = static_cast<double>((step.height - A->y)/(B->y - A->y)); if (alpha >= 0.0 && alpha <= 1.0) { //we deduce the right radius by linear interpolation step.radius_th = A->x + alpha * (B->x - A->x); found = true; break; } } if (found) { step.deviation = cell.count ? cell.value : 0.0; polySteps.push_back(step); } } } const DL_Attributes DefaultMaterial(profileNames[angleStep].toStdString(), DL_Codes::bylayer, -1, "BYLAYER"); const DL_Attributes GrayMaterial(profileNames[angleStep].toStdString(), DL_Codes::l_gray, -1, ""); //write layer title if (static_cast<int>(angleStep) < params.profileTitles.size()) { const QString& title = params.profileTitles[angleStep]; CCVector3d Ptop(c_pageWidth_mm / 2.0, y0 + ySpan * scale + c_profileMargin_mm / 2.0, 0.0); dxf.writeText( *dw, DL_TextData(Ptop.x,Ptop.y,Ptop.z,Ptop.x,Ptop.y,Ptop.z,c_textHeight_mm,1.0,0,1,0,title.toStdString(),"STANDARD",0.0), GrayMaterial); } //write corresponding polyline { dxf.writePolyline( *dw, DL_PolylineData(static_cast<int>(polySteps.size()),0,0,0), DefaultMaterial); for (size_t i=0; i<polySteps.size(); ++i) { const VertStepData& step = polySteps[i]; dxf.writeVertex(*dw, DL_VertexData( x0 + (step.radius_th + step.deviation * params.devMagnifyCoef - xMin) * scale, y0 + (step.height - yMin) * scale, 0.0)); } dxf.writePolylineEnd(*dw); } //write corresponding 'deviation bars' and labels CCVector3d pageShift(x0 - xMin * scale, y0 - yMin * scale, 0.0); { size_t lastStep = 0; for (size_t i=0; i<polySteps.size(); ++i) { const VertStepData& step = polySteps[i]; bool displayIt = (i == 0 || i+1 == polySteps.size()); if (!displayIt) { double dh = polySteps[i].height - polySteps[lastStep].height; double next_dh = polySteps[i+1].height - polySteps[lastStep].height; if (dh >= heightStep || (next_dh > heightStep && fabs(dh - heightStep) < fabs(next_dh - heightStep))) { displayIt = true; } } if (displayIt) { CCVector3d Pheight(step.radius_th,step.height,0.0); CCVector3d Pdev(step.radius_th + step.deviation * params.devMagnifyCoef,step.height,0.0); //page scaling Pheight = pageShift + Pheight * scale; Pdev = pageShift + Pdev * scale; //deviation bar dxf.writeLine(*dw, DL_LineData(Pheight.x,Pheight.y,Pheight.z,Pdev.x,Pdev.y,Pdev.z), GrayMaterial); //labels //Horizontal justification: 0 = Left , 1 = Center, 2 = Right int hJustification = 0; //Vertical justification: 0 = Baseline, 1 = Bottom, 2 = Middle, 3 = Top int vJustification = 2; if (step.deviation < 0.0) { //deviation label on the left Pdev.x -= 2.0*c_textMargin_mm; //opposite for the height label Pheight.x += c_textMargin_mm; hJustification = 2; //Right } else { //deviation label on the right Pdev.x += 2.0*c_textMargin_mm; //opposite for the height label Pheight.x -= c_textMargin_mm; hJustification = 0; //Left } QString devText = QString::number(polySteps[i].deviation * params.devLabelMultCoef,'f',params.precision); dxf.writeText( *dw, DL_TextData(Pdev.x,Pdev.y,Pdev.z,Pdev.x,Pdev.y,Pdev.z,c_textHeight_mm,1.0,0,hJustification,vJustification,devText.toStdString(),"STANDARD",0.0), DefaultMaterial); QString heightText = QString::number(polySteps[i].height,'f',params.precision); dxf.writeText( *dw, DL_TextData(Pheight.x,Pheight.y,Pheight.z,Pheight.x,Pheight.y,Pheight.z,c_textHeight_mm,1.0,0,2-hJustification,vJustification,heightText.toStdString(),"STANDARD",0.0), GrayMaterial); lastStep = i; } } } } dw->sectionEnd(); } //Writing the Objects Section dxf.writeObjects(*dw); dxf.writeObjectsEnd(*dw); //Ending and Closing the File dw->dxfEOF(); dw->close(); delete dw; dw = 0; return true; #else return false; #endif }
CC_FILE_ERROR DxfFilter::saveToFile(ccHObject* root, const char* filename) { #ifndef CC_DXF_SUPPORT ccLog::Error("[DXF] DXF format not supported! Check compilation parameters!"); return CC_FERR_CONSOLE_ERROR; #else if (!root || !filename) return CC_FERR_BAD_ARGUMENT; ccHObject::Container polylines; root->filterChildren(polylines,true,CC_POLY_LINE); //only polylines are handled for now size_t polyCount = polylines.size(); if (!polyCount) return CC_FERR_NO_SAVE; //get global bounding box ccBBox box; for (size_t i=0; i<polyCount; ++i) { ccBBox polyBox = polylines[i]->getBB(); if (i) { box += polyBox; } else { box = polyBox; } } CCVector3 diag = box.getDiagVec(); double baseSize = static_cast<double>(std::max(diag.x,diag.y)); double lineWidth = baseSize / 40.0; double pageMargin = baseSize / 20.0; DL_Dxf dxf; DL_WriterA* dw = dxf.out(qPrintable(filename), DL_VERSION_R12); if (!dw) { return CC_FERR_WRITING; } //write header dxf.writeHeader(*dw); //add dimensions dw->dxfString(9, "$INSBASE"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfReal(30,0.0); dw->dxfString(9, "$EXTMIN"); dw->dxfReal(10,static_cast<double>(box.minCorner().x)-pageMargin); dw->dxfReal(20,static_cast<double>(box.minCorner().y)-pageMargin); dw->dxfReal(30,static_cast<double>(box.minCorner().z)-pageMargin); dw->dxfString(9, "$EXTMAX"); dw->dxfReal(10,static_cast<double>(box.maxCorner().x)+pageMargin); dw->dxfReal(20,static_cast<double>(box.maxCorner().y)+pageMargin); dw->dxfReal(30,static_cast<double>(box.maxCorner().z)+pageMargin); dw->dxfString(9, "$LIMMIN"); dw->dxfReal(10,static_cast<double>(box.minCorner().x)-pageMargin); dw->dxfReal(20,static_cast<double>(box.minCorner().y)-pageMargin); dw->dxfString(9, "$LIMMAX"); dw->dxfReal(10,static_cast<double>(box.maxCorner().x)+pageMargin); dw->dxfReal(20,static_cast<double>(box.maxCorner().y)+pageMargin); //close header dw->sectionEnd(); //Opening the Tables Section dw->sectionTables(); //Writing the Viewports dxf.writeVPort(*dw); //Writing the Linetypes (all by default) { dw->tableLineTypes(25); dxf.writeLineType(*dw, DL_LineTypeData("BYBLOCK", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BYLAYER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CONTINUOUS", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO02W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO03W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO04W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO05W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDER2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDERX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTER2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTERX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOTX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHED", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHED2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHEDX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDEX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOT", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOT2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOTX2", 0)); dw->tableEnd(); } //Writing the Layers dw->tableLayers(static_cast<int>(polyCount)+1); QStringList layerNames; { //default layer dxf.writeLayer(*dw, DL_LayerData("0", 0), DL_Attributes( std::string(""), // leave empty DL_Codes::black, // default color 100, // default width (in 1/100 mm) "CONTINUOUS")); // default line style //polylines layers for (unsigned i=0; i<polyCount; ++i) { //default layer name //TODO: would be better to use the polyline name! //but it can't be longer than 31 characters (R14 limit) QString layerName = QString("POLYLINE_%1").arg(i+1,3,10,QChar('0')); layerNames << layerName; dxf.writeLayer(*dw, DL_LayerData(layerName.toStdString(), 0), DL_Attributes( std::string(""), i == 0 ? DL_Codes::green : /*-*/DL_Codes::green, //invisible if negative! lineWidth, "CONTINUOUS")); } } dw->tableEnd(); //Writing Various Other Tables dxf.writeStyle(*dw); dxf.writeView(*dw); dxf.writeUcs(*dw); dw->tableAppid(1); dw->tableAppidEntry(0x12); dw->dxfString(2, "ACAD"); dw->dxfInt(70, 0); dw->tableEnd(); //Writing Dimension Styles dxf.writeDimStyle( *dw, /*arrowSize*/1, /*extensionLineExtension*/1, /*extensionLineOffset*/1, /*dimensionGap*/1, /*dimensionTextSize*/1); //Writing Block Records dxf.writeBlockRecord(*dw); dw->tableEnd(); //Ending the Tables Section dw->sectionEnd(); //Writing the Blocks Section { dw->sectionBlocks(); dxf.writeBlock(*dw, DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Model_Space"); dxf.writeBlock(*dw, DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Paper_Space"); dxf.writeBlock(*dw, DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Paper_Space0"); dw->sectionEnd(); } //Writing the Entities Section { dw->sectionEntities(); //write polylines for (unsigned i=0; i<polyCount; ++i) { const ccPolyline* poly = static_cast<ccPolyline*>(polylines[i]); unsigned vertexCount = poly->size(); int flags = poly->isClosed() ? 1 : 0; if (!poly->is2DMode()) flags |= 8; //3D polyline dxf.writePolyline( *dw, DL_PolylineData(static_cast<int>(vertexCount),0,0,flags), DL_Attributes(layerNames[i].toStdString(), DL_Codes::bylayer, -1, "BYLAYER") ); for (unsigned i=0; i<vertexCount; ++i) { CCVector3 P; poly->getPoint(i,P); dxf.writeVertex(*dw, DL_VertexData( P.x, P.y, P.y ) ); } dxf.writePolylineEnd(*dw); } dw->sectionEnd(); } //Writing the Objects Section dxf.writeObjects(*dw); dxf.writeObjectsEnd(*dw); //Ending and Closing the File dw->dxfEOF(); dw->close(); delete dw; dw = 0; ccLog::Print("[DXF] File %s saved successfully",filename); return CC_FERR_NO_ERROR; #endif }
bool DxfProfilesExporter::SaveHorizontalProfiles( const QSharedPointer<DistanceMapGenerationTool::Map>& map, ccPolyline* profile, QString filename, unsigned heightStepCount, double angularStep_rad, double radToUnitConvFactor, QString angleUnit, const Parameters& params, ccMainAppInterface* app/*= 0*/) { #ifdef CC_DXF_SUPPORT assert(c_pageMargin_mm < c_profileMargin_mm); assert(2.0*c_profileMargin_mm < std::min(c_pageWidth_mm,c_pageHeight_mm)); if (!map || !profile || heightStepCount == 0 || angularStep_rad <= 0) { //invalid parameters return false; } //Theoretical profile bounding box PointCoordinateType profileBBMin[3],profileBBMax[3]; profile->getAssociatedCloud()->getBoundingBox(profileBBMin,profileBBMax); //Mix with the map's boundaries along 'Y' double yMin = std::max( map->yMin + 0.5 * map->xStep, //central height of first row static_cast<double>(profileBBMin[1])); double yMax = std::min( map->yMin + (static_cast<double>(map->ySteps)-0.5) * map->yStep, //central height of last row static_cast<double>(profileBBMax[1])); const double ySpan = yMax - yMin; //For the 'X' dimension, it's easier to stick with the th. profile // const double xMin = profileBBMin[0]; const double xMax = profileBBMax[0]; const double xSpan = profileBBMax[0] - profileBBMin[0]; //shortcut for clarity const double& maxRadius = xMax; if (xSpan == 0.0 || ySpan == 0.0) { if (app) app->dispToConsole(QString("Internal error: null profile?!"),ccMainAppInterface::ERR_CONSOLE_MESSAGE); return false; } DL_Dxf dxf; DL_WriterA* dw = dxf.out(qPrintable(filename), DL_VERSION_R12); if (!dw) { if (app) app->dispToConsole(QString("Failed to open '%1' file for writing!").arg(filename),ccMainAppInterface::ERR_CONSOLE_MESSAGE); return false; } //write header dxf.writeHeader(*dw); //add dimensions dw->dxfString(9, "$INSBASE"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfReal(30,0.0); dw->dxfString(9, "$EXTMIN"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfReal(30,0.0); dw->dxfString(9, "$EXTMAX"); dw->dxfReal(10,c_pageWidth_mm); dw->dxfReal(20,c_pageHeight_mm); dw->dxfReal(30,0.0); dw->dxfString(9, "$LIMMIN"); dw->dxfReal(10,0.0); dw->dxfReal(20,0.0); dw->dxfString(9, "$LIMMAX"); dw->dxfReal(10,c_pageWidth_mm); dw->dxfReal(20,c_pageHeight_mm); //close header dw->sectionEnd(); //Opening the Tables Section dw->sectionTables(); //Writing the Viewports dxf.writeVPort(*dw); //Writing the Linetypes (all by default) { dw->tableLineTypes(25); dxf.writeLineType(*dw, DL_LineTypeData("BYBLOCK", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BYLAYER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CONTINUOUS", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO02W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO03W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO04W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO05W100", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDER2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("BORDERX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTER", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTER2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("CENTERX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHDOTX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHED", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHED2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DASHEDX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DIVIDEX2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOT", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOT2", 0)); dxf.writeLineType(*dw, DL_LineTypeData("DOTX2", 0)); dw->tableEnd(); } //Writing the Layers dw->tableLayers(heightStepCount+2); QStringList profileNames; { //default layer dxf.writeLayer(*dw, DL_LayerData("0", 0), DL_Attributes( std::string(""), // leave empty DL_Codes::black, // default color 100, // default width (in 1/100 mm) "CONTINUOUS")); // default line style //legend layer dxf.writeLayer(*dw, DL_LayerData(LEGEND_LAYER, 0), DL_Attributes( std::string(""), DL_Codes::black, s_lineWidth, "CONTINUOUS")); //horiz. profile layers for (unsigned i=0; i<heightStepCount; ++i) { //default profile name QString layerName = QString(HORIZ_PROFILE_LAYER).arg(i+1,3,10,QChar('0')); //but we use the profile title if we have one! //DGM: nope, as it may be longer than 31 characters (R14 limit) //if (params.profileTitles.size() == 1) //{ // //profile height // double height = yMin + static_cast<double>(i) / static_cast<double>(heightStepCount-1) * ySpan; // layerName = QString(params.profileTitles[0]).arg(height,0,'f',params.precision); // layerName.replace(QChar(' '),QChar('_')); //} profileNames << layerName; dxf.writeLayer(*dw, DL_LayerData(layerName.toStdString(), 0), DL_Attributes( std::string(""), i == 0 ? DL_Codes::green : -DL_Codes::green, //invisible if negative! s_lineWidth, "CONTINUOUS")); } } dw->tableEnd(); //Writing Various Other Tables //dxf.writeStyle(*dw); //DXFLIB V2.5 dxf.writeStyle(*dw,DL_StyleData("Standard",0,0.0,0.75,0.0,0,2.5,"txt","")); //DXFLIB V3.3 dxf.writeView(*dw); dxf.writeUcs(*dw); dw->tableAppid(1); dw->tableAppidEntry(0x12); dw->dxfString(2, "ACAD"); dw->dxfInt(70, 0); dw->tableEnd(); //Writing Dimension Styles dxf.writeDimStyle( *dw, /*arrowSize*/1, /*extensionLineExtension*/1, /*extensionLineOffset*/1, /*dimensionGap*/1, /*dimensionTextSize*/1); //Writing Block Records dxf.writeBlockRecord(*dw); dw->tableEnd(); //Ending the Tables Section dw->sectionEnd(); //Writing the Blocks Section { dw->sectionBlocks(); dxf.writeBlock(*dw, DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Model_Space"); dxf.writeBlock(*dw, DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Paper_Space"); dxf.writeBlock(*dw, DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0)); dxf.writeEndBlock(*dw, "*Paper_Space0"); dw->sectionEnd(); } //Writing the Entities Section { dw->sectionEntities(); //we make the profile fit in the middle of the page (21.0 x 29.7 cm) double scale = std::min((c_pageWidth_mm - 2.0 * c_profileMargin_mm)/(2.0*maxRadius), (c_pageHeight_mm - 2.0 * c_profileMargin_mm)/(2.0*maxRadius)); //min corner of profile area // const double x0 = (c_pageWidth_mm - 2.0*maxRadius*scale) / 2.0; const double y0 = (c_pageHeight_mm - 2.0*maxRadius*scale) / 2.0; //center of profile area const double xc = c_pageWidth_mm / 2.0; const double yc = c_pageHeight_mm / 2.0; //write legend { DL_Attributes DefaultLegendMaterial(LEGEND_LAYER, DL_Codes::bylayer, -1, "BYLAYER"); //write page contour { dxf.writePolyline( *dw, DL_PolylineData(4,0,0,1), DefaultLegendMaterial); dxf.writeVertex(*dw, DL_VertexData( c_pageMargin_mm, c_pageMargin_mm, 0.0)); dxf.writeVertex(*dw, DL_VertexData( c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0)); dxf.writeVertex(*dw, DL_VertexData( c_pageWidth_mm-c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0)); dxf.writeVertex(*dw, DL_VertexData( c_pageWidth_mm-c_pageMargin_mm, c_pageMargin_mm, 0.0)); dxf.writePolylineEnd(*dw); } double xLegend = c_pageMargin_mm + 2.0*c_textHeight_mm; double yLegend = c_pageMargin_mm + 2.0*c_textHeight_mm; const double legendWidth_mm = 20.0; //Y axis double axisTip = maxRadius*scale + 5.0; dxf.writeLine( *dw, DL_LineData(xc, yc, 0.0, xc, yc-axisTip, 0.0), DefaultLegendMaterial); //Y axis tip as triangle { double axisTipSize = 3.0; dxf.writePolyline( *dw, DL_PolylineData(3,0,0,1), //closed polyline! DefaultLegendMaterial); dxf.writeVertex(*dw, DL_VertexData( xc, yc-(axisTip+axisTipSize), 0.0)); dxf.writeVertex(*dw, DL_VertexData( xc-axisTipSize/2.0, yc-axisTip, 0.0)); dxf.writeVertex(*dw, DL_VertexData( xc+axisTipSize/2.0, yc-axisTip, 0.0)); dxf.writePolylineEnd(*dw); dxf.writeText( *dw, DL_TextData(xc,yc-(axisTip+2.0*axisTipSize),0.0,xc,yc-(axisTip+2.0*axisTipSize),0.0,c_textHeight_mm,1.0,0,1,3,"Y","STANDARD",0.0), DefaultLegendMaterial); } //deviation magnification factor QString magnifyStr = QString::number(params.devMagnifyCoef); dxf.writeText( *dw, DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation magnification factor: ")+magnifyStr).toStdString(),"STANDARD",0.0), DefaultLegendMaterial); //next line yLegend += c_textHeight_mm*2.0; //units QString unitsStr("mm"); dxf.writeText( *dw, DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation units: ")+unitsStr).toStdString(),"STANDARD",0.0), DefaultLegendMaterial); //next line yLegend += c_textHeight_mm*2.0; //true profile line (red) dxf.writeLine( *dw, DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0), DL_Attributes(LEGEND_LAYER, DL_Codes::green, -1, "BYLAYER")); dxf.writeText( *dw, DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendRealProfileTitle.toStdString(),"STANDARD",0.0), DefaultLegendMaterial); //next line yLegend += c_textHeight_mm*2.0; //theoretical profile line (red) dxf.writeLine( *dw, DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0), DL_Attributes(LEGEND_LAYER, DL_Codes::red, -1, "BYLAYER")); dxf.writeText( *dw, DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendTheoProfileTitle.toStdString(),"STANDARD",0.0), DefaultLegendMaterial); } //profile values (fixed size: one per angular step of the input grid) std::vector<HorizStepData> polySteps; try { polySteps.resize(map->xSteps); } catch(std::bad_alloc) { //not engouh memory dw->dxfEOF(); dw->close(); delete dw; return false; } //write horizontal profiles for (unsigned heightStep=0; heightStep<heightStepCount; ++heightStep) { //profile height double height = yMin + static_cast<double>(heightStep) / static_cast<double>(heightStepCount-1) * ySpan; //corresponding index in map if (height < map->yMin || height >= map->yMin + static_cast<double>(map->ySteps) * map->yStep) { assert(false); //we have computed yMin and yMax so that those values are totally included inside the map's boundaries... continue; } unsigned jMap = static_cast<unsigned>((height-map->yMin)/map->yStep); assert(jMap < map->ySteps); //find corresponding radius double currentRadius = 0.0; { bool found = false; for (unsigned i=1; i<profile->size(); ++i) { const CCVector3* A = profile->getPoint(i-1); const CCVector3* B = profile->getPoint(i); double alpha = static_cast<double>((height - A->y)/(B->y - A->y)); if (alpha >= 0.0 && alpha <= 1.0) { //we deduce the right radius by linear interpolation currentRadius = A->x + alpha * (B->x - A->x); found = true; break; } } if (!found) { assert(false); //we have computed yMin and yMax so that 'height' is totally included inside the profile's boundaries... continue; } } const QString& currentLayer = profileNames[heightStep]; const DL_Attributes DefaultMaterial(currentLayer.toStdString(), DL_Codes::bylayer, -1, "BYLAYER"); const DL_Attributes GrayMaterial(currentLayer.toStdString(), DL_Codes::l_gray, -1, ""); //write layer title if (params.profileTitles.size() == 1) { QString title = QString(params.profileTitles[0]).arg(height,0,'f',params.precision); CCVector3d Ptop(xc, y0 + 2.0 * maxRadius * scale + c_profileMargin_mm / 2.0, 0.0); dxf.writeText( *dw, DL_TextData(Ptop.x,Ptop.y,Ptop.z,Ptop.x,Ptop.y,Ptop.z,c_textHeight_mm,1.0,0,1,0,title.toStdString(),"STANDARD",0.0), GrayMaterial); } //write theoretical profile (polyline = circle) { dxf.writeCircle(*dw, DL_CircleData(xc, yc, 0.0, currentRadius*scale), DL_Attributes(currentLayer.toStdString(), DL_Codes::red, -1, "BYLAYER")); } assert(polySteps.size() == map->xSteps); { const DistanceMapGenerationTool::MapCell* cell = &map->at(jMap * map->xSteps); for (unsigned iMap=0; iMap<map->xSteps; ++iMap, ++cell) { HorizStepData step; step.angle_rad = 2.0*M_PI * static_cast<double>(iMap)/static_cast<double>(map->xSteps); step.deviation = cell->count ? cell->value : 0.0; polySteps[iMap] = step; } } //profile "direction" double cwSign = map->counterclockwise ? -1.0 : 1.0; CCVector3d pageShift(xc,yc,0.0); //write profile polyline { dxf.writePolyline( *dw, DL_PolylineData(static_cast<int>(polySteps.size()),0,0,1), //closed shape! DefaultMaterial); for (size_t i=0; i<polySteps.size(); ++i) { const HorizStepData& step = polySteps[i]; double radius = currentRadius + step.deviation * params.devMagnifyCoef; dxf.writeVertex(*dw, DL_VertexData( pageShift.x - (cwSign * radius * sin(step.angle_rad)) * scale, pageShift.y - (radius * cos(step.angle_rad)) * scale, 0.0)); } dxf.writePolylineEnd(*dw); } //write corresponding 'deviation bars' and labels { size_t lastStep = 0; for (size_t i=0; i<polySteps.size(); ++i) { const HorizStepData& step = polySteps[i]; bool displayIt = (i == 0/*|| i+1 == polySteps.size()*/); //warning: cycle if (i != 0) { double dAngle = polySteps[i].angle_rad - polySteps[lastStep].angle_rad; double next_dAngle = (i+1 == polySteps.size() ? polySteps[0].angle_rad + 2.0*M_PI : polySteps[i+1].angle_rad) - polySteps[lastStep].angle_rad; if (dAngle >= angularStep_rad || (next_dAngle > angularStep_rad && fabs(dAngle - angularStep_rad) < fabs(next_dAngle - angularStep_rad))) { displayIt = true; } } if (displayIt && i != 0) //we skip 0 as we always display a vertical axis! { CCVector3d relativePos( -cwSign * sin(step.angle_rad), -cos(step.angle_rad), 0.0); CCVector3d Pangle = relativePos * currentRadius; CCVector3d Pdev = relativePos * (currentRadius + step.deviation * params.devMagnifyCoef); //page scaling Pangle = pageShift + Pangle * scale; Pdev = pageShift + Pdev * scale; //deviation bar dxf.writeLine(*dw, DL_LineData(Pangle.x,Pangle.y,Pangle.z,Pdev.x,Pdev.y,Pdev.z), GrayMaterial); //labels //justification depends on the current angle const double c_angleMargin_rad = 5.0 / 180.0 * M_PI; //margin: 5 degrees const double c_margin = sin(c_angleMargin_rad); //Horizontal justification: 0 = Left , 1 = Center, 2 = Right int hJustification = 1; if (relativePos.x < -c_margin) //point on the left hJustification = 2; //Right else if (relativePos.x > c_margin) //point on the right hJustification = 0; //Left //Vertical justification: 0 = Baseline, 1 = Bottom, 2 = Middle, 3 = Top int vJustification = 2; if (relativePos.y < -c_margin) //point in the lower part vJustification = 3; //Top else if (relativePos.y > c_margin) //point in the upper part vJustification = 1; //Bottom int hJustificationDev = hJustification; int hJustificationAng = hJustification; int vJustificationDev = vJustification; int vJustificationAng = vJustification; //negative deviation: profile is inside the circle // - deviation is displayed insde // - angle is displayed outside if (step.deviation < 0.0) { Pdev -= relativePos * 2.0*c_textMargin_mm; Pangle += relativePos * c_textMargin_mm; //invert dev. text justification if (hJustificationDev != 1) hJustificationDev = 2-hJustificationDev; // 0 <-> 2 if (vJustificationDev != 2) vJustificationDev = 4-vJustificationDev; // 1 <-> 3 } else { Pdev += relativePos * 2.0*c_textMargin_mm; Pangle -= relativePos * c_textMargin_mm; //invert ang. text justification if (hJustificationAng != 1) hJustificationAng = 2-hJustificationAng; // 0 <-> 2 if (vJustificationAng != 2) vJustificationAng = 4-vJustificationAng; // 1 <-> 3 } QString devText = QString::number(polySteps[i].deviation * params.devLabelMultCoef,'f',params.precision); dxf.writeText( *dw, DL_TextData(Pdev.x,Pdev.y,Pdev.z,Pdev.x,Pdev.y,Pdev.z,c_textHeight_mm,1.0,0,hJustificationDev,vJustificationDev,devText.toStdString(),"STANDARD",0.0), DefaultMaterial); QString angleText = QString::number(polySteps[i].angle_rad *radToUnitConvFactor,'f',params.precision)+angleUnit; dxf.writeText( *dw, DL_TextData(Pangle.x,Pangle.y,Pangle.z,Pangle.x,Pangle.y,Pangle.z,c_textHeight_mm,1.0,0,hJustificationAng,vJustificationAng,angleText.toStdString(),"STANDARD",0.0), GrayMaterial); lastStep = i; } } } } dw->sectionEnd(); } //Writing the Objects Section dxf.writeObjects(*dw); dxf.writeObjectsEnd(*dw); //Ending and Closing the File dw->dxfEOF(); dw->close(); delete dw; dw = 0; return true; #else return false; #endif }
int main(int argc, char **argv) { if (argc < 5) { std::cerr << "Usage: dxf-import <main input file> <overlay input file> <overlay layer name prefix> <output file>\n"; return 1; } std::string mainInput = argv[1]; std::string overlayInput = argv[2]; std::string layerPrefix = argv[3]; LayerCounter mainLayerCounter(layerPrefix, false); mainLayerCounter.input(mainInput); LayerCounter overlayLayerCounter(layerPrefix, true); overlayLayerCounter.input(overlayInput); DL_Dxf output; DL_WriterA *writer = output.out(argv[4]); if (!writer) { std::cerr << "Unable to open output file '" << argv[4] << "'\n"; return 1; } output.writeHeader(*writer); VariableWriter(&output, writer).input(mainInput); writer->sectionEnd(); writer->sectionTables(); output.writeVPort(*writer); writeLineTypes(output, writer); writer->tableLayers(mainLayerCounter.layers() + overlayLayerCounter.layers()); LayerWriter(layerPrefix, false, &output, writer).input(mainInput); LayerWriter(layerPrefix, true, &output, writer).input(overlayInput); writer->tableEnd(); output.writeStyle(*writer); output.writeView(*writer); output.writeUcs(*writer); writer->tableAppid(1); writer->tableAppidEntry(0x12); writer->dxfString(2, "ACAD"); writer->dxfInt(70, 0); writer->tableEnd(); output.writeDimStyle(*writer, 3.0, 3.0, 1.5, 2.0, 3.0); output.writeBlockRecord(*writer); BlockRecordWriter(layerPrefix, false, &output, writer).input(mainInput); BlockRecordWriter(layerPrefix, true, &output, writer).input(overlayInput); writer->tableEnd(); writer->sectionEnd(); std::map<std::string, ImageHandle> images; writer->sectionBlocks(); output.writeBlock(*writer, DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0)); output.writeEndBlock(*writer, "*Model_Space"); output.writeBlock(*writer, DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0)); output.writeEndBlock(*writer, "*Paper_Space"); output.writeBlock(*writer, DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0)); output.writeEndBlock(*writer, "*Paper_Space0"); EntityWriter(layerPrefix, false, &output, writer, true, &images).input(mainInput); EntityWriter(layerPrefix, true, &output, writer, true, &images).input(overlayInput); writer->sectionEnd(); writer->sectionEntities(); EntityWriter(layerPrefix, false, &output, writer, false, &images).input(mainInput); EntityWriter(layerPrefix, true, &output, writer, false, &images).input(overlayInput); writer->sectionEnd(); output.writeObjects(*writer); ObjectWriter(&output, writer, &images).input(mainInput); ObjectWriter(&output, writer, &images).input(overlayInput); output.writeObjectsEnd(*writer); writer->dxfEOF(); writer->close(); delete writer; return 0; }