/// ResolveFunctionCall - Resolve the actual arguments of a call to function F /// with the specified call site descriptor. This function links the arguments /// and the return value for the call site context-insensitively. /// void SteensgaardDataStructures::ResolveFunctionCall(const Function *F, const DSCallSite &Call, DSNodeHandle &RetVal) { assert(ResultGraph != 0 && "Result graph not allocated!"); DSGraph::ScalarMapTy &ValMap = ResultGraph->getScalarMap(); // Handle the return value of the function... if (Call.getRetVal().getNode() && RetVal.getNode()) RetVal.mergeWith(Call.getRetVal()); // Loop over all pointer arguments, resolving them to their provided pointers unsigned PtrArgIdx = 0; for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) { DSGraph::ScalarMapTy::iterator I = ValMap.find(AI); if (I != ValMap.end()) // If its a pointer argument... I->second.mergeWith(Call.getPtrArg(PtrArgIdx++)); } }
bool CSDataRando::processCallSite(CallSite CS, FuncInfo &FI, PointerEquivalenceAnalysis &P, DSGraph *G) { bool IndirectCall = !isa<Function>(CS.getCalledValue()->stripPointerCasts()); if (IndirectCall) { NumIndirectCalls++; } CallSite OriginalCS = originalCallSite(FI, CS); if (!DSA->canEncryptCall(OriginalCS)) { if (IndirectCall) { NumIndirectCantEncrypt++; } return false; } DSCallSite DSCS = G->getDSCallSiteForCallSite(OriginalCS); const Function *Callee = getEffectiveCallee(DSCS, FI, G); if (!Callee) { if (IndirectCall) { NumIndirectCantEncrypt++; } return false; } FuncInfo &CalleeInfo = FunctionInfo[Callee]; Value *Clone = getCloneCalledValue(CS, CalleeInfo); if (!Clone || CalleeInfo.ArgNodes.empty()) { if (IndirectCall) { NumIndirectCantEncrypt++; } return false; } // We create a mapping of the formal argument nodes in the callee function and // actual argument nodes in the caller function's graph. DSGraph::NodeMapTy NodeMap; DSGraph *CalleeG = DSA->getDSGraph(*Callee); // getArgNodesForCall places the return node and the vanode in the // first two slots of the vector, followed by the nodes for the regular // pointer arguments. std::vector<DSNodeHandle> ArgNodes; getArgNodesForCall(CalleeG, DSCS, ArgNodes); // First the return value DSNodeHandle CalleeRetNode = ArgNodes[0]; DSGraph::computeNodeMapping(CalleeRetNode, DSCS.getRetVal(), NodeMap); // Then VarArgs DSNodeHandle CalleeVarArgNode = ArgNodes[1]; DSGraph::computeNodeMapping(CalleeVarArgNode, DSCS.getVAVal(), NodeMap); // And last the regular arguments. for (unsigned int i = 0; i < DSCS.getNumPtrArgs() && i + 2 < ArgNodes.size(); i++) { DSGraph::computeNodeMapping(ArgNodes[i + 2], DSCS.getPtrArg(i), NodeMap); } // Collect the arguments and masks to pass to call SmallVector<Value*, 8> Args; unsigned int i = 0; for (unsigned int e = CS.getFunctionType()->getNumParams(); i < e; i++) { Args.push_back(CS.getArgOperand(i)); } for (const DSNode *N : CalleeInfo.ArgNodes) { Value *Mask = P.getMaskForNode(NodeMap[N]); Args.push_back(Mask); } // VarArgs go after masks for (unsigned int e = CS.arg_size(); i < e; i++) { Args.push_back(CS.getArgOperand(i)); } // Do replacement Instruction *CI = CS.getInstruction(); Value *Call; if (CS.isCall()) { Call = CallInst::Create(Clone, Args, "", CI); } else { InvokeInst *II = cast<InvokeInst>(CI); Call = InvokeInst::Create(Clone, II->getNormalDest(), II->getUnwindDest(), Args, "", II); } CallSite NewCS(Call); NewCS.setCallingConv(CS.getCallingConv()); CI->replaceAllUsesWith(Call); P.replace(CI, Call); CI->eraseFromParent(); return true; }