const DistMatrix<T,MD,STAR>& DistMatrix<T,MD,STAR>::operator=( const DistMatrix<T,STAR,STAR>& A ) { #ifndef RELEASE CallStackEntry entry("[MD,* ] = [* ,* ]"); this->AssertNotLocked(); this->AssertSameGrid( A.Grid() ); #endif this->ResizeTo( A.Height(), A.Width() ); if( !this->Participating() ) return *this; const Int lcm = this->grid_->LCM(); const Int colShift = this->ColShift(); const Int width = this->Width(); const Int localHeight = this->LocalHeight(); const T* ABuf = A.LockedBuffer(); const Int ALDim = A.LDim(); T* thisBuffer = this->Buffer(); const Int thisLDim = this->LDim(); PARALLEL_FOR for( Int j=0; j<width; ++j ) { T* destCol = &thisBuffer[j*thisLDim]; const T* sourceCol = &ABuf[colShift+j*ALDim]; for( Int iLoc=0; iLoc<localHeight; ++iLoc ) destCol[iLoc] = sourceCol[iLoc*lcm]; } return *this; }
void Scatter ( const DistMatrix<T,CIRC,CIRC>& A, DistMatrix<T,STAR,STAR>& B ) { DEBUG_CSE AssertSameGrids( A, B ); const Int height = A.Height(); const Int width = A.Width(); B.Resize( height, width ); if( B.Participating() ) { const Int pkgSize = mpi::Pad( height*width ); vector<T> buffer; FastResize( buffer, pkgSize ); // Pack if( A.Participating() ) util::InterleaveMatrix ( height, width, A.LockedBuffer(), 1, A.LDim(), buffer.data(), 1, height ); // Broadcast from the process that packed mpi::Broadcast( buffer.data(), pkgSize, A.Root(), A.CrossComm() ); // Unpack util::InterleaveMatrix ( height, width, buffer.data(), 1, height, B.Buffer(), 1, B.LDim() ); } }
const DistMatrix<T,STAR,STAR>& DistMatrix<T,STAR,STAR>::operator=( const DistMatrix<T,VR,STAR>& A ) { #ifndef RELEASE CallStackEntry entry("[* ,* ] = [VR,* ]"); this->AssertNotLocked(); this->AssertSameGrid( A.Grid() ); #endif const elem::Grid& g = this->Grid(); this->ResizeTo( A.Height(), A.Width() ); if( !this->Participating() ) return *this; const Int p = g.Size(); const Int height = this->Height(); const Int width = this->Width(); const Int localHeightOfA = A.LocalHeight(); const Int maxLocalHeight = MaxLength(height,p); const Int portionSize = mpi::Pad( maxLocalHeight*width ); T* buffer = this->auxMemory_.Require( (p+1)*portionSize ); T* sendBuf = &buffer[0]; T* recvBuf = &buffer[portionSize]; // Pack const Int ALDim = A.LDim(); const T* ABuf = A.LockedBuffer(); PARALLEL_FOR for( Int j=0; j<width; ++j ) MemCopy ( &sendBuf[j*localHeightOfA], &ABuf[j*ALDim], localHeightOfA ); // Communicate mpi::AllGather ( sendBuf, portionSize, recvBuf, portionSize, g.VRComm() ); // Unpack T* thisBuf = this->Buffer(); const Int thisLDim = this->LDim(); const Int colAlignmentOfA = A.ColAlignment(); OUTER_PARALLEL_FOR for( Int k=0; k<p; ++k ) { const T* data = &recvBuf[k*portionSize]; const Int colShift = Shift_( k, colAlignmentOfA, p ); const Int localHeight = Length_( height, colShift, p ); INNER_PARALLEL_FOR for( Int j=0; j<width; ++j ) { T* destCol = &thisBuf[colShift+j*thisLDim]; const T* sourceCol = &data[j*localHeight]; for( Int iLoc=0; iLoc<localHeight; ++iLoc ) destCol[iLoc*p] = sourceCol[iLoc]; } } this->auxMemory_.Release(); return *this; }
const DistMatrix<T,STAR,STAR>& DistMatrix<T,STAR,STAR>::operator=( const DistMatrix<T,STAR,VR>& A ) { #ifndef RELEASE CallStackEntry entry("[* ,* ] = [* ,VR]"); this->AssertNotLocked(); this->AssertSameGrid( A.Grid() ); #endif const elem::Grid& g = this->Grid(); this->ResizeTo( A.Height(), A.Width() ); if( !this->Participating() ) return *this; const Int p = g.Size(); const Int height = this->Height(); const Int width = this->Width(); const Int localWidthOfA = A.LocalWidth(); const Int maxLocalWidth = MaxLength(width,p); const Int portionSize = mpi::Pad( height*maxLocalWidth ); T* buffer = this->auxMemory_.Require( (p+1)*portionSize ); T* sendBuf = &buffer[0]; T* recvBuf = &buffer[portionSize]; // Pack const Int ALDim = A.LDim(); const T* ABuf = A.LockedBuffer(); PARALLEL_FOR for( Int jLoc=0; jLoc<localWidthOfA; ++jLoc ) MemCopy( &sendBuf[jLoc*height], &ABuf[jLoc*ALDim], height ); // Communicate mpi::AllGather ( sendBuf, portionSize, recvBuf, portionSize, g.VRComm() ); // Unpack T* thisBuf = this->Buffer(); const Int thisLDim = this->LDim(); const Int rowAlignmentOfA = A.RowAlignment(); OUTER_PARALLEL_FOR for( Int k=0; k<p; ++k ) { const T* data = &recvBuf[k*portionSize]; const Int rowShift = Shift_( k, rowAlignmentOfA, p ); const Int localWidth = Length_( width, rowShift, p ); INNER_PARALLEL_FOR for( Int jLoc=0; jLoc<localWidth; ++jLoc ) MemCopy ( &thisBuf[(rowShift+jLoc*p)*thisLDim], &data[jLoc*height], height ); } this->auxMemory_.Release(); return *this; }
void AllGather ( const DistMatrix<T, U, V >& A, DistMatrix<T,Collect<U>(),Collect<V>()>& B ) { EL_DEBUG_CSE AssertSameGrids( A, B ); const Int height = A.Height(); const Int width = A.Width(); B.SetGrid( A.Grid() ); B.Resize( height, width ); if( A.Participating() ) { if( A.DistSize() == 1 ) { Copy( A.LockedMatrix(), B.Matrix() ); } else { const Int colStride = A.ColStride(); const Int rowStride = A.RowStride(); const Int distStride = colStride*rowStride; const Int maxLocalHeight = MaxLength(height,colStride); const Int maxLocalWidth = MaxLength(width,rowStride); const Int portionSize = mpi::Pad( maxLocalHeight*maxLocalWidth ); vector<T> buf; FastResize( buf, (distStride+1)*portionSize ); T* sendBuf = &buf[0]; T* recvBuf = &buf[portionSize]; // Pack util::InterleaveMatrix ( A.LocalHeight(), A.LocalWidth(), A.LockedBuffer(), 1, A.LDim(), sendBuf, 1, A.LocalHeight() ); // Communicate mpi::AllGather ( sendBuf, portionSize, recvBuf, portionSize, A.DistComm() ); // Unpack util::StridedUnpack ( height, width, A.ColAlign(), colStride, A.RowAlign(), rowStride, recvBuf, portionSize, B.Buffer(), B.LDim() ); } } if( A.Grid().InGrid() && A.CrossComm() != mpi::COMM_SELF ) El::Broadcast( B, A.CrossComm(), A.Root() ); }
inline void HermitianSVD ( UpperOrLower uplo, DistMatrix<F>& A, DistMatrix<BASE(F),VR,STAR>& s, DistMatrix<F>& U, DistMatrix<F>& V ) { #ifndef RELEASE CallStackEntry entry("HermitianSVD"); #endif #ifdef HAVE_PMRRR typedef BASE(F) R; // Grab an eigenvalue decomposition of A HermitianEig( uplo, A, s, V ); // Redistribute the singular values into an [MR,* ] distribution const Grid& grid = A.Grid(); DistMatrix<R,MR,STAR> s_MR_STAR( grid ); s_MR_STAR.AlignWith( V.DistData() ); s_MR_STAR = s; // Set the singular values to the absolute value of the eigenvalues const Int numLocalVals = s.LocalHeight(); for( Int iLoc=0; iLoc<numLocalVals; ++iLoc ) { const R sigma = s.GetLocal(iLoc,0); s.SetLocal(iLoc,0,Abs(sigma)); } // Copy V into U (flipping the sign as necessary) U.AlignWith( V ); U.ResizeTo( V.Height(), V.Width() ); const Int localHeight = V.LocalHeight(); const Int localWidth = V.LocalWidth(); for( Int jLoc=0; jLoc<localWidth; ++jLoc ) { const R sigma = s_MR_STAR.GetLocal( jLoc, 0 ); F* UCol = U.Buffer( 0, jLoc ); const F* VCol = V.LockedBuffer( 0, jLoc ); if( sigma >= 0 ) for( Int iLoc=0; iLoc<localHeight; ++iLoc ) UCol[iLoc] = VCol[iLoc]; else for( Int iLoc=0; iLoc<localHeight; ++iLoc ) UCol[iLoc] = -VCol[iLoc]; } #else U = A; MakeHermitian( uplo, U ); SVD( U, s, V ); #endif // ifdef HAVE_PMRRR }
void Filter ( const DistMatrix<T,Collect<U>(),Collect<V>()>& A, DistMatrix<T, U, V >& B ) { DEBUG_CSE AssertSameGrids( A, B ); B.Resize( A.Height(), A.Width() ); if( !B.Participating() ) return; const Int colShift = B.ColShift(); const Int rowShift = B.RowShift(); util::InterleaveMatrix ( B.LocalHeight(), B.LocalWidth(), A.LockedBuffer(colShift,rowShift), B.ColStride(), B.RowStride()*A.LDim(), B.Buffer(), 1, B.LDim() ); }
void GetMappedDiagonal ( const DistMatrix<T,U,V>& A, AbstractDistMatrix<S>& dPre, function<S(const T&)> func, Int offset ) { EL_DEBUG_CSE EL_DEBUG_ONLY(AssertSameGrids( A, dPre )) ElementalProxyCtrl ctrl; ctrl.colConstrain = true; ctrl.colAlign = A.DiagonalAlign(offset); ctrl.rootConstrain = true; ctrl.root = A.DiagonalRoot(offset); DistMatrixWriteProxy<S,S,DiagCol<U,V>(),DiagRow<U,V>()> dProx( dPre, ctrl ); auto& d = dProx.Get(); d.Resize( A.DiagonalLength(offset), 1 ); if( d.Participating() ) { const Int diagShift = d.ColShift(); const Int iStart = diagShift + Max(-offset,0); const Int jStart = diagShift + Max( offset,0); const Int colStride = A.ColStride(); const Int rowStride = A.RowStride(); const Int iLocStart = (iStart-A.ColShift()) / colStride; const Int jLocStart = (jStart-A.RowShift()) / rowStride; const Int iLocStride = d.ColStride() / colStride; const Int jLocStride = d.ColStride() / rowStride; const Int localDiagLength = d.LocalHeight(); S* dBuf = d.Buffer(); const T* ABuf = A.LockedBuffer(); const Int ldim = A.LDim(); EL_PARALLEL_FOR for( Int k=0; k<localDiagLength; ++k ) { const Int iLoc = iLocStart + k*iLocStride; const Int jLoc = jLocStart + k*jLocStride; dBuf[k] = func(ABuf[iLoc+jLoc*ldim]); } } }
inline void AddInLocalData ( const DistMatrix<F,VC,STAR>& X1, DistMatrix<F,STAR,STAR>& Z ) { #ifndef RELEASE PushCallStack("internal::AddInLocalData"); #endif const int width = X1.Width(); const int localHeight = X1.LocalHeight(); const int stride = X1.Grid().Size(); const int offset = X1.ColShift(); for( int j=0; j<width; ++j ) { F* ZColBuffer = Z.Buffer(0,j); const F* X1ColBuffer = X1.LockedBuffer(0,j); for( int iLocal=0; iLocal<localHeight; ++iLocal ) ZColBuffer[offset+stride*iLocal] += X1ColBuffer[iLocal]; } #ifndef RELEASE PopCallStack(); #endif }
const DistMatrix<T,STAR,STAR>& DistMatrix<T,STAR,STAR>::operator=( const DistMatrix<T,CIRC,CIRC>& A ) { #ifndef RELEASE CallStackEntry entry("[* ,* ] = [o ,o ]"); this->AssertNotLocked(); #endif const Grid& g = A.Grid(); const Int m = A.Height(); const Int n = A.Width(); this->ResizeTo( A.Height(), A.Width() ); if( this->Participating() ) { const Int pkgSize = mpi::Pad( m*n ); T* commBuffer = this->auxMemory_.Require( pkgSize ); if( A.Participating() ) { // Pack const Int ALDim = A.LDim(); const T* ABuf = A.LockedBuffer(); for( Int j=0; j<n; ++j ) for( Int i=0; i<m; ++i ) commBuffer[i+j*m] = ABuf[i+j*ALDim]; } // Broadcast from the process that packed mpi::Broadcast( commBuffer, pkgSize, A.Root(), g.VCComm() ); // Unpack T* buffer = this->Buffer(); const Int ldim = this->LDim(); for( Int j=0; j<n; ++j ) for( Int i=0; i<m; ++i ) buffer[i+j*ldim] = commBuffer[i+j*m]; } return *this; }
void AccumulateRHS( const DistMatrix<F,VC,STAR>& X, DistMatrix<F,STAR,STAR>& Z ) { const Int height = X.Height(); const Int width = X.Width(); Z.Empty(); Zeros( Z, height, width ); const Int localHeight = X.LocalHeight(); const Int colShift = X.ColShift(); const int commSize = X.Grid().Size(); const F* XBuffer = X.LockedBuffer(); F* ZBuffer = Z.Buffer(); const Int XLDim = X.LDim(); const Int ZLDim = Z.LDim(); for( Int iLoc=0; iLoc<localHeight; ++iLoc ) { const Int i = colShift + iLoc*commSize; for( Int j=0; j<width; ++j ) ZBuffer[i+j*ZLDim] = XBuffer[iLoc+j*XLDim]; } mpi::AllReduce( ZBuffer, ZLDim*width, mpi::SUM, X.Grid().VCComm() ); }
void FormDiagonalBlocks ( const DistMatrix<F,VC,STAR>& L, DistMatrix<F,STAR,STAR>& D, bool conjugate ) { const Grid& g = L.Grid(); const Int height = L.Width(); const Int blocksize = Blocksize(); const int commRank = g.VCRank(); const int commSize = g.Size(); const Int localHeight = Length(height,commRank,commSize); const Int maxLocalHeight = MaxLength(height,commSize); const Int portionSize = maxLocalHeight*blocksize; std::vector<F> sendBuffer( portionSize ); const Int colShift = L.ColShift(); const Int LLDim = L.LDim(); const F* LBuffer = L.LockedBuffer(); if( conjugate ) { for( Int iLoc=0; iLoc<localHeight; ++iLoc ) { const Int i = colShift + iLoc*commSize; const Int block = i / blocksize; const Int jStart = block*blocksize; const Int b = std::min(height-jStart,blocksize); for( Int jOff=0; jOff<b; ++jOff ) sendBuffer[iLoc*blocksize+jOff] = Conj(LBuffer[iLoc+(jStart+jOff)*LLDim]); } } else { for( Int iLoc=0; iLoc<localHeight; ++iLoc ) { const Int i = colShift + iLoc*commSize; const Int block = i / blocksize; const Int jStart = block*blocksize; const Int b = std::min(height-jStart,blocksize); for( Int jOff=0; jOff<b; ++jOff ) sendBuffer[iLoc*blocksize+jOff] = LBuffer[iLoc+(jStart+jOff)*LLDim]; } } std::vector<F> recvBuffer( portionSize*commSize ); mpi::AllGather ( &sendBuffer[0], portionSize, &recvBuffer[0], portionSize, g.VCComm() ); SwapClear( sendBuffer ); D.Resize( blocksize, height ); F* DBuffer = D.Buffer(); const Int DLDim = D.LDim(); for( Int proc=0; proc<commSize; ++proc ) { const F* procRecv = &recvBuffer[proc*portionSize]; const Int procLocalHeight = Length(height,proc,commSize); for( Int iLoc=0; iLoc<procLocalHeight; ++iLoc ) { const Int i = proc + iLoc*commSize; for( Int jOff=0; jOff<blocksize; ++jOff ) DBuffer[jOff+i*DLDim] = procRecv[jOff+iLoc*blocksize]; } } }
void ColAllToAllPromote ( const DistMatrix<T, U, V >& A, DistMatrix<T,Partial<U>(),PartialUnionRow<U,V>()>& B ) { DEBUG_CSE AssertSameGrids( A, B ); const Int height = A.Height(); const Int width = A.Width(); B.AlignColsAndResize ( Mod(A.ColAlign(),B.ColStride()), height, width, false, false ); if( !B.Participating() ) return; const Int colStride = A.ColStride(); const Int colStridePart = A.PartialColStride(); const Int colStrideUnion = A.PartialUnionColStride(); const Int colRankPart = A.PartialColRank(); const Int colDiff = B.ColAlign() - Mod(A.ColAlign(),colStridePart); const Int maxLocalHeight = MaxLength(height,colStride); const Int maxLocalWidth = MaxLength(width,colStrideUnion); const Int portionSize = mpi::Pad( maxLocalHeight*maxLocalWidth ); if( colDiff == 0 ) { if( A.PartialUnionColStride() == 1 ) { Copy( A.LockedMatrix(), B.Matrix() ); } else { vector<T> buffer; FastResize( buffer, 2*colStrideUnion*portionSize ); T* firstBuf = &buffer[0]; T* secondBuf = &buffer[colStrideUnion*portionSize]; // Pack util::RowStridedPack ( A.LocalHeight(), width, B.RowAlign(), colStrideUnion, A.LockedBuffer(), A.LDim(), firstBuf, portionSize ); // Simultaneously Gather in columns and Scatter in rows mpi::AllToAll ( firstBuf, portionSize, secondBuf, portionSize, A.PartialUnionColComm() ); // Unpack util::PartialColStridedUnpack ( height, B.LocalWidth(), A.ColAlign(), colStride, colStrideUnion, colStridePart, colRankPart, B.ColShift(), secondBuf, portionSize, B.Buffer(), B.LDim() ); } } else { #ifdef EL_UNALIGNED_WARNINGS if( A.Grid().Rank() == 0 ) cerr << "Unaligned PartialColAllToAllPromote" << endl; #endif const Int sendColRankPart = Mod( colRankPart+colDiff, colStridePart ); const Int recvColRankPart = Mod( colRankPart-colDiff, colStridePart ); vector<T> buffer; FastResize( buffer, 2*colStrideUnion*portionSize ); T* firstBuf = &buffer[0]; T* secondBuf = &buffer[colStrideUnion*portionSize]; // Pack util::RowStridedPack ( A.LocalHeight(), width, B.RowAlign(), colStrideUnion, A.LockedBuffer(), A.LDim(), secondBuf, portionSize ); // Realign the input mpi::SendRecv ( secondBuf, colStrideUnion*portionSize, sendColRankPart, firstBuf, colStrideUnion*portionSize, recvColRankPart, A.PartialColComm() ); // Simultaneously Scatter in columns and Gather in rows mpi::AllToAll ( firstBuf, portionSize, secondBuf, portionSize, A.PartialUnionColComm() ); // Unpack util::PartialColStridedUnpack ( height, B.LocalWidth(), A.ColAlign(), colStride, colStrideUnion, colStridePart, recvColRankPart, B.ColShift(), secondBuf, portionSize, B.Buffer(), B.LDim() ); } }
void TranslateBetweenGrids ( const DistMatrix<T,MC,MR>& A, DistMatrix<T,MC,MR>& B ) { DEBUG_ONLY(CSE cse("copy::TranslateBetweenGrids [MC,MR]")) B.Resize( A.Height(), A.Width() ); // Just need to ensure that each viewing comm contains the other team's // owning comm. Congruence is too strong. // Compute the number of process rows and columns that each process // needs to send to. const Int colStride = B.ColStride(); const Int rowStride = B.RowStride(); const Int colRank = B.ColRank(); const Int rowRank = B.RowRank(); const Int colStrideA = A.ColStride(); const Int rowStrideA = A.RowStride(); const Int colGCD = GCD( colStride, colStrideA ); const Int rowGCD = GCD( rowStride, rowStrideA ); const Int colLCM = colStride*colStrideA / colGCD; const Int rowLCM = rowStride*rowStrideA / rowGCD; const Int numColSends = colStride / colGCD; const Int numRowSends = rowStride / rowGCD; const Int colAlign = B.ColAlign(); const Int rowAlign = B.RowAlign(); const Int colAlignA = A.ColAlign(); const Int rowAlignA = A.RowAlign(); const bool inBGrid = B.Participating(); const bool inAGrid = A.Participating(); if( !inBGrid && !inAGrid ) return; const Int maxSendSize = (A.Height()/(colStrideA*numColSends)+1) * (A.Width()/(rowStrideA*numRowSends)+1); // Translate the ranks from A's VC communicator to B's viewing so that // we can match send/recv communicators. Since A's VC communicator is not // necessarily defined on every process, we instead work with A's owning // group and account for row-major ordering if necessary. const int sizeA = A.Grid().Size(); vector<int> rankMap(sizeA), ranks(sizeA); if( A.Grid().Order() == COLUMN_MAJOR ) { for( int j=0; j<sizeA; ++j ) ranks[j] = j; } else { // The (i,j) = i + j*colStrideA rank in the column-major ordering is // equal to the j + i*rowStrideA rank in a row-major ordering. // Since we desire rankMap[i+j*colStrideA] to correspond to process // (i,j) in A's grid's rank in this viewing group, ranks[i+j*colStrideA] // should correspond to process (i,j) in A's owning group. Since the // owning group is ordered row-major in this case, its rank is // j+i*rowStrideA. Note that setting // ranks[j+i*rowStrideA] = i+j*colStrideA is *NOT* valid. for( int i=0; i<colStrideA; ++i ) for( int j=0; j<rowStrideA; ++j ) ranks[i+j*colStrideA] = j+i*rowStrideA; } mpi::Translate ( A.Grid().OwningGroup(), sizeA, &ranks[0], B.Grid().ViewingComm(), &rankMap[0] ); // Have each member of A's grid individually send to all numRow x numCol // processes in order, while the members of this grid receive from all // necessary processes at each step. Int requiredMemory = 0; if( inAGrid ) requiredMemory += maxSendSize; if( inBGrid ) requiredMemory += maxSendSize; vector<T> auxBuf( requiredMemory ); Int offset = 0; T* sendBuf = &auxBuf[offset]; if( inAGrid ) offset += maxSendSize; T* recvBuf = &auxBuf[offset]; Int recvRow = 0; // avoid compiler warnings... if( inAGrid ) recvRow = Mod(Mod(A.ColRank()-colAlignA,colStrideA)+colAlign,colStride); for( Int colSend=0; colSend<numColSends; ++colSend ) { Int recvCol = 0; // avoid compiler warnings... if( inAGrid ) recvCol=Mod(Mod(A.RowRank()-rowAlignA,rowStrideA)+rowAlign, rowStride); for( Int rowSend=0; rowSend<numRowSends; ++rowSend ) { mpi::Request sendRequest; // Fire off this round of non-blocking sends if( inAGrid ) { // Pack the data Int sendHeight = Length(A.LocalHeight(),colSend,numColSends); Int sendWidth = Length(A.LocalWidth(),rowSend,numRowSends); copy::util::InterleaveMatrix ( sendHeight, sendWidth, A.LockedBuffer(colSend,rowSend), numColSends, numRowSends*A.LDim(), sendBuf, 1, sendHeight ); // Send data const Int recvVCRank = recvRow + recvCol*colStride; const Int recvViewingRank = B.Grid().VCToViewing( recvVCRank ); mpi::ISend ( sendBuf, sendHeight*sendWidth, recvViewingRank, B.Grid().ViewingComm(), sendRequest ); } // Perform this round of recv's if( inBGrid ) { const Int sendColOffset = colAlignA; const Int recvColOffset = (colSend*colStrideA+colAlign) % colStride; const Int sendRowOffset = rowAlignA; const Int recvRowOffset = (rowSend*rowStrideA+rowAlign) % rowStride; const Int firstSendRow = Mod( Mod(colRank-recvColOffset,colStride)+sendColOffset, colStrideA ); const Int firstSendCol = Mod( Mod(rowRank-recvRowOffset,rowStride)+sendRowOffset, rowStrideA ); const Int colShift = Mod( colRank-recvColOffset, colStride ); const Int rowShift = Mod( rowRank-recvRowOffset, rowStride ); const Int numColRecvs = Length( colStrideA, colShift, colStride ); const Int numRowRecvs = Length( rowStrideA, rowShift, rowStride ); // Recv data // For now, simply receive sequentially. Until we switch to // nonblocking recv's, we won't be using much of the // recvBuf Int sendRow = firstSendRow; for( Int colRecv=0; colRecv<numColRecvs; ++colRecv ) { const Int sendColShift = Shift( sendRow, colAlignA, colStrideA ) + colSend*colStrideA; const Int sendHeight = Length( A.Height(), sendColShift, colLCM ); const Int localColOffset = (sendColShift-B.ColShift()) / colStride; Int sendCol = firstSendCol; for( Int rowRecv=0; rowRecv<numRowRecvs; ++rowRecv ) { const Int sendRowShift = Shift( sendCol, rowAlignA, rowStrideA ) + rowSend*rowStrideA; const Int sendWidth = Length( A.Width(), sendRowShift, rowLCM ); const Int localRowOffset = (sendRowShift-B.RowShift()) / rowStride; const Int sendVCRank = sendRow+sendCol*colStrideA; mpi::Recv ( recvBuf, sendHeight*sendWidth, rankMap[sendVCRank], B.Grid().ViewingComm() ); // Unpack the data copy::util::InterleaveMatrix ( sendHeight, sendWidth, recvBuf, 1, sendHeight, B.Buffer(localColOffset,localRowOffset), colLCM/colStride, (rowLCM/rowStride)*B.LDim() ); // Set up the next send col sendCol = (sendCol + rowStride) % rowStrideA; } // Set up the next send row sendRow = (sendRow + colStride) % colStrideA; } } // Ensure that this round of non-blocking sends completes if( inAGrid ) { mpi::Wait( sendRequest ); recvCol = (recvCol + rowStrideA) % rowStride; } } if( inAGrid ) recvRow = (recvRow + colStrideA) % colStride; } }
inline void Cannon_NN ( T alpha, const DistMatrix<T>& A, const DistMatrix<T>& B, T beta, DistMatrix<T>& C ) { #ifndef RELEASE CallStackEntry entry("gemm::Cannon_NN"); if( A.Grid() != B.Grid() || B.Grid() != C.Grid() ) LogicError("{A,B,C} must have the same grid"); if( A.Height() != C.Height() || B.Width() != C.Width() || A.Width() != B.Height() ) { std::ostringstream msg; msg << "Nonconformal matrices: \n" << " A ~ " << A.Height() << " x " << A.Width() << "\n" << " B ~ " << B.Height() << " x " << B.Width() << "\n" << " C ~ " << C.Height() << " x " << C.Width() << "\n"; LogicError( msg.str() ); } #endif const Grid& g = A.Grid(); if( g.Height() != g.Width() ) LogicError("Process grid must be square for Cannon's"); if( C.ColAlignment() != A.ColAlignment() || C.RowAlignment() != B.RowAlignment() ) LogicError("C is not properly aligned"); const Int row = g.Row(); const Int col = g.Col(); const Int pSqrt = g.Height(); mpi::Comm rowComm = g.RowComm(); mpi::Comm colComm = g.ColComm(); if( A.Width() % pSqrt != 0 ) LogicError("For now, width(A) must be integer multiple of sqrt(p)"); // Begin by scaling our local portion of C Scale( beta, C ); // Load the initial A and B packages (may want to transpose B...) const Int localHeightA = A.LocalHeight(); const Int localHeightB = B.LocalHeight(); const Int localWidthA = A.LocalWidth(); const Int localWidthB = B.LocalWidth(); Matrix<T> pkgA(localHeightA,localWidthA,localHeightA), pkgB(localHeightB,localWidthB,localHeightB); for( Int jLoc=0; jLoc<localWidthA; ++jLoc ) MemCopy ( pkgA.Buffer(0,jLoc), A.LockedBuffer(0,jLoc), localHeightA ); for( Int jLoc=0; jLoc<localWidthB; ++jLoc ) MemCopy ( pkgB.Buffer(0,jLoc), B.LockedBuffer(0,jLoc), localHeightB ); // Perform the initial circular shifts so that our A and B packages align const Int rowShiftA = A.RowShift(); const Int colShiftB = B.ColShift(); const Int leftInitA = (col+pSqrt-colShiftB) % pSqrt; const Int rightInitA = (col+colShiftB) % pSqrt; const Int aboveInitB = (row+pSqrt-rowShiftA) % pSqrt; const Int belowInitB = (row+rowShiftA) % pSqrt; const Int pkgSizeA = localHeightA*localWidthA; const Int pkgSizeB = localHeightB*localWidthB; mpi::SendRecv( pkgA.Buffer(), pkgSizeA, leftInitA, rightInitA, rowComm ); mpi::SendRecv( pkgB.Buffer(), pkgSizeB, aboveInitB, belowInitB, colComm ); // Now begin the data flow const Int aboveRow = (row+pSqrt-1) % pSqrt; const Int belowRow = (row+1) % pSqrt; const Int leftCol = (col+pSqrt-1) % pSqrt; const Int rightCol = (col+1) % pSqrt; for( Int q=0; q<pSqrt; ++q ) { Gemm( NORMAL, NORMAL, alpha, pkgA, pkgB, T(1), C.Matrix() ); if( q != pSqrt-1 ) { mpi::SendRecv ( pkgA.Buffer(), pkgSizeA, leftCol, rightCol, rowComm ); mpi::SendRecv ( pkgB.Buffer(), pkgSizeB, aboveRow, belowRow, colComm ); } } }
const DistMatrix<T,STAR,STAR>& DistMatrix<T,STAR,STAR>::operator=( const DistMatrix<T,STAR,MD>& A ) { #ifndef RELEASE CallStackEntry entry("[* ,* ] = [* ,MD]"); this->AssertNotLocked(); this->AssertSameGrid( A.Grid() ); #endif const elem::Grid& g = this->Grid(); this->ResizeTo( A.Height(), A.Width() ); if( !this->Participating() ) return *this; const Int p = g.Size(); const Int lcm = g.LCM(); const Int ownerPath = A.diagPath_; const Int ownerPathRank = A.rowAlignment_; const Int height = this->Height(); const Int width = this->Width(); const Int localWidth = A.LocalWidth(); const Int maxLocalWidth = MaxLength( width, lcm ); const Int portionSize = mpi::Pad( height*maxLocalWidth ); // Since a MD communicator has not been implemented, we will take // the suboptimal route of 'rounding up' everyone's contribution over // the VC communicator. T* buffer = this->auxMemory_.Require( (p+1)*portionSize ); T* sendBuf = &buffer[0]; T* recvBuf = &buffer[portionSize]; // Pack if( A.Participating() ) { const Int ALDim = A.LDim(); const T* ABuf = A.LockedBuffer(); PARALLEL_FOR for( Int jLoc=0; jLoc<localWidth; ++jLoc ) MemCopy( &sendBuf[jLoc*height], &ABuf[jLoc*ALDim], height ); } // Communicate mpi::AllGather ( sendBuf, portionSize, recvBuf, portionSize, g.VCComm() ); // Unpack T* thisBuf = this->Buffer(); const Int thisLDim = this->LDim(); OUTER_PARALLEL_FOR for( Int k=0; k<p; ++k ) { if( g.DiagPath( k ) == ownerPath ) { const T* data = &recvBuf[k*portionSize]; const Int thisPathRank = g.DiagPathRank( k ); const Int thisRowShift = Shift_( thisPathRank, ownerPathRank, lcm ); const Int thisLocalWidth = Length_( width, thisRowShift, lcm ); INNER_PARALLEL_FOR for( Int jLoc=0; jLoc<thisLocalWidth; ++jLoc ) MemCopy ( &thisBuf[(thisRowShift+jLoc*lcm)*thisLDim], &data[jLoc*height], height ); } } this->auxMemory_.Release(); return *this; }
void AllGather ( const DistMatrix<T, U, V >& A, DistMatrix<T,Collect<U>(),Collect<V>()>& B ) { DEBUG_ONLY(CSE cse("copy::AllGather")) AssertSameGrids( A, B ); const Int height = A.Height(); const Int width = A.Width(); B.SetGrid( A.Grid() ); B.Resize( height, width ); if( A.Participating() ) { const Int colStride = A.ColStride(); const Int rowStride = A.RowStride(); const Int distStride = colStride*rowStride; const Int maxLocalHeight = MaxLength(height,colStride); const Int maxLocalWidth = MaxLength(width,rowStride); const Int portionSize = mpi::Pad( maxLocalHeight*maxLocalWidth ); vector<T> buf( (distStride+1)*portionSize ); T* sendBuf = &buf[0]; T* recvBuf = &buf[portionSize]; // Pack util::InterleaveMatrix ( A.LocalHeight(), A.LocalWidth(), A.LockedBuffer(), 1, A.LDim(), sendBuf, 1, A.LocalHeight() ); // Communicate mpi::AllGather ( sendBuf, portionSize, recvBuf, portionSize, A.DistComm() ); // Unpack util::StridedUnpack ( height, width, A.ColAlign(), colStride, A.RowAlign(), rowStride, recvBuf, portionSize, B.Buffer(), B.LDim() ); } if( A.Grid().InGrid() && A.CrossComm() != mpi::COMM_SELF ) { // Pack from the root const Int BLocalHeight = B.LocalHeight(); const Int BLocalWidth = B.LocalWidth(); vector<T> buf(BLocalHeight*BLocalWidth); if( A.CrossRank() == A.Root() ) util::InterleaveMatrix ( BLocalHeight, BLocalWidth, B.LockedBuffer(), 1, B.LDim(), buf.data(), 1, BLocalHeight ); // Broadcast from the root mpi::Broadcast ( buf.data(), BLocalHeight*BLocalWidth, A.Root(), A.CrossComm() ); // Unpack if not the root if( A.CrossRank() != A.Root() ) util::InterleaveMatrix ( BLocalHeight, BLocalWidth, buf.data(), 1, BLocalHeight, B.Buffer(), 1, B.LDim() ); } }
void ColAllToAllDemote ( const DistMatrix<T,Partial<U>(),PartialUnionRow<U,V>()>& A, DistMatrix<T, U, V >& B ) { DEBUG_ONLY(CallStackEntry cse("copy::ColAllToAllDemote")) AssertSameGrids( A, B ); const Int height = A.Height(); const Int width = A.Width(); B.AlignColsAndResize( A.ColAlign(), height, width, false, false ); if( !B.Participating() ) return; const Int colAlign = B.ColAlign(); const Int rowAlignA = A.RowAlign(); const Int colStride = B.ColStride(); const Int colStridePart = B.PartialColStride(); const Int colStrideUnion = B.PartialUnionColStride(); const Int colRankPart = B.PartialColRank(); const Int colDiff = (colAlign%colStridePart) - A.ColAlign(); const Int colShiftA = A.ColShift(); const Int localHeightB = B.LocalHeight(); const Int localWidthA = A.LocalWidth(); const Int maxLocalHeight = MaxLength(height,colStride); const Int maxLocalWidth = MaxLength(width,colStrideUnion); const Int portionSize = mpi::Pad( maxLocalHeight*maxLocalWidth ); std::vector<T> buffer( 2*colStrideUnion*portionSize ); T* firstBuf = &buffer[0]; T* secondBuf = &buffer[colStrideUnion*portionSize]; if( colDiff == 0 ) { // Pack util::PartialColStridedPack ( height, localWidthA, colAlign, colStride, colStrideUnion, colStridePart, colRankPart, colShiftA, A.LockedBuffer(), A.LDim(), firstBuf, portionSize ); // Simultaneously Scatter in columns and Gather in rows mpi::AllToAll ( firstBuf, portionSize, secondBuf, portionSize, B.PartialUnionColComm() ); // Unpack util::RowStridedUnpack ( localHeightB, width, rowAlignA, colStrideUnion, secondBuf, portionSize, B.Buffer(), B.LDim() ); } else { #ifdef EL_UNALIGNED_WARNINGS if( B.Grid().Rank() == 0 ) std::cerr << "Unaligned ColAllToAllDemote" << std::endl; #endif const Int sendColRankPart = Mod( colRankPart+colDiff, colStridePart ); const Int recvColRankPart = Mod( colRankPart-colDiff, colStridePart ); // Pack util::PartialColStridedPack ( height, localWidthA, colAlign, colStride, colStrideUnion, colStridePart, sendColRankPart, colShiftA, A.LockedBuffer(), A.LDim(), secondBuf, portionSize ); // Simultaneously Scatter in columns and Gather in rows mpi::AllToAll ( secondBuf, portionSize, firstBuf, portionSize, B.PartialUnionColComm() ); // Realign the result mpi::SendRecv ( firstBuf, colStrideUnion*portionSize, sendColRankPart, secondBuf, colStrideUnion*portionSize, recvColRankPart, B.PartialColComm() ); // Unpack util::RowStridedUnpack ( localHeightB, width, rowAlignA, colStrideUnion, secondBuf, portionSize, B.Buffer(), B.LDim() ); } }
void TransposeDist( const DistMatrix<T,U,V>& A, DistMatrix<T,V,U>& B ) { DEBUG_ONLY(CSE cse("copy::TransposeDist")) AssertSameGrids( A, B ); const Grid& g = B.Grid(); B.Resize( A.Height(), A.Width() ); if( !B.Participating() ) return; const Int colStrideA = A.ColStride(); const Int rowStrideA = A.RowStride(); const Int distSize = A.DistSize(); if( A.DistSize() == 1 && B.DistSize() == 1 ) { Copy( A.LockedMatrix(), B.Matrix() ); } else if( A.Width() == 1 ) { const Int height = A.Height(); const Int maxLocalHeight = MaxLength(height,distSize); const Int portionSize = mpi::Pad( maxLocalHeight ); const Int colDiff = Shift(A.DistRank(),A.ColAlign(),distSize) - Shift(B.DistRank(),B.ColAlign(),distSize); const Int sendRankB = Mod( B.DistRank()+colDiff, distSize ); const Int recvRankA = Mod( A.DistRank()-colDiff, distSize ); const Int recvRankB = (recvRankA/colStrideA)+rowStrideA*(recvRankA%colStrideA); vector<T> buffer; FastResize( buffer, (colStrideA+rowStrideA)*portionSize ); T* sendBuf = &buffer[0]; T* recvBuf = &buffer[colStrideA*portionSize]; if( A.RowRank() == A.RowAlign() ) { // Pack // TODO: Use kernel from copy::util const Int AColShift = A.ColShift(); const T* ABuf = A.LockedBuffer(); EL_PARALLEL_FOR for( Int k=0; k<rowStrideA; ++k ) { T* data = &recvBuf[k*portionSize]; const Int shift = Shift_(A.ColRank()+colStrideA*k,A.ColAlign(),distSize); const Int offset = (shift-AColShift) / colStrideA; const Int thisLocalHeight = Length_(height,shift,distSize); for( Int iLoc=0; iLoc<thisLocalHeight; ++iLoc ) data[iLoc] = ABuf[offset+iLoc*rowStrideA]; } } // (e.g., A[VC,STAR] <- A[MC,MR]) mpi::Scatter ( recvBuf, portionSize, sendBuf, portionSize, A.RowAlign(), A.RowComm() ); // (e.g., A[VR,STAR] <- A[VC,STAR]) mpi::SendRecv ( sendBuf, portionSize, sendRankB, recvBuf, portionSize, recvRankB, B.DistComm() ); // (e.g., A[MR,MC] <- A[VR,STAR]) mpi::Gather ( recvBuf, portionSize, sendBuf, portionSize, B.RowAlign(), B.RowComm() ); if( B.RowRank() == B.RowAlign() ) { // Unpack // TODO: Use kernel from copy::util T* bufB = B.Buffer(); EL_PARALLEL_FOR for( Int k=0; k<colStrideA; ++k ) { const T* data = &sendBuf[k*portionSize]; const Int shift = Shift_(B.ColRank()+rowStrideA*k,B.ColAlign(),distSize); const Int offset = (shift-B.ColShift()) / rowStrideA; const Int thisLocalHeight = Length_(height,shift,distSize); for( Int iLoc=0; iLoc<thisLocalHeight; ++iLoc ) bufB[offset+iLoc*colStrideA] = data[iLoc]; } } }
void Write_MPI(const DistMatrix<DataType> &M, std::string basename = "DistMatrix", FileFormat format = BINARY, std::string title = "") { // TODO: error out if format != BINARY // TODO: use TypeMap<>() and templating to figure this out MPI_Datatype type = DataTypeMPI; // define our file name string filename = basename + "." + FileExtension(BINARY); const char* path = filename.c_str(); // get MPI communicator MPI_Comm comm = M.Grid().Comm().comm; // get our rank int rank = M.Grid().Rank(); // first, delete the existing file if (rank == 0) { /* int unlink_rc = unlink(path); if (unlink_rc != 0) { fprintf(stderr, "Error deleting file `%s'\n", path); fflush(stderr); } */ MPI_File_delete(path, MPI_INFO_NULL); } // get global width and height of matrix Int global_width = M.Width(); Int global_height = M.Height(); // define datatypes to describe local buffer and view into file MPI_Datatype mattype, viewtype; create_types(M, &mattype, &viewtype); // define hints for creating the file (e.g., number of stripes on Lustre) MPI_Info info; MPI_Info_create(&info); MPI_Info_set(info, "striping_factor", "10"); //MPI_Info_set(info, "striping_factor", "80"); // open the file MPI_File fh; MPI_Status status; char datarep[] = "native"; int amode = MPI_MODE_WRONLY | MPI_MODE_CREATE; MPI_File_open(comm, path, amode, info, &fh); // done with the info object MPI_Info_free(&info); // truncate file to 0 bytes // MPI_File_set_size(fh, 0); // set our view to write header (height and width as unsigned 32-bit ints) MPI_Offset disp = 0; MPI_File_set_view(fh, disp, MPI_UINT32_T, MPI_UINT32_T, datarep, MPI_INFO_NULL); if (rank == 0) { uint32_t dimensions[2]; dimensions[0] = global_height; dimensions[1] = global_width; MPI_File_write_at(fh, 0, dimensions, 2, MPI_UINT32_T, &status); } disp += 2 * sizeof(uint32_t); // set view to write data MPI_File_set_view(fh, disp, type, viewtype, datarep, MPI_INFO_NULL); // write our portion of the matrix, since we set our view using create_darray, // all procs write at offset 0, the file view will take care of interleaving appropriately const char* buf = (const char*) M.LockedBuffer(); MPI_File_write_at_all(fh, 0, buf, 1, mattype, &status); // close file MPI_File_close(&fh); // free our datatypes MPI_Type_free(&mattype); MPI_Type_free(&viewtype); return; }
void Scatter ( const DistMatrix<T,CIRC,CIRC>& A, ElementalMatrix<T>& B ) { DEBUG_CSE AssertSameGrids( A, B ); const Int m = A.Height(); const Int n = A.Width(); const Int colStride = B.ColStride(); const Int rowStride = B.RowStride(); B.Resize( m, n ); if( B.CrossSize() != 1 || B.RedundantSize() != 1 ) { // TODO: // Broadcast over the redundant communicator and use mpi::Translate // rank to determine whether a process is the root of the broadcast. GeneralPurpose( A, B ); return; } const Int pkgSize = mpi::Pad(MaxLength(m,colStride)*MaxLength(n,rowStride)); const Int recvSize = pkgSize; const Int sendSize = B.DistSize()*pkgSize; // Translate the root of A into the DistComm of B (if possible) const Int root = A.Root(); const Int target = mpi::Translate( A.CrossComm(), root, B.DistComm() ); if( target == mpi::UNDEFINED ) return; if( B.DistSize() == 1 ) { Copy( A.LockedMatrix(), B.Matrix() ); return; } vector<T> buffer; T* recvBuf=0; // some compilers (falsely) warn otherwise if( A.CrossRank() == root ) { FastResize( buffer, sendSize+recvSize ); T* sendBuf = &buffer[0]; recvBuf = &buffer[sendSize]; // Pack the send buffer copy::util::StridedPack ( m, n, B.ColAlign(), colStride, B.RowAlign(), rowStride, A.LockedBuffer(), A.LDim(), sendBuf, pkgSize ); // Scatter from the root mpi::Scatter ( sendBuf, pkgSize, recvBuf, pkgSize, target, B.DistComm() ); } else { FastResize( buffer, recvSize ); recvBuf = &buffer[0]; // Perform the receiving portion of the scatter from the non-root mpi::Scatter ( static_cast<T*>(0), pkgSize, recvBuf, pkgSize, target, B.DistComm() ); } // Unpack copy::util::InterleaveMatrix ( B.LocalHeight(), B.LocalWidth(), recvBuf, 1, B.LocalHeight(), B.Buffer(), 1, B.LDim() ); }