KeyGenerator::KeyGenerator(const EncryptionParameters &parms) : poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()), noise_standard_deviation_(parms.noise_standard_deviation()), noise_max_deviation_(parms.noise_max_deviation()), decomposition_bit_count_(parms.decomposition_bit_count()), mode_(parms.mode()), random_generator_(parms.random_generator() != nullptr ? parms.random_generator()->create() : UniformRandomGeneratorFactory::default_factory()->create()) { // Verify required parameters are non-zero and non-nullptr. if (poly_modulus_.is_zero()) { throw invalid_argument("poly_modulus cannot be zero"); } if (coeff_modulus_.is_zero()) { throw invalid_argument("coeff_modulus cannot be zero"); } if (plain_modulus_.is_zero()) { throw invalid_argument("plain_modulus cannot be zero"); } if (noise_standard_deviation_ < 0) { throw invalid_argument("noise_standard_deviation must be non-negative"); } if (noise_max_deviation_ < 0) { throw invalid_argument("noise_max_deviation must be non-negative"); } if (decomposition_bit_count_ <= 0) { throw invalid_argument("decomposition_bit_count must be positive"); } // Verify parameters. if (plain_modulus_ >= coeff_modulus_) { throw invalid_argument("plain_modulus must be smaller than coeff_modulus"); } if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_)) { throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus"); } // Resize encryption parameters to consistent size. int coeff_count = poly_modulus_.significant_coeff_count(); int coeff_bit_count = coeff_modulus_.significant_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count) { poly_modulus_.resize(coeff_count, coeff_bit_count); } if (coeff_modulus_.bit_count() != coeff_bit_count) { coeff_modulus_.resize(coeff_bit_count); } if (plain_modulus_.bit_count() != coeff_bit_count) { plain_modulus_.resize(coeff_bit_count); } if (decomposition_bit_count_ > coeff_bit_count) { decomposition_bit_count_ = coeff_bit_count; } // Calculate -1 (mod coeff_modulus). coeff_modulus_minus_one_.resize(coeff_bit_count); decrement_uint(coeff_modulus_.pointer(), coeff_uint64_count, coeff_modulus_minus_one_.pointer()); // Initialize public and secret key. public_key_.resize(coeff_count, coeff_bit_count); secret_key_.resize(coeff_count, coeff_bit_count); // Initialize evaluation keys. int evaluation_key_count = 0; Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_)); set_uint(1, coeff_uint64_count, evaluation_factor.get()); while (!is_zero_uint(evaluation_factor.get(), coeff_uint64_count) && is_less_than_uint_uint(evaluation_factor.get(), coeff_modulus_.pointer(), coeff_uint64_count)) { left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get()); evaluation_key_count++; } evaluation_keys_.resize(evaluation_key_count); for (int i = 0; i < evaluation_key_count; ++i) { evaluation_keys_[i].resize(coeff_count, coeff_bit_count); } // Initialize moduli. polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count); mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool_); }
bool ChooserEvaluator::select_parameters(const std::vector<ChooserPoly> &operands, double noise_standard_deviation, double noise_max_deviation, const std::map<int, BigUInt> ¶meter_options, EncryptionParameters &destination) { if (noise_standard_deviation < 0) { throw invalid_argument("noise_standard_deviation can not be negative"); } if (noise_max_deviation < 0) { throw invalid_argument("noise_max_deviation can not be negative"); } if (parameter_options.size() == 0) { throw invalid_argument("parameter_options must contain at least one entry"); } if (operands.empty()) { throw invalid_argument("operands cannot be empty"); } int largest_bit_count = 0; int largest_coeff_count = 0; for (vector<ChooserPoly>::size_type i = 0; i < operands.size(); ++i) { if (operands[i].comp_ == nullptr) { throw logic_error("no operation history to simulate"); } int current_bit_count = operands[i].max_abs_value_.significant_bit_count(); largest_bit_count = (current_bit_count > largest_bit_count) ? current_bit_count : largest_bit_count; int current_coeff_count = operands[i].max_coeff_count_; largest_coeff_count = (current_coeff_count > largest_coeff_count) ? current_coeff_count : largest_coeff_count; } // We restrict to plain moduli that are powers of two. Here largest_bit_count is the largest positive // coefficient that we can expect to appear. Thus, we need one more bit. destination.plain_modulus() = 1; destination.plain_modulus() <<= largest_bit_count; bool found_good_parms = false; map<int, BigUInt>::const_iterator iter = parameter_options.begin(); while (iter != parameter_options.end() && !found_good_parms) { int dimension = iter->first; if (dimension < 512 || (dimension & (dimension - 1)) != 0) { throw invalid_argument("parameter_options keys invalid"); } if (dimension > largest_coeff_count && destination.plain_modulus() < iter->second) { // Set the polynomial destination.coeff_modulus() = iter->second; destination.poly_modulus().resize(dimension + 1, 1); destination.poly_modulus().set_zero(); destination.poly_modulus()[0] = 1; destination.poly_modulus()[dimension] = 1; // The bound needed for GapSVP->search-LWE reduction //parms.noise_standard_deviation() = round(sqrt(dimension / (2 * 3.1415)) + 0.5); // Use constant (small) standard deviation. destination.noise_standard_deviation() = noise_standard_deviation; // We truncate the gaussian at noise_max_deviation. destination.noise_max_deviation() = noise_max_deviation; // Start initially with the maximum decomposition_bit_count, then decrement until decrypts(). destination.decomposition_bit_count() = destination.coeff_modulus().significant_bit_count(); // We bound the decomposition bit count value by 1/8 of the maximum. A too small // decomposition bit count slows down multiplication significantly. This is not an // issue when the user wants to use multiply_norelin() instead of multiply(), as it // only affects the relinearization step. The fraction 1/8 is not an optimal choice // in any sense, but was rather arbitrarily chosen. An expert user might want to tweak this // value to be smaller or larger depending on their use case. // To do: Figure out a somewhat optimal bound. int min_decomposition_bit_count = destination.coeff_modulus().significant_bit_count() / 8; while (!found_good_parms && destination.decomposition_bit_count() > min_decomposition_bit_count) { found_good_parms = true; for (vector<ChooserPoly>::size_type i = 0; i < operands.size(); ++i) { // If one of the operands does not decrypt, set found_good_parms to false. found_good_parms = operands[i].simulate(destination).decrypts() ? found_good_parms : false; } if (!found_good_parms) { --destination.decomposition_bit_count(); } else { // We found some good parameters. But in fact we can still decrease the decomposition count // a little bit without hurting performance at all. int old_dbc = destination.decomposition_bit_count(); int num_parts = destination.coeff_modulus().significant_bit_count() / old_dbc + (destination.coeff_modulus().significant_bit_count() % old_dbc != 0); destination.decomposition_bit_count() = destination.coeff_modulus().significant_bit_count() / num_parts + (destination.coeff_modulus().significant_bit_count() % num_parts != 0); } } } // This dimension/coeff_modulus are to small. Move on to the next pair. ++iter; } if (!found_good_parms) { destination = EncryptionParameters(); } return found_good_parms; }