예제 #1
0
// ================================================ ====== ==== ==== == =
//! Implicitly applies in the inverse in an 1-2-1 format
int  ML_Epetra::RefMaxwellPreconditioner::ApplyInverse_Implicit_121(const Epetra_MultiVector& B, Epetra_MultiVector& X) const
{
#ifdef ML_TIMING
  double t_time,t_diff;
  StartTimer(&t_time);
#endif

  int NumVectors=B.NumVectors();
  Epetra_MultiVector TempE1(X.Map(),NumVectors,false);
  Epetra_MultiVector TempE2(X.Map(),NumVectors,true);
  Epetra_MultiVector TempN1(*NodeMap_,NumVectors,false);
  Epetra_MultiVector TempN2(*NodeMap_,NumVectors,true);
  Epetra_MultiVector Resid(B);


  /* Pre-Smoothing */
  ML_CHK_ERR(PreEdgeSmoother->ApplyInverse(B,X));

  /* Precondition (1,1) Block */
  ML_CHK_ERR(EdgePC->ApplyInverse(Resid,TempE2));
  ML_CHK_ERR(X.Update(1.0,TempE2,1.0));;

  /* Build Residual */
  ML_CHK_ERR(SM_Matrix_->Multiply(false,X,TempE1));
  ML_CHK_ERR(Resid.Update(-1.0,TempE1,1.0,B,0.0));
  if(!HasOnlyDirichletNodes){
    ML_CHK_ERR(D0_Matrix_->Multiply(true,Resid,TempN1));
  }

  /* Precondition (2,2) Block */
  if(!HasOnlyDirichletNodes){
    ML_CHK_ERR(NodePC->ApplyInverse(TempN1,TempN2));
    D0_Matrix_->Multiply(false,TempN2,TempE1);
  }/*end if*/
  if(!HasOnlyDirichletNodes) X.Update(1.0,TempE1,1.0);

  /* Build Residual */
  ML_CHK_ERR(SM_Matrix_->Multiply(false,X,TempE1));
  ML_CHK_ERR(Resid.Update(-1.0,TempE1,1.0,B,0.0));

  /* Precondition (1,1) Block */
  TempE2.PutScalar(0.0);
  ML_CHK_ERR(EdgePC->ApplyInverse(Resid,TempE2));
  ML_CHK_ERR(X.Update(1.0,TempE2,1.0));;

  /* Post-Smoothing */
  ML_CHK_ERR(PostEdgeSmoother->ApplyInverse(B,X));

#ifdef ML_TIMING
  StopTimer(&t_time,&t_diff);
  /* Output */
  ML_Comm *comm_;
  ML_Comm_Create(&comm_);
  this->ApplicationTime_+= t_diff;
  ML_Comm_Destroy(&comm_);
#endif

  return 0;
}
//==============================================================================
int LinearProblem_CrsSingletonFilter::ComputeFullSolution() {

  int jj, k;

  Epetra_MultiVector * FullLHS = FullProblem()->GetLHS(); 
  Epetra_MultiVector * FullRHS = FullProblem()->GetRHS(); 

  tempX_->PutScalar(0.0); tempExportX_->PutScalar(0.0);
  // Inject values that the user computed for the reduced problem into the full solution vector
  EPETRA_CHK_ERR(tempX_->Export(*ReducedLHS_, *Full2ReducedLHSImporter_, Add));
  FullLHS->Update(1.0, *tempX_, 1.0);

  // Next we will use our full solution vector which is populated with pre-filter solution
  // values and reduced system solution values to compute the sum of the row contributions
  // that must be subtracted to get the post-filter solution values

  EPETRA_CHK_ERR(FullMatrix()->Multiply(false, *FullLHS, *tempB_));



  // Finally we loop through the local rows that were associated with column singletons and compute the
  // solution for these equations.

  int NumVectors = tempB_->NumVectors();
  for (k=0; k<NumMyColSingletons_; k++) {
    int i = ColSingletonRowLIDs_[k];
    int j = ColSingletonColLIDs_[k];
    double pivot = ColSingletonPivots_[k];
    for (jj=0; jj<NumVectors; jj++)
      (*tempExportX_)[jj][j]= ((*FullRHS)[jj][i] - (*tempB_)[jj][i])/pivot;
  }

  // Finally, insert values from post-solve step and we are done!!!!

  
  if (FullMatrix()->RowMatrixImporter()!=0) {
    EPETRA_CHK_ERR(tempX_->Export(*tempExportX_, *FullMatrix()->RowMatrixImporter(), Add));
  }
  else {
    tempX_->Update(1.0, *tempExportX_, 0.0);
  }

  FullLHS->Update(1.0, *tempX_, 1.0);
    
  return(0);
}
예제 #3
0
// ================================================ ====== ==== ==== == =
//! Implicitly applies in the inverse in a 2-1-2 format
int ML_Epetra::RefMaxwellPreconditioner::ApplyInverse_Implicit_212(const Epetra_MultiVector& B, Epetra_MultiVector& X) const
{

#ifdef ML_TIMING
  double t_time,t_diff;
  StartTimer(&t_time);
#endif

  int NumVectors=B.NumVectors();

  /* Setup Temps */
  Epetra_MultiVector node_sol1(*NodeMap_,NumVectors,true);
  Epetra_MultiVector node_sol2(*NodeMap_,NumVectors,false);
  Epetra_MultiVector node_rhs(*NodeMap_,NumVectors,false);
  Epetra_MultiVector edge_temp1(*DomainMap_,NumVectors,false);
  Epetra_MultiVector edge_rhs(*DomainMap_,NumVectors,false);
  Epetra_MultiVector edge_sol(*DomainMap_,NumVectors,true);


  /* Build Nodal RHS */
  ML_CHK_ERR(D0_Matrix_->Multiply(true,B,node_rhs));

  /* Precondition (2,2) Block */
  ML_CHK_ERR(NodePC->ApplyInverse(node_rhs,node_sol1));

  /* Build Residual */
  ML_CHK_ERR(D0_Matrix_->Multiply(false,node_sol1,edge_temp1));
  ML_CHK_ERR(edge_rhs.Update(1.0,B,-1.0));

  /* Precondition (1,1) Block */
  //  _CHK_ERR(PreEdgeSmoother->ApplyInverse(B,X));
  ML_CHK_ERR(EdgePC->ApplyInverse(edge_rhs,edge_sol));

  /* Build Nodal RHS */
  ML_CHK_ERR(edge_temp1.Update(1.0,edge_rhs,-1.0));
  ML_CHK_ERR(D0_Matrix_->Multiply(true,edge_temp1,node_rhs));

  /* Precondition (2,2) Block */
  ML_CHK_ERR(NodePC->ApplyInverse(node_rhs,node_sol2));

  /* Assemble solution (x = xe + T*(xn1 + xn2)) */
  ML_CHK_ERR(node_sol1.Update(1.0,node_sol2,1.0));

  ML_CHK_ERR(D0_Matrix_->Multiply(false,node_sol1,X));
  ML_CHK_ERR(X.Update(1.0,edge_sol,1.0));

#ifdef ML_TIMING
  StopTimer(&t_time,&t_diff);
  /* Output */
  ML_Comm *comm_;
  ML_Comm_Create(&comm_);
  this->ApplicationTime_+= t_diff;
  ML_Comm_Destroy(&comm_);
#endif


  return 0;
}/*end ApplyInverse_Implicit_212*/
예제 #4
0
//==============================================================================
int Ifpack_Polynomial::
ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{

  if (!IsComputed())
    IFPACK_CHK_ERR(-3);

  if (PolyDegree_ == 0)
    return 0;

  int nVec = X.NumVectors();
  if (nVec != Y.NumVectors())
    IFPACK_CHK_ERR(-2);

  Time_->ResetStartTime();

  Epetra_MultiVector Xcopy(X);
  if(ZeroStartingSolution_==true) {
    Y.PutScalar(0.0);
  }

  // mfh 20 Mar 2014: IBD never gets used, so I'm commenting out the
  // following lines of code in order to forestall build warnings.
// #ifdef HAVE_IFPACK_EPETRAEXT
//   EpetraExt_PointToBlockDiagPermute* IBD=0;
//   if (UseBlockMode_) IBD=&*InvBlockDiagonal_;
// #endif

  Y.Update(-coeff_[1], Xcopy, 1.0);
  for (int ii = 2; ii < static_cast<int> (coeff_.size ()); ++ii) {
    const Epetra_MultiVector V(Xcopy);
    Operator_->Apply(V,Xcopy);
    Xcopy.Multiply(1.0, *InvDiagonal_, Xcopy, 0.0);
    // Update Y
    Y.Update(-coeff_[ii], Xcopy, 1.0);
  }

  // Flops are updated in each of the following.
  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_->ElapsedTime();
  return(0);
}
// ============================================================================ 
int ML_Epetra::MatrixFreePreconditioner::
ApplyJacobi(Epetra_MultiVector& X, const Epetra_MultiVector& B,
            const double omega, Epetra_MultiVector& tmp) const
{
  Operator_.Apply(X, tmp);
  tmp.Update(1.0, B, -1.0);
  ML_CHK_ERR(X.Multiply((double)omega, *InvPointDiagonal_, tmp, 1.0));
  ///ML_CHK_ERR(X.Multiply('T', 'N', (double)omega, *InvPointDiagonal_, tmp, 1.0));

  return(0);
}
// ============================================================================ 
int ML_Epetra::MatrixFreePreconditioner::
ApplyBlockJacobi(Epetra_MultiVector& X, const Epetra_MultiVector& B,
            const double omega, Epetra_MultiVector& tmp) const
{
  Operator_.Apply(X, tmp);
  tmp.Update(1.0, B, -1.0);
  ML_CHK_ERR(ApplyInvBlockDiag(omega, X, 1.0, tmp));
  ///ML_CHK_ERR(X.Multiply('T', 'N', omega, *InvBlockDiag_, tmp, 1.0));

  return(0);
}
예제 #7
0
void MxGeoMultigridPrec::removeConstField(Epetra_MultiVector & x) const {
  //x.Comm().Barrier();
  Epetra_MultiVector ones(x);
  double dotProd, norm;
  ones.PutScalar(1);
  ones.Norm2(&norm);
  x.Dot(ones, &dotProd);
  //std::cout << "norm = " << norm << ", dotProd = " << dotProd << "\n";
  x.Update(-dotProd / norm / norm, ones, 1.);
  x.Dot(ones, &dotProd);
  //std::cout << "const vec part: " << dotProd << "\n";
}
// ================================================ ====== ==== ==== == = 
// Computes Y= <me> * X
int ML_Epetra::ML_RefMaxwell_11_Operator::Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  Epetra_MultiVector temp(X);
  /* Do the SM part */
  SM_Matrix_->Apply(X,Y);

  /* Do the Addon part */
  Addon_->Apply(X,temp);

  /* Sum things together*/
  Y.Update(1,temp,1);
  return 0;
}/*end Apply*/
예제 #9
0
// return  x = (I - op/rhomax)*x in x
void MxGeoMultigridPrec::smoothInterpolation(int level, Epetra_MultiVector & x) const {
  Epetra_MultiVector xtmp(x);

  // get matrix diagonal
  Epetra_Vector diag(ops[level]->RangeMap());
  ops[level]->ExtractDiagonalCopy(diag);
  //diag.Reciprocal(diag);

  ops[level]->Apply(x, xtmp);    // xtmp = op*x
  xtmp.ReciprocalMultiply(1.0, diag, xtmp, 0.0);
  //xtmp.Scale(1.3333 / maxEigs[level]); // xtmp = (op/rhomax)*x
  xtmp.Scale(0.5 * 1.3333); // xtmp = (op/rhomax)*x (rhomax is usually 2)
  x.Update(-1.0, xtmp, 1.0);        // x    = x - xtmp
}
void 
Stokhos::EpetraMultiVectorOrthogPoly::
assignToBlockMultiVector(Epetra_MultiVector& v) const 
{
  if (this->size() > 0) {
    if (bv != Teuchos::null)
      v.Update(1.0, *bv, 0.0);
    else {
      EpetraExt::BlockMultiVector block_v(View, this->coeff_[0]->Map(), v);
      for (int i=0; i<this->size(); i++)
	*(block_v.GetBlock(i)) = *(coeff_[i]);
    }
  }
}
int
Stokhos::ProductEpetraOperator::
Apply(const Epetra_MultiVector& Input, Epetra_MultiVector& Result) const
{
  if (useTranspose) {
    EpetraExt::BlockMultiVector sg_input(View, *range_base_map, Input);
    Epetra_MultiVector tmp(Result.Map(), Result.NumVectors());
    Result.PutScalar(0.0);
    for (int i=0; i<coeff_.size(); i++) {
      coeff_[i]->Apply(*(sg_input.GetBlock(i)), tmp);
      Result.Update(1.0, tmp, 1.0);
    }
  }
  else {
    EpetraExt::BlockMultiVector sg_result(View, *range_base_map, Result);
    for (int i=0; i<coeff_.size(); i++)
      coeff_[i]->Apply(Input, *(sg_result.GetBlock(i)));
  }

  return 0;
}
예제 #12
0
    //! Update vector
    static void update(Epetra_MultiVector& vec, double a, 
		       const Epetra_MultiVector& x) {
      vec.Update(a,x,1.0); 
    }
예제 #13
0
// ================================================ ====== ==== ==== == =
//! Implicitly applies in the inverse in an additive format
int  ML_Epetra::RefMaxwellPreconditioner::ApplyInverse_Implicit_Additive(const Epetra_MultiVector& B, Epetra_MultiVector& X) const
{
#ifdef ML_TIMING
  double t_time,t_diff;
  StartTimer(&t_time);
#endif

  int NumVectors=B.NumVectors();
  Epetra_MultiVector TempE1(X.Map(),NumVectors,false);
  Epetra_MultiVector TempE2(X.Map(),NumVectors,true);
  Epetra_MultiVector TempN1(*NodeMap_,NumVectors,false);
  Epetra_MultiVector TempN2(*NodeMap_,NumVectors,true);
  Epetra_MultiVector Resid(B.Map(),NumVectors);

  /* Pre-Smoothing */
#ifdef HAVE_ML_IFPACK
  if(IfSmoother) {ML_CHK_ERR(IfSmoother->ApplyInverse(B,X));}
  else
#endif
  if(PreEdgeSmoother) ML_CHK_ERR(PreEdgeSmoother->ApplyInverse(B,X));

  /* Build Residual */
  ML_CHK_ERR(SM_Matrix_->Multiply(false,X,TempE1));
  ML_CHK_ERR(Resid.Update(-1.0,TempE1,1.0,B,0.0));

  if(!HasOnlyDirichletNodes){
    ML_CHK_ERR(D0_Matrix_->Multiply(true,Resid,TempN1));
  }

  /* Precondition (1,1) block (additive)*/
  ML_CHK_ERR(EdgePC->ApplyInverse(Resid,TempE2));

  /* Precondition (2,2) block (additive)*/
  if(!HasOnlyDirichletNodes){
    ML_CHK_ERR(NodePC->ApplyInverse(TempN1,TempN2));

    /* EXPERIMENTAL: Local Nodal Stuff, if active */
    if(use_local_nodal_solver){
      const Epetra_Map& LocalMap=LocalNodalMatrix->DomainMap();
      Epetra_MultiVector TempNL1(LocalMap,NumVectors,true);
      Epetra_MultiVector TempNL2(LocalMap,NumVectors,true);
      Epetra_MultiVector TempN3(*NodeMap_,NumVectors,true);

      NodesToLocalNodes->Multiply(true,TempN1,TempNL1);
      LocalNodalSolver->ApplyInverse(TempNL1,TempNL2);
      NodesToLocalNodes->Multiply(false,TempNL2,TempN3);
      TempN2.Update(1.0,TempN3,1.0);
    }/*end if*/

    D0_Matrix_->Multiply(false,TempN2,TempE1);
  }/*end if*/

  /* Update solution */
  if(HasOnlyDirichletNodes) X.Update(1.0,TempE2,1.0);
  else X.Update(1.0,TempE1,1.0,TempE2,1.0);

  /* Post-Smoothing */
#ifdef HAVE_ML_IFPACK
  if(IfSmoother) {ML_CHK_ERR(IfSmoother->ApplyInverse(B,X));}
  else
#endif
    if(PostEdgeSmoother) ML_CHK_ERR(PostEdgeSmoother->ApplyInverse(B,X));


#ifdef ML_TIMING
  StopTimer(&t_time,&t_diff);
  /* Output */
  ML_Comm *comm_;
  ML_Comm_Create(&comm_);
  this->ApplicationTime_+= t_diff;
  ML_Comm_Destroy(&comm_);
#endif

  return 0;
}
예제 #14
0
int FSIExactJacobian::Epetra_ExactJacobian::Apply (const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{

    LifeChrono chronoFluid, chronoSolid, chronoInterface;

    M_comm->Barrier();

    double xnorm = 0.;
    X.NormInf (&xnorm);

    Epetra_FEVector  dz (Y.Map() );

    if (M_ej->isSolid() )
    {
        std::cout << "\n ***** norm (z)= " << xnorm << std::endl << std::endl;
    }


    if ( xnorm == 0.0 )
    {
        Y.Scale (0.);
        dz.Scale (0.);
    }
    else
    {
        vector_Type const z (X,  M_ej->solidInterfaceMap(), Unique);

        M_ej->displayer().leaderPrint ( "NormInf res   " , z.normInf(), "\n" );

        //M_ej->solid().residual() *= 0.;
        //M_ej->transferInterfaceOnSolid(z, M_ej->solid().residual());

        //std::cout << "NormInf res_d " << M_ej->solid().residual().NormInf() << std::endl;

        //if (M_ej->isSolid())
        //    M_ej->solid().postProcess();

        M_ej->setLambdaFluid (z);

        //M_ej->transferInterfaceOnSolid(z, M_ej->solid().disp());

        chronoInterface.start();
        vector_Type sigmaFluidUnique (M_ej->sigmaFluid(), Unique);
        chronoInterface.stop();

        M_comm->Barrier();
        chronoFluid.start();

        if (M_ej->isFluid() )
        {

            //to be used when we correct the other lines
            if (true || ( !this->M_ej->dataFluid()->isSemiImplicit() /*|| this->M_ej->dataFluid().semiImplicit()==-1*/) )
            {
                M_ej->meshMotion().iterate (*M_ej->BCh_harmonicExtension() );
                //std::cout<<" mesh motion iterated!!!"<<std::endl;
            }

            M_ej->displayer().leaderPrint ( " norm inf dx = " , M_ej->meshMotion().disp().normInf(), "\n" );

            M_ej->solveLinearFluid();

            M_ej->transferFluidOnInterface (M_ej->fluid().residual(), sigmaFluidUnique);

            //M_ej->fluidPostProcess();
        }

        M_comm->Barrier();
        chronoFluid.stop();
        M_ej->displayer().leaderPrintMax ( "Fluid linear solution: total time : ", chronoFluid.diff() );


        chronoInterface.start();
        // M_ej->setSigmaFluid(sigmaFluidUnique);
        M_ej->setSigmaSolid (sigmaFluidUnique);


        vector_Type lambdaSolidUnique (M_ej->lambdaSolid(), Unique);
        chronoInterface.stop();

        M_comm->Barrier();
        chronoFluid.start();

        if (M_ej->isSolid() )
        {
            M_ej->solveLinearSolid();
            M_ej->transferSolidOnInterface (M_ej->solid().displacement(), lambdaSolidUnique);
        }

        M_comm->Barrier();
        chronoSolid.stop();
        M_ej->displayer().leaderPrintMax ( "Solid linear solution: total time : " , chronoSolid.diff() );

        chronoInterface.start();
        M_ej->setLambdaSolid (lambdaSolidUnique);

        chronoInterface.stop();
        M_ej->displayer().leaderPrintMax ( "Interface linear transfer: total time : " , chronoInterface.diffCumul() );

        dz = lambdaSolidUnique.epetraVector();
    }


    Y = X;
    Y.Update (1., dz, -1.);

    double ynorm;
    Y.NormInf (&ynorm);

    if (M_ej->isSolid() )
        std::cout << "\n\n ***** norm (Jz)= " << ynorm
                  << std::endl << std::endl;

    return 0;
}
예제 #15
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
    Teuchos::GlobalMPISession mpiSession(&argc, &argv, 0);
    Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
    Epetra_SerialComm Comm;
#endif
    int nProcs, myPID ;
    Teuchos::ParameterList pLUList ;        // ParaLU parameters
    Teuchos::ParameterList isoList ;        // Isorropia parameters
    string ipFileName = "ShyLU.xml";       // TODO : Accept as i/p

    nProcs = mpiSession.getNProc();
    myPID = Comm.MyPID();

    if (myPID == 0)
    {
        cout <<"Parallel execution: nProcs="<< nProcs << endl;
    }

    // =================== Read input xml file =============================
    Teuchos::updateParametersFromXmlFile(ipFileName, &pLUList);
    isoList = pLUList.sublist("Isorropia Input");
    // Get matrix market file name
    string MMFileName = Teuchos::getParameter<string>(pLUList, "mm_file");
    string prec_type = Teuchos::getParameter<string>(pLUList, "preconditioner");

    if (myPID == 0)
    {
        cout << "Input :" << endl;
        cout << "ParaLU params " << endl;
        pLUList.print(std::cout, 2, true, true);
        cout << "Matrix market file name: " << MMFileName << endl;
    }

    // ==================== Read input Matrix ==============================
    Epetra_CrsMatrix *A;

    int err = EpetraExt::MatrixMarketFileToCrsMatrix(MMFileName.c_str(), Comm, A);
    //EpetraExt::MatlabFileToCrsMatrix(MMFileName.c_str(), Comm, A);
    //assert(err != 0);
    cout <<"Done reading the matrix"<< endl;
    int n = A->NumGlobalRows();
    cout <<"n="<< n << endl;

    // Create input vectors
    Epetra_Map vecMap(n, 0, Comm);
    Epetra_MultiVector x(vecMap, 1);
    Epetra_MultiVector b(vecMap, 1, false);
    b.PutScalar(1.0); // TODO : Accept it as input

    // Partition the matrix with hypergraph partitioning and redisstribute
    Isorropia::Epetra::Partitioner *partitioner = new
                            Isorropia::Epetra::Partitioner(A, isoList, false);
    partitioner->partition();
    Isorropia::Epetra::Redistributor rd(partitioner);

    Epetra_CrsMatrix *newA;
    Epetra_MultiVector *newX, *newB; 
    rd.redistribute(*A, newA);
    delete A;
    A = newA;

    rd.redistribute(x, newX);
    rd.redistribute(b, newB);

    Epetra_LinearProblem problem(A, newX, newB);

    Amesos Factory;
    char* SolverType = "Amesos_Klu";
    bool IsAvailable = Factory.Query(SolverType);

    Epetra_LinearProblem *LP = new Epetra_LinearProblem();
    LP->SetOperator(A);
    LP->SetLHS(newX);
    LP->SetRHS(newB);
    Amesos_BaseSolver *Solver = Factory.Create(SolverType, *LP);


    Solver->SymbolicFactorization();
  Teuchos::Time ftime("setup time");
      ftime.start();
    Solver->NumericFactorization();
    cout << "Numeric Factorization" << endl;
    Solver->Solve();
    cout << "Solve done" << endl;

    ftime.stop();
    cout << "Time to setup" << ftime.totalElapsedTime() << endl;

    // compute ||Ax - b||
    double Norm;
    Epetra_MultiVector Ax(vecMap, 1);

    Epetra_MultiVector *newAx; 
    rd.redistribute(Ax, newAx);
    A->Multiply(false, *newX, *newAx);
    newAx->Update(1.0, *newB, -1.0);
    newAx->Norm2(&Norm);
    double ANorm = A->NormOne();

    cout << "|Ax-b |/|A| = " << Norm/ANorm << endl;

    delete newAx;
    delete newX;
    delete newB;
    delete A;
    delete partitioner;
}
//==============================================================================
int LinearProblem_CrsSingletonFilter::UpdateReducedProblem(Epetra_LinearProblem * Problem) {

  int i, j;

  if (Problem==0) EPETRA_CHK_ERR(-1); // Null problem pointer

  FullProblem_ = Problem;
  FullMatrix_ = dynamic_cast<Epetra_RowMatrix *>(Problem->GetMatrix());
  if (FullMatrix_==0) EPETRA_CHK_ERR(-2); // Need a RowMatrix
  if (Problem->GetRHS()==0) EPETRA_CHK_ERR(-3); // Need a RHS
  if (Problem->GetLHS()==0) EPETRA_CHK_ERR(-4); // Need a LHS
  if (!HaveReducedProblem_) EPETRA_CHK_ERR(-5); // Must have set up reduced problem

  // Create pointer to Full RHS, LHS
  Epetra_MultiVector * FullRHS = FullProblem()->GetRHS();
  Epetra_MultiVector * FullLHS = FullProblem()->GetLHS();
  int NumVectors = FullLHS->NumVectors();

  int NumEntries;
  int * Indices;
  double * Values;
  int NumMyRows = FullMatrix()->NumMyRows();
  int ColSingletonCounter = 0;
  for (i=0; i<NumMyRows; i++) {
    int curGRID = FullMatrixRowMap().GID(i);
    if (ReducedMatrixRowMap()->MyGID(curGRID)) { // Check if this row should go into reduced matrix
      EPETRA_CHK_ERR(GetRowGCIDs(i, NumEntries, Values, Indices)); // Get current row (indices global)
      int ierr = ReducedMatrix()->ReplaceGlobalValues(curGRID, NumEntries, 
						      Values, Indices);
      // Positive errors will occur because we are submitting col entries that are not part of
      // reduced system.  However, because we specified a column map to the ReducedMatrix constructor
      // these extra column entries will be ignored and we will be politely reminded by a positive
      // error code
      if (ierr<0) EPETRA_CHK_ERR(ierr); 
    }
    // Otherwise if singleton row we explicitly eliminate this row and solve for corresponding X value
    else {
      EPETRA_CHK_ERR(GetRow(i, NumEntries, Values, Indices)); // Get current row
      if (NumEntries==1) {
	double pivot = Values[0];
	if (pivot==0.0) EPETRA_CHK_ERR(-1); // Encountered zero row, unable to continue
	int indX = Indices[0];
	for (j=0; j<NumVectors; j++)
	  (*tempExportX_)[j][indX] = (*FullRHS)[j][i]/pivot;
      }
      // Otherwise, this is a singleton column and we will scan for the pivot element needed 
      // for post-solve equations
      else {
	j = ColSingletonPivotLIDs_[ColSingletonCounter];
	double pivot = Values[j];
	if (pivot==0.0) EPETRA_CHK_ERR(-2); // Encountered zero column, unable to continue
	ColSingletonPivots_[ColSingletonCounter] = pivot;
	ColSingletonCounter++;
      }
    }
  }

  assert(ColSingletonCounter==NumMyColSingletons_); // Sanity test

  // Update Reduced LHS (Puts any initial guess values into reduced system)

  ReducedLHS_->PutScalar(0.0); // zero out Reduced LHS
  EPETRA_CHK_ERR(ReducedLHS_->Import(*FullLHS, *Full2ReducedLHSImporter_, Insert));
  FullLHS->PutScalar(0.0); // zero out Full LHS since we will inject values as we get them

  // Construct Reduced RHS

  // Zero out temp space
  tempX_->PutScalar(0.0);
  tempB_->PutScalar(0.0);
  
  //Inject known X values into tempX for purpose of computing tempB = FullMatrix*tempX
  // Also inject into full X since we already know the solution

  if (FullMatrix()->RowMatrixImporter()!=0) {
    EPETRA_CHK_ERR(tempX_->Export(*tempExportX_, *FullMatrix()->RowMatrixImporter(), Add));
    EPETRA_CHK_ERR(FullLHS->Export(*tempExportX_, *FullMatrix()->RowMatrixImporter(), Add));
  }
  else {
    tempX_->Update(1.0, *tempExportX_, 0.0);
    FullLHS->Update(1.0, *tempExportX_, 0.0);
  }


  EPETRA_CHK_ERR(FullMatrix()->Multiply(false, *tempX_, *tempB_));

  EPETRA_CHK_ERR(tempB_->Update(1.0, *FullRHS, -1.0)); // tempB now has influence of already-known X values

  ReducedRHS_->PutScalar(0.0);
  EPETRA_CHK_ERR(ReducedRHS_->Import(*tempB_, *Full2ReducedRHSImporter_, Insert));
    return(0);
}
//==============================================================================
int LinearProblem_CrsSingletonFilter::ConstructReducedProblem(Epetra_LinearProblem * Problem) {

  int i, j;
  if (HaveReducedProblem_) EPETRA_CHK_ERR(-1); // Setup already done once.  Cannot do it again
  if (Problem==0) EPETRA_CHK_ERR(-2); // Null problem pointer

  FullProblem_ = Problem;
  FullMatrix_ = dynamic_cast<Epetra_RowMatrix *>(Problem->GetMatrix());
  if (FullMatrix_==0) EPETRA_CHK_ERR(-3); // Need a RowMatrix
  if (Problem->GetRHS()==0) EPETRA_CHK_ERR(-4); // Need a RHS
  if (Problem->GetLHS()==0) EPETRA_CHK_ERR(-5); // Need a LHS
  // Generate reduced row and column maps

  Epetra_MapColoring & RowMapColors = *RowMapColors_;
  Epetra_MapColoring & ColMapColors = *ColMapColors_;

  ReducedMatrixRowMap_ = RowMapColors.GenerateMap(0);
  ReducedMatrixColMap_ = ColMapColors.GenerateMap(0);

  // Create domain and range map colorings by exporting map coloring of column and row maps

  if (FullMatrix()->RowMatrixImporter()!=0) {
    Epetra_MapColoring DomainMapColors(FullMatrixDomainMap());
    EPETRA_CHK_ERR(DomainMapColors.Export(*ColMapColors_, *FullMatrix()->RowMatrixImporter(), AbsMax));
    OrigReducedMatrixDomainMap_ = DomainMapColors.GenerateMap(0);
  }
  else
    OrigReducedMatrixDomainMap_ = ReducedMatrixColMap_;

  if (FullMatrixIsCrsMatrix_) {
    if (FullCrsMatrix()->Exporter()!=0) { // Non-trivial exporter
      Epetra_MapColoring RangeMapColors(FullMatrixRangeMap());
      EPETRA_CHK_ERR(RangeMapColors.Export(*RowMapColors_, *FullCrsMatrix()->Exporter(), 
					   AbsMax));
      ReducedMatrixRangeMap_ = RangeMapColors.GenerateMap(0);
    }
    else
      ReducedMatrixRangeMap_ = ReducedMatrixRowMap_;
  }
  else
    ReducedMatrixRangeMap_ = ReducedMatrixRowMap_;

  // Check to see if the reduced system domain and range maps are the same.
  // If not, we need to remap entries of the LHS multivector so that they are distributed
  // conformally with the rows of the reduced matrix and the RHS multivector
  SymmetricElimination_ = ReducedMatrixRangeMap_->SameAs(*OrigReducedMatrixDomainMap_);
  if (!SymmetricElimination_) 
    ConstructRedistributeExporter(OrigReducedMatrixDomainMap_, ReducedMatrixRangeMap_, 
				  RedistributeDomainExporter_, ReducedMatrixDomainMap_);
  else {
    ReducedMatrixDomainMap_ = OrigReducedMatrixDomainMap_;
    OrigReducedMatrixDomainMap_ = 0;
    RedistributeDomainExporter_ = 0;
  }
  
  // Create pointer to Full RHS, LHS
  Epetra_MultiVector * FullRHS = FullProblem()->GetRHS();
  Epetra_MultiVector * FullLHS = FullProblem()->GetLHS();
  int NumVectors = FullLHS->NumVectors();

  // Create importers
//  cout << "RedDomainMap\n";
//  cout << *ReducedMatrixDomainMap();
//  cout << "FullDomainMap\n";
//  cout << FullMatrixDomainMap();
  Full2ReducedLHSImporter_ = new Epetra_Import(*ReducedMatrixDomainMap(), FullMatrixDomainMap());
//  cout << "RedRowMap\n";
//  cout << *ReducedMatrixRowMap();
//  cout << "FullRHSMap\n";
//  cout << FullRHS->Map();
  Full2ReducedRHSImporter_ = new Epetra_Import(*ReducedMatrixRowMap(), FullRHS->Map());

  // Construct Reduced Matrix
  ReducedMatrix_ = new Epetra_CrsMatrix(Copy, *ReducedMatrixRowMap(), *ReducedMatrixColMap(), 0);

  // Create storage for temporary X values due to explicit elimination of rows
  tempExportX_ = new Epetra_MultiVector(FullMatrixColMap(), NumVectors);

  int NumEntries;
  int * Indices;
  double * Values;
  int NumMyRows = FullMatrix()->NumMyRows();
  int ColSingletonCounter = 0;
  for (i=0; i<NumMyRows; i++) {
    int curGRID = FullMatrixRowMap().GID(i);
    if (ReducedMatrixRowMap()->MyGID(curGRID)) { // Check if this row should go into reduced matrix

      EPETRA_CHK_ERR(GetRowGCIDs(i, NumEntries, Values, Indices)); // Get current row (Indices are global)
      
      int ierr = ReducedMatrix()->InsertGlobalValues(curGRID, NumEntries, 
						     Values, Indices); // Insert into reduce matrix
      // Positive errors will occur because we are submitting col entries that are not part of
      // reduced system.  However, because we specified a column map to the ReducedMatrix constructor
      // these extra column entries will be ignored and we will be politely reminded by a positive
      // error code
      if (ierr<0) EPETRA_CHK_ERR(ierr); 
    }
    else {
      EPETRA_CHK_ERR(GetRow(i, NumEntries, Values, Indices)); // Get current row
      if (NumEntries==1) {
	double pivot = Values[0];
	if (pivot==0.0) EPETRA_CHK_ERR(-1); // Encountered zero row, unable to continue
	int indX = Indices[0];
	for (j=0; j<NumVectors; j++)
	  (*tempExportX_)[j][indX] = (*FullRHS)[j][i]/pivot;
      }
      // Otherwise, this is a singleton column and we will scan for the pivot element needed 
      // for post-solve equations
      else {
	int targetCol = ColSingletonColLIDs_[ColSingletonCounter];
	for (j=0; j<NumEntries; j++) {
	  if (Indices[j]==targetCol) {
	    double pivot = Values[j];
	    if (pivot==0.0) EPETRA_CHK_ERR(-2); // Encountered zero column, unable to continue
	    ColSingletonPivotLIDs_[ColSingletonCounter] = j; // Save for later use
	    ColSingletonPivots_[ColSingletonCounter] = pivot;
	    ColSingletonCounter++;
	    break;
	  }
	}
      }
    }
  }

  // Now convert to local indexing.  We have constructed things so that the domain and range of the
  // matrix will have the same map.  If the reduced matrix domain and range maps were not the same, the
  // differences were addressed in the ConstructRedistributeExporter() method
  EPETRA_CHK_ERR(ReducedMatrix()->FillComplete(*ReducedMatrixDomainMap(), *ReducedMatrixRangeMap()));

  // Construct Reduced LHS (Puts any initial guess values into reduced system)

  ReducedLHS_ = new Epetra_MultiVector(*ReducedMatrixDomainMap(), NumVectors);
  EPETRA_CHK_ERR(ReducedLHS_->Import(*FullLHS, *Full2ReducedLHSImporter_, Insert));
  FullLHS->PutScalar(0.0); // zero out Full LHS since we will inject values as we get them

  // Construct Reduced RHS

  // First compute influence of already-known values of X on RHS
  tempX_ = new Epetra_MultiVector(FullMatrixDomainMap(), NumVectors);
  tempB_ = new Epetra_MultiVector(FullRHS->Map(), NumVectors);
  
  //Inject known X values into tempX for purpose of computing tempB = FullMatrix*tempX
  // Also inject into full X since we already know the solution

  if (FullMatrix()->RowMatrixImporter()!=0) {
    EPETRA_CHK_ERR(tempX_->Export(*tempExportX_, *FullMatrix()->RowMatrixImporter(), Add));
    EPETRA_CHK_ERR(FullLHS->Export(*tempExportX_, *FullMatrix()->RowMatrixImporter(), Add));
  }
  else {
    tempX_->Update(1.0, *tempExportX_, 0.0);
    FullLHS->Update(1.0, *tempExportX_, 0.0);
  }


  EPETRA_CHK_ERR(FullMatrix()->Multiply(false, *tempX_, *tempB_));

  EPETRA_CHK_ERR(tempB_->Update(1.0, *FullRHS, -1.0)); // tempB now has influence of already-known X values

  ReducedRHS_ = new Epetra_MultiVector(*ReducedMatrixRowMap(), FullRHS->NumVectors());
  EPETRA_CHK_ERR(ReducedRHS_->Import(*tempB_, *Full2ReducedRHSImporter_, Insert));

  // Finally construct Reduced Linear Problem
  ReducedProblem_ = new Epetra_LinearProblem(ReducedMatrix_, ReducedLHS_, ReducedRHS_);

  double fn = FullMatrix()->NumGlobalRows();
  double fnnz = FullMatrix()->NumGlobalNonzeros();
  double rn = ReducedMatrix()->NumGlobalRows();
  double rnnz = ReducedMatrix()->NumGlobalNonzeros();

  RatioOfDimensions_ = rn/fn;
  RatioOfNonzeros_ = rnnz/fnnz;
  HaveReducedProblem_ = true;
  
  return(0);
}
// ================================================ ====== ==== ==== == =
//! Apply the preconditioner to an Epetra_MultiVector X, puts the result in Y
int ML_Epetra::FaceMatrixFreePreconditioner::ApplyInverse(const Epetra_MultiVector& B_, Epetra_MultiVector& X) const{
  const Epetra_MultiVector *B;
  Epetra_MultiVector *Bcopy=0;

  /* Sanity Checks */
  int NumVectors=B_.NumVectors();
  if (!B_.Map().SameAs(*FaceDomainMap_)) ML_CHK_ERR(-1);
  if (NumVectors != X.NumVectors()) ML_CHK_ERR(-1);

  Epetra_MultiVector r_edge(*FaceDomainMap_,NumVectors,false);
  Epetra_MultiVector e_edge(*FaceDomainMap_,NumVectors,false);
  Epetra_MultiVector e_node(*CoarseMap_,NumVectors,false);
  Epetra_MultiVector r_node(*CoarseMap_,NumVectors,false);

  /* Deal with the B==X case */
  if (B_.Pointers()[0] == X.Pointers()[0]){
    Bcopy=new Epetra_MultiVector(B_);
    B=Bcopy;
    X.PutScalar(0.0);
  }
  else B=&B_;


  for(int i=0;i<num_cycles;i++){
    /* Pre-smoothing */
#ifdef HAVE_ML_IFPACK
    if(Smoother_) ML_CHK_ERR(Smoother_->ApplyInverse(*B,X));
#endif

    if(MaxLevels > 0){
      if(i != 0
#ifdef HAVE_ML_IFPACK
         || Smoother_
#endif
         ){
        /* Calculate Residual (r_e = b - (S+M+Addon) * x) */
        ML_CHK_ERR(Operator_->Apply(X,r_edge));
        ML_CHK_ERR(r_edge.Update(1.0,*B,-1.0));

        /* Xfer to coarse grid (r_n = P' * r_e) */
        ML_CHK_ERR(Prolongator_->Multiply(true,r_edge,r_node));
      }
      else{
        /* Xfer to coarse grid (r_n = P' * r_e) */
        ML_CHK_ERR(Prolongator_->Multiply(true,*B,r_node));
      }

      /* AMG on coarse grid  (e_n = (CoarseMatrix)^{-1} r_n) */
      ML_CHK_ERR(CoarsePC->ApplyInverse(r_node,e_node));

      /* Xfer back to fine grid (e_e = P * e_n) */
      ML_CHK_ERR(Prolongator_->Multiply(false,e_node,e_edge));

      /* Add in correction (x = x + e_e)        */
      ML_CHK_ERR(X.Update(1.0,e_edge,1.0));
    }/*end if*/

    /* Post-Smoothing */
#ifdef HAVE_ML_IFPACK
    if(Smoother_) ML_CHK_ERR(Smoother_->ApplyInverse(*B,X));
#endif

  }/*end for*/

  /* Cleanup */
  if(Bcopy) delete Bcopy;

  return 0;
}/*end ApplyInverse*/
//
//  Amesos_TestMultiSolver.cpp reads in a matrix in Harwell-Boeing format, 
//  calls one of the sparse direct solvers, using blocked right hand sides
//  and computes the error and residual.  
//
//  TestSolver ignores the Harwell-Boeing right hand sides, creating
//  random right hand sides instead.  
//
//  Amesos_TestMultiSolver can test either A x = b or A^T x = b.
//  This can be a bit confusing because sparse direct solvers 
//  use compressed column storage - the transpose of Trilinos'
//  sparse row storage.
//
//  Matrices:
//    readA - Serial.  As read from the file.
//    transposeA - Serial.  The transpose of readA.
//    serialA - if (transpose) then transposeA else readA 
//    distributedA - readA distributed to all processes
//    passA - if ( distributed ) then distributedA else serialA
//
//
int Amesos_TestMultiSolver( Epetra_Comm &Comm, char *matrix_file, int numsolves, 
		      SparseSolverType SparseSolver, bool transpose,
		      int special, AMESOS_MatrixType matrix_type ) {


  int iam = Comm.MyPID() ;

  
  //  int hatever;
  //  if ( iam == 0 )  std::cin >> hatever ; 
  Comm.Barrier();


  Epetra_Map * readMap;
  Epetra_CrsMatrix * readA; 
  Epetra_Vector * readx; 
  Epetra_Vector * readb;
  Epetra_Vector * readxexact;
   
  std::string FileName = matrix_file ;
  int FN_Size = FileName.size() ; 
  std::string LastFiveBytes = FileName.substr( EPETRA_MAX(0,FN_Size-5), FN_Size );
  std::string LastFourBytes = FileName.substr( EPETRA_MAX(0,FN_Size-4), FN_Size );
  bool NonContiguousMap = false; 

  if ( LastFiveBytes == ".triU" ) { 
    NonContiguousMap = true; 
    // Call routine to read in unsymmetric Triplet matrix
    EPETRA_CHK_ERR( Trilinos_Util_ReadTriples2Epetra( matrix_file, false, Comm, readMap, readA, readx, 
						      readb, readxexact, NonContiguousMap ) );
  } else {
    if ( LastFiveBytes == ".triS" ) { 
      NonContiguousMap = true; 
      // Call routine to read in symmetric Triplet matrix
      EPETRA_CHK_ERR( Trilinos_Util_ReadTriples2Epetra( matrix_file, true, Comm, 
							readMap, readA, readx, 
							readb, readxexact, NonContiguousMap ) );
    } else {
      if (  LastFourBytes == ".mtx" ) { 
	EPETRA_CHK_ERR( Trilinos_Util_ReadMatrixMarket2Epetra( matrix_file, Comm, readMap, 
							       readA, readx, readb, readxexact) );
      } else {
	// Call routine to read in HB problem
	Trilinos_Util_ReadHb2Epetra( matrix_file, Comm, readMap, readA, readx, 
						     readb, readxexact) ;
      }
    }
  }

  Epetra_CrsMatrix transposeA(Copy, *readMap, 0);
  Epetra_CrsMatrix *serialA ; 

  if ( transpose ) {
    assert( CrsMatrixTranspose( readA, &transposeA ) == 0 ); 
    serialA = &transposeA ; 
  } else {
    serialA = readA ; 
  }

  // Create uniform distributed map
  Epetra_Map map(readMap->NumGlobalElements(), 0, Comm);
  Epetra_Map* map_;

  if( NonContiguousMap ) {
    //
    //  map gives us NumMyElements and MyFirstElement;
    //
    int NumGlobalElements =  readMap->NumGlobalElements();
    int NumMyElements = map.NumMyElements();
    int MyFirstElement = map.MinMyGID();
    std::vector<int> MapMap_( NumGlobalElements );
    readMap->MyGlobalElements( &MapMap_[0] ) ;
    Comm.Broadcast( &MapMap_[0], NumGlobalElements, 0 ) ; 
    map_ = new Epetra_Map( NumGlobalElements, NumMyElements, &MapMap_[MyFirstElement], 0, Comm);
  } else {
    map_ = new Epetra_Map( map ) ; 
  }


  // Create Exporter to distribute read-in matrix and vectors
  Epetra_Export exporter(*readMap, *map_);
  Epetra_CrsMatrix A(Copy, *map_, 0);

  Epetra_RowMatrix * passA = 0; 
  Epetra_MultiVector * passx = 0; 
  Epetra_MultiVector * passb = 0;
  Epetra_MultiVector * passxexact = 0;
  Epetra_MultiVector * passresid = 0;
  Epetra_MultiVector * passtmp = 0;

  Epetra_MultiVector x(*map_,numsolves);
  Epetra_MultiVector b(*map_,numsolves);
  Epetra_MultiVector xexact(*map_,numsolves);
  Epetra_MultiVector resid(*map_,numsolves);
  Epetra_MultiVector tmp(*map_,numsolves);

  Epetra_MultiVector serialx(*readMap,numsolves);
  Epetra_MultiVector serialb(*readMap,numsolves);
  Epetra_MultiVector serialxexact(*readMap,numsolves);
  Epetra_MultiVector serialresid(*readMap,numsolves);
  Epetra_MultiVector serialtmp(*readMap,numsolves);

  bool distribute_matrix = ( matrix_type == AMESOS_Distributed ) ; 
  if ( distribute_matrix ) { 
    //
    //  Initialize x, b and xexact to the values read in from the file
    //
    
    A.Export(*serialA, exporter, Add);
    Comm.Barrier();

    assert(A.FillComplete()==0);    
    Comm.Barrier();

    passA = &A; 
    passx = &x; 
    passb = &b;
    passxexact = &xexact;
    passresid = &resid;
    passtmp = &tmp;
  } else { 
    passA = serialA; 
    passx = &serialx; 
    passb = &serialb;
    passxexact = &serialxexact;
    passresid = &serialresid;
    passtmp = &serialtmp;
  }

  passxexact->SetSeed(131) ; 
  passxexact->Random();
  passx->SetSeed(11231) ; 
  passx->Random();

  passb->PutScalar( 0.0 );
  passA->Multiply( transpose, *passxexact, *passb ) ; 

  Epetra_MultiVector CopyB( *passb ) ;

  double Anorm = passA->NormInf() ; 
  SparseDirectTimingVars::SS_Result.Set_Anorm(Anorm) ;

  Epetra_LinearProblem Problem(  (Epetra_RowMatrix *) passA, 
				 (Epetra_MultiVector *) passx, 
				 (Epetra_MultiVector *) passb );

  double max_resid = 0.0;
  for ( int j = 0 ; j < special+1 ; j++ ) { 
    
    Epetra_Time TotalTime( Comm ) ; 
    if ( false ) { 
#ifdef TEST_UMFPACK

      unused code

    } else if ( SparseSolver == UMFPACK ) { 
      UmfpackOO umfpack( (Epetra_RowMatrix *) passA, 
			 (Epetra_MultiVector *) passx, 
			 (Epetra_MultiVector *) passb ) ; 
    
      umfpack.SetTrans( transpose ) ; 
      umfpack.Solve() ; 
#endif
#ifdef TEST_SUPERLU
    } else if ( SparseSolver == SuperLU ) { 
      SuperluserialOO superluserial( (Epetra_RowMatrix *) passA, 
				     (Epetra_MultiVector *) passx, 
				     (Epetra_MultiVector *) passb ) ; 

      superluserial.SetPermc( SuperLU_permc ) ; 
      superluserial.SetTrans( transpose ) ; 
      superluserial.SetUseDGSSV( special == 0 ) ; 
      superluserial.Solve() ; 
#endif
#ifdef HAVE_AMESOS_SLUD
    } else if ( SparseSolver == SuperLUdist ) { 
      SuperludistOO superludist( Problem ) ; 
      superludist.SetTrans( transpose ) ; 
      EPETRA_CHK_ERR( superludist.Solve( true ) ) ;
#endif 
#ifdef HAVE_AMESOS_SLUD2
    } else if ( SparseSolver == SuperLUdist2 ) { 
      Superludist2_OO superludist2( Problem ) ; 
      superludist2.SetTrans( transpose ) ; 
      EPETRA_CHK_ERR( superludist2.Solve( true ) ) ;
#endif 
#ifdef TEST_SPOOLES
    } else if ( SparseSolver == SPOOLES ) { 
      SpoolesOO spooles( (Epetra_RowMatrix *) passA, 
			 (Epetra_MultiVector *) passx, 
			 (Epetra_MultiVector *) passb ) ; 
    
      spooles.SetTrans( transpose ) ; 
      spooles.Solve() ; 
#endif
#ifdef HAVE_AMESOS_DSCPACK
    } else if ( SparseSolver == DSCPACK ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Dscpack dscpack( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( dscpack.SetParameters( ParamList ) ); 
    
      EPETRA_CHK_ERR( dscpack.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_UMFPACK
    } else if ( SparseSolver == UMFPACK ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Umfpack umfpack( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( umfpack.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( umfpack.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( umfpack.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_KLU
    } else if ( SparseSolver == KLU ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Klu klu( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( klu.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( klu.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( klu.SymbolicFactorization(  ) ); 
      EPETRA_CHK_ERR( klu.NumericFactorization(  ) ); 
      EPETRA_CHK_ERR( klu.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_PARAKLETE
    } else if ( SparseSolver == PARAKLETE ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Paraklete paraklete( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( paraklete.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( paraklete.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( paraklete.SymbolicFactorization(  ) ); 
      EPETRA_CHK_ERR( paraklete.NumericFactorization(  ) ); 
      EPETRA_CHK_ERR( paraklete.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_SLUS
    } else if ( SparseSolver == SuperLU ) { 
      Epetra_SLU superluserial( &Problem ) ; 
      EPETRA_CHK_ERR( superluserial.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( superluserial.SymbolicFactorization(  ) ); 
      EPETRA_CHK_ERR( superluserial.NumericFactorization(  ) ); 

      EPETRA_CHK_ERR( superluserial.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_LAPACK
    } else if ( SparseSolver == LAPACK ) { 
      Teuchos::ParameterList ParamList ;
      ParamList.set( "MaxProcs", -3 );
      Amesos_Lapack lapack( Problem ) ; 
      EPETRA_CHK_ERR( lapack.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( lapack.SymbolicFactorization(  ) ); 
      EPETRA_CHK_ERR( lapack.NumericFactorization(  ) ); 
      EPETRA_CHK_ERR( lapack.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_TAUCS
    } else if ( SparseSolver == TAUCS ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Taucs taucs( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( taucs.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( taucs.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( taucs.SymbolicFactorization( ) ); 
      EPETRA_CHK_ERR( taucs.NumericFactorization( ) ); 
      EPETRA_CHK_ERR( taucs.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_PARDISO
    } else if ( SparseSolver == PARDISO ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Pardiso pardiso( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( pardiso.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( pardiso.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( pardiso.SymbolicFactorization( ) ); 
      EPETRA_CHK_ERR( pardiso.NumericFactorization( ) ); 
      EPETRA_CHK_ERR( pardiso.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_PARKLETE
    } else if ( SparseSolver == PARKLETE ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Parklete parklete( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( parklete.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( parklete.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( parklete.SymbolicFactorization( ) ); 
      EPETRA_CHK_ERR( parklete.NumericFactorization( ) ); 
      EPETRA_CHK_ERR( parklete.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_MUMPS
    } else if ( SparseSolver == MUMPS ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Mumps mumps( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( mumps.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( mumps.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( mumps.SymbolicFactorization( ) ); 
      EPETRA_CHK_ERR( mumps.NumericFactorization( ) ); 
      EPETRA_CHK_ERR( mumps.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_SCALAPACK
    } else if ( SparseSolver == SCALAPACK ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Scalapack scalapack( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( scalapack.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( scalapack.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( scalapack.SymbolicFactorization( ) ); 
      EPETRA_CHK_ERR( scalapack.NumericFactorization( ) ); 
      EPETRA_CHK_ERR( scalapack.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_SUPERLUDIST
    } else if ( SparseSolver == SUPERLUDIST ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Superludist superludist( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( superludist.SetParameters( ParamList ) ); 

      EPETRA_CHK_ERR( superludist.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( superludist.SymbolicFactorization(  ) ); 
      EPETRA_CHK_ERR( superludist.NumericFactorization(  ) ); 
      EPETRA_CHK_ERR( superludist.Solve( ) ); 
#endif
#ifdef HAVE_AMESOS_SUPERLU
    } else if ( SparseSolver == SUPERLU ) { 
      Teuchos::ParameterList ParamList ;
      Amesos_Superlu superlu( Problem ) ; 
      ParamList.set( "MaxProcs", -3 );
      EPETRA_CHK_ERR( superlu.SetParameters( ParamList ) ); 
      EPETRA_CHK_ERR( superlu.SetUseTranspose( transpose ) ); 
    
      EPETRA_CHK_ERR( superlu.SymbolicFactorization(  ) ); 
      EPETRA_CHK_ERR( superlu.NumericFactorization(  ) ); 
      EPETRA_CHK_ERR( superlu.Solve( ) ); 
#endif
#ifdef TEST_SPOOLESSERIAL 
    } else if ( SparseSolver == SPOOLESSERIAL ) { 
      SpoolesserialOO spoolesserial( (Epetra_RowMatrix *) passA, 
				     (Epetra_MultiVector *) passx, 
				     (Epetra_MultiVector *) passb ) ; 
    
      spoolesserial.Solve() ;
#endif
    } else { 
      SparseDirectTimingVars::log_file << "Solver not implemented yet" << std::endl ;
      std::cerr << "\n\n####################  Requested solver not available (Or not tested with blocked RHS) on this platform #####################\n" << std::endl ;
    }

    SparseDirectTimingVars::SS_Result.Set_Total_Time( TotalTime.ElapsedTime() ); 
    //    SparseDirectTimingVars::SS_Result.Set_First_Time( 0.0 ); 
    //    SparseDirectTimingVars::SS_Result.Set_Middle_Time( 0.0 ); 
    //    SparseDirectTimingVars::SS_Result.Set_Last_Time( 0.0 ); 

    //
    //  Compute the error = norm(xcomp - xexact )
    //
    std::vector <double> error(numsolves) ; 
    double max_error = 0.0;
  
    passresid->Update(1.0, *passx, -1.0, *passxexact, 0.0);

    passresid->Norm2(&error[0]);
    for ( int i = 0 ; i< numsolves; i++ ) 
      if ( error[i] > max_error ) max_error = error[i] ; 
    SparseDirectTimingVars::SS_Result.Set_Error(max_error) ;

    //  passxexact->Norm2(&error[0] ) ; 
    //  passx->Norm2(&error ) ; 

    //
    //  Compute the residual = norm(Ax - b)
    //
    std::vector <double> residual(numsolves) ; 
  
    passtmp->PutScalar(0.0);
    passA->Multiply( transpose, *passx, *passtmp);
    passresid->Update(1.0, *passtmp, -1.0, *passb, 0.0); 
    //    passresid->Update(1.0, *passtmp, -1.0, CopyB, 0.0); 
    passresid->Norm2(&residual[0]);

    for ( int i = 0 ; i< numsolves; i++ ) 
      if ( residual[i] > max_resid ) max_resid = residual[i] ; 


    SparseDirectTimingVars::SS_Result.Set_Residual(max_resid) ;
    
    std::vector <double> bnorm(numsolves); 
    passb->Norm2( &bnorm[0] ) ; 
    SparseDirectTimingVars::SS_Result.Set_Bnorm(bnorm[0]) ;

    std::vector <double> xnorm(numsolves); 
    passx->Norm2( &xnorm[0] ) ; 
    SparseDirectTimingVars::SS_Result.Set_Xnorm(xnorm[0]) ;


    if ( false && iam == 0 ) { 

      std::cout << " Amesos_TestMutliSolver.cpp " << std::endl ; 
      for ( int i = 0 ; i< numsolves && i < 10 ; i++ ) {
	std::cout << "i=" << i 
	     << " error = " << error[i] 
	     << " xnorm = " << xnorm[i] 
	     << " residual = " << residual[i] 
	     << " bnorm = " << bnorm[i] 
	     << std::endl ; 
      
      }
    
      std::cout << std::endl << " max_resid = " << max_resid ; 
      std::cout << " max_error = " << max_error << std::endl ; 
      std::cout << " Get_residual() again = " << SparseDirectTimingVars::SS_Result.Get_Residual() << std::endl ;

    }
  }
  delete readA;
  delete readx;
  delete readb;
  delete readxexact;
  delete readMap;
  delete map_;
  
  Comm.Barrier();

return 0 ;
}
int ShyLU_Probing_Operator::Apply(const Epetra_MultiVector &X,
            Epetra_MultiVector &Y) const
{
#ifdef TIMING_OUTPUT
    apply_time_->start();
#endif

    int nvectors = X.NumVectors();
    bool local = (C_->Comm().NumProc() == 1);
    int err;
    //cout << "No of colors after probing" << nvectors << endl;

#ifdef TIMING_OUTPUT
    matvec_time_->start();
#endif

    err = G_->Multiply(false, X, *temp2);
    assert(err == 0);
    if (!local)
        err = C_->Multiply(false, X, *temp);
    else
    {
        // localize X
        double *values;
        int mylda;
        X.ExtractView(&values, &mylda);

       Epetra_SerialComm LComm;        // Use Serial Comm for the local blocks.
       Epetra_Map SerialMap(X.Map().NumMyElements(), X.Map().NumMyElements(),
                   X.Map().MyGlobalElements(), 0, LComm);
       Epetra_MultiVector Xl(View, SerialMap, values, mylda, X.NumVectors());
       err = C_->Multiply(false, Xl, *temp);
    }
    assert(err == 0);

#ifdef TIMING_OUTPUT
    matvec_time_->stop();
#endif

    int nrows = C_->RowMap().NumMyElements();

#ifdef DEBUG
    cout << "DEBUG MODE" << endl;
    assert(nrows == localDRowMap_->NumGlobalElements());

    int gids[nrows], gids1[nrows];
    C_->RowMap().MyGlobalElements(gids);
    localDRowMap_->MyGlobalElements(gids1);

    for (int i = 0; i < nrows; i++)
    {
       assert(gids[i] == gids1[i]);
    }
#endif

#ifdef TIMING_OUTPUT
    localize_time_->start();
#endif

    //int err;
    int lda;
    double *values;
    if (!local)
    {
        err = temp->ExtractView(&values, &lda);
        assert (err == 0);

        // copy to local vector //TODO: OMP parallel
        assert(lda == nrows);

    //#pragma omp parallel for shared(nvectors, nrows, values)
        for (int v = 0; v < nvectors; v++)
        {
           for (int i = 0; i < nrows; i++)
           {
               err = ltemp->ReplaceMyValue(i, v, values[i+v*lda]);
               assert (err == 0);
           }
        }
    }

#ifdef TIMING_OUTPUT
    localize_time_->stop();
    trisolve_time_->start();
#endif

    if (!local)
    {
        LP_->SetRHS(ltemp.getRawPtr());
    }
    else
    {
        //LP_->SetRHS(temp.getRawPtr());
    }
    //LP_->SetLHS(localX.getRawPtr());

    //TODO: Why not just in Reset(). Check the distr path.
    ssym_->OrigLP->SetLHS(localX.getRawPtr());
    ssym_->OrigLP->SetRHS(temp.getRawPtr());
    ssym_->ReIdx_LP->fwd();
    solver_->Solve();

#ifdef TIMING_OUTPUT
    trisolve_time_->stop();
    dist_time_->start();
#endif

    if (!local)
    {
        err = localX->ExtractView(&values, &lda);
        assert (err == 0);

        //Copy back to dist vector //TODO: OMP parallel
    //#pragma omp parallel for
        for (int v = 0; v < nvectors; v++)
        {
           for (int i = 0; i < nrows; i++)
           {
               err = temp->ReplaceMyValue(i, v, values[i+v*lda]);
               assert (err == 0);
           }
        }
    }

#ifdef TIMING_OUTPUT
    dist_time_->stop();
    matvec2_time_->start();
#endif

    if (!local)
    {
        R_->Multiply(false, *temp, Y);
    }
    else
    {
        // Should Y be localY in Multiply and then exported to Y ?? TODO:
        // Use view mode ?
        double *values;
        int mylda;
        Y.ExtractView(&values, &mylda);

       Epetra_SerialComm LComm;        // Use Serial Comm for the local blocks.
       Epetra_Map SerialMap(Y.Map().NumMyElements(), Y.Map().NumMyElements(),
                   Y.Map().MyGlobalElements(), 0, LComm);
       Epetra_MultiVector Yl(View, SerialMap, values, mylda, Y.NumVectors());
        R_->Multiply(false, *localX, Yl);
    }

#ifdef TIMING_OUTPUT
    matvec2_time_->stop();
    update_time_->start();
#endif

    err = Y.Update(1.0, *temp2, -1.0);
    //cout << Y.MyLength() << " " << temp2.MyLength() << endl;
    assert(err == 0);

#ifdef TIMING_OUTPUT
    update_time_->stop();
    apply_time_->stop();
#endif
    cntApply++;
    return 0;
}
예제 #21
0
//==============================================================================
int Ifpack_Chebyshev::
ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  
  if (!IsComputed())
    IFPACK_CHK_ERR(-3);

  if (PolyDegree_ == 0)
    return 0;

  int nVec = X.NumVectors();
  int len = X.MyLength();
  if (nVec != Y.NumVectors())
    IFPACK_CHK_ERR(-2);

  Time_->ResetStartTime();

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = Teuchos::rcp( &X, false );

  double **xPtr = 0, **yPtr = 0;
  Xcopy->ExtractView(&xPtr);
  Y.ExtractView(&yPtr);

#ifdef HAVE_IFPACK_EPETRAEXT
  EpetraExt_PointToBlockDiagPermute* IBD=0;
  if (UseBlockMode_) IBD=&*InvBlockDiagonal_;
#endif
  

  //--- Do a quick solve when the matrix is identity
  double *invDiag=0;
  if(!UseBlockMode_) invDiag=InvDiagonal_->Values();
  if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_)) {
#ifdef HAVE_IFPACK_EPETRAEXT
    if(UseBlockMode_) IBD->ApplyInverse(*Xcopy,Y);
    else
#endif
    if (nVec == 1) {
      double *yPointer = yPtr[0], *xPointer = xPtr[0];
      for (int i = 0; i < len; ++i)
        yPointer[i] = xPointer[i]*invDiag[i];
    }
    else {
      int i, k;
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i];
        for (k = 0; k < nVec; ++k)
          yPtr[k][i] = xPtr[k][i] * coeff;
      }
    } // if (nVec == 1)
    return 0;
  } // if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_))

  //--- Initialize coefficients
  // Note that delta stores the inverse of ML_Cheby::delta
  double alpha = LambdaMax_ / EigRatio_;
  double beta = 1.1 * LambdaMax_;
  double delta = 2.0 / (beta - alpha);
  double theta = 0.5 * (beta + alpha);
  double s1 = theta * delta;

  //--- Define vectors
  // In ML_Cheby, V corresponds to pAux and W to dk
  Epetra_MultiVector V(X);
  Epetra_MultiVector W(X);
#ifdef HAVE_IFPACK_EPETRAEXT
  Epetra_MultiVector Temp(X);
#endif
  
  double *vPointer = V.Values(), *wPointer = W.Values();

  double oneOverTheta = 1.0/theta;
  int i, j, k;


  //--- If solving normal equations, multiply RHS by A^T
  if(SolveNormalEquations_){
    Apply_Transpose(Operator_,Y,V);
    Y=V;
  }

  // Do the smoothing when block scaling is turned OFF
  // --- Treat the initial guess
  if (ZeroStartingSolution_ == false) {
    Operator_->Apply(Y, V);
    // Compute W = invDiag * ( X - V )/ Theta
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      Temp.Update(oneOverTheta,X,-oneOverTheta,V,0.0);
      IBD->ApplyInverse(Temp,W);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(W,Temp);
	Apply_Transpose(Operator_,Temp,W);
      }
    }
    else
#endif
    if (nVec == 1) {
      double *xPointer = xPtr[0];
      for (i = 0; i < len; ++i)
        wPointer[i] = invDiag[i] * (xPointer[i] - vPointer[i]) * oneOverTheta;
    }
    else {
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i]*oneOverTheta;
        double *wi = wPointer + i, *vi = vPointer + i;
        for (k = 0; k < nVec; ++k) {
          *wi = (xPtr[k][i] - (*vi)) * coeff;
          wi = wi + len; vi = vi + len;
        }
      }
    } // if (nVec == 1)
    // Update the vector Y
    Y.Update(1.0, W, 1.0);
  }
  else {
    // Compute W = invDiag * X / Theta
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      IBD->ApplyInverse(X,W);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(W,Temp);
	Apply_Transpose(Operator_,Temp,W);
      }

      W.Scale(oneOverTheta);
      Y.Update(1.0, W, 0.0);      
    }
    else
#endif
    if (nVec == 1) {
      double *xPointer = xPtr[0];
      for (i = 0; i < len; ++i){
        wPointer[i] = invDiag[i] * xPointer[i] * oneOverTheta;
      }
      memcpy(yPtr[0], wPointer, len*sizeof(double));
    }
    else {
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i]*oneOverTheta;
        double *wi = wPointer + i;
        for (k = 0; k < nVec; ++k) {
          *wi = xPtr[k][i] * coeff;
          wi = wi + len;
        }
      }
      for (k = 0; k < nVec; ++k)
        memcpy(yPtr[k], wPointer + k*len, len*sizeof(double));
    } // if (nVec == 1)
  } // if (ZeroStartingSolution_ == false)
  
  //--- Apply the polynomial
  double rhok = 1.0/s1, rhokp1;
  double dtemp1, dtemp2;
  int degreeMinusOne = PolyDegree_ - 1;
  if (nVec == 1) {
    double *xPointer = xPtr[0];
    for (k = 0; k < degreeMinusOne; ++k) {
      Operator_->Apply(Y, V);
      rhokp1 = 1.0 / (2.0*s1 - rhok);
      dtemp1 = rhokp1 * rhok;
      dtemp2 = 2.0 * rhokp1 * delta;
      rhok = rhokp1;
      // Compute W = dtemp1 * W
      W.Scale(dtemp1);
      // Compute W = W + dtemp2 * invDiag * ( X - V )
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      //NTS: We can clobber V since it will be reset in the Apply
      V.Update(dtemp2,X,-dtemp2);
      IBD->ApplyInverse(V,Temp);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(V,Temp);
	Apply_Transpose(Operator_,Temp,V);
      }

      W.Update(1.0,Temp,1.0);
    }
    else{
#endif
      for (i = 0; i < len; ++i)
        wPointer[i] += dtemp2* invDiag[i] * (xPointer[i] - vPointer[i]);
#ifdef HAVE_IFPACK_EPETRAEXT
    }
#endif

      // Update the vector Y
      Y.Update(1.0, W, 1.0);
    } // for (k = 0; k < degreeMinusOne; ++k)
  }
  else {
    for (k = 0; k < degreeMinusOne; ++k) {
      Operator_->Apply(Y, V);
      rhokp1 = 1.0 / (2.0*s1 - rhok);
      dtemp1 = rhokp1 * rhok;
      dtemp2 = 2.0 * rhokp1 * delta;
      rhok = rhokp1;
      // Compute W = dtemp1 * W
      W.Scale(dtemp1);
      // Compute W = W + dtemp2 * invDiag * ( X - V )
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      //We can clobber V since it will be reset in the Apply
      V.Update(dtemp2,X,-dtemp2);
      IBD->ApplyInverse(V,Temp);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(V,Temp);
	Apply_Transpose(Operator_,Temp,V);
      }


      W.Update(1.0,Temp,1.0);
    }
    else{
#endif
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i]*dtemp2;
        double *wi = wPointer + i, *vi = vPointer + i;
        for (j = 0; j < nVec; ++j) {
          *wi += (xPtr[j][i] - (*vi)) * coeff;
          wi = wi + len; vi = vi + len;
        }
      }
#ifdef HAVE_IFPACK_EPETRAEXT
    }
#endif      
      // Update the vector Y
      Y.Update(1.0, W, 1.0);
    } // for (k = 0; k < degreeMinusOne; ++k)
  } // if (nVec == 1)

  
  // Flops are updated in each of the following. 
  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_->ElapsedTime();
  return(0);
}
예제 #22
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
    Teuchos::GlobalMPISession mpiSession(&argc, &argv, 0);
    Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
    Epetra_SerialComm Comm;
#endif
    int nProcs, myPID ;
    Teuchos::ParameterList pLUList ;        // ParaLU parameters
    Teuchos::ParameterList isoList ;        // Isorropia parameters
    Teuchos::ParameterList shyLUList ;    // shyLU parameters
    Teuchos::ParameterList ifpackList ;    // shyLU parameters
    string ipFileName = "ShyLU.xml";       // TODO : Accept as i/p

    nProcs = mpiSession.getNProc();
    myPID = Comm.MyPID();

    if (myPID == 0)
    {
        cout <<"Parallel execution: nProcs="<< nProcs << endl;
    }

    // =================== Read input xml file =============================
    Teuchos::updateParametersFromXmlFile(ipFileName, &pLUList);
    isoList = pLUList.sublist("Isorropia Input");
    shyLUList = pLUList.sublist("ShyLU Input");
    shyLUList.set("Outer Solver Library", "AztecOO");
    // Get matrix market file name
    string MMFileName = Teuchos::getParameter<string>(pLUList, "mm_file");
    string prec_type = Teuchos::getParameter<string>(pLUList, "preconditioner");
    int maxiters = Teuchos::getParameter<int>(pLUList, "Outer Solver MaxIters");
    double tol = Teuchos::getParameter<double>(pLUList, "Outer Solver Tolerance");
    string rhsFileName = pLUList.get<string>("rhs_file", "");

    if (myPID == 0)
    {
        cout << "Input :" << endl;
        cout << "ParaLU params " << endl;
        pLUList.print(std::cout, 2, true, true);
        cout << "Matrix market file name: " << MMFileName << endl;
    }

    // ==================== Read input Matrix ==============================
    Epetra_CrsMatrix *A;
    Epetra_MultiVector *b1;

    int err = EpetraExt::MatrixMarketFileToCrsMatrix(MMFileName.c_str(), Comm,
                                                        A);
    //EpetraExt::MatlabFileToCrsMatrix(MMFileName.c_str(), Comm, A);
    //assert(err != 0);
    //cout <<"Done reading the matrix"<< endl;
    int n = A->NumGlobalRows();
    //cout <<"n="<< n << endl;

    // Create input vectors
    Epetra_Map vecMap(n, 0, Comm);
    if (rhsFileName != "")
    {
        err = EpetraExt::MatrixMarketFileToMultiVector(rhsFileName.c_str(),
                                         vecMap, b1);
    }
    else
    {
        b1 = new Epetra_MultiVector(vecMap, 1, false);
        b1->PutScalar(1.0);
    }

    Epetra_MultiVector x(vecMap, 1);
    //cout << "Created the vectors" << endl;

    // Partition the matrix with hypergraph partitioning and redisstribute
    Isorropia::Epetra::Partitioner *partitioner = new
                            Isorropia::Epetra::Partitioner(A, isoList, false);
    partitioner->partition();
    Isorropia::Epetra::Redistributor rd(partitioner);

    Epetra_CrsMatrix *newA;
    Epetra_MultiVector *newX, *newB; 
    rd.redistribute(*A, newA);
    delete A;
    A = newA;

    rd.redistribute(x, newX);
    rd.redistribute(*b1, newB);

    Epetra_LinearProblem problem(A, newX, newB);

    AztecOO solver(problem);

    ifpackList ;
    Ifpack_Preconditioner *prec;
    ML_Epetra::MultiLevelPreconditioner *MLprec;
    if (prec_type.compare("ShyLU") == 0)
    {
        prec = new Ifpack_ShyLU(A);
        prec->SetParameters(shyLUList);
        prec->Initialize();
        prec->Compute();
        //(dynamic_cast<Ifpack_ShyLU *>(prec))->JustTryIt();
        //cout << " Going to set it in solver" << endl ;
        solver.SetPrecOperator(prec);
        //cout << " Done setting the solver" << endl ;
    }
    else if (prec_type.compare("ILU") == 0)
    {
        ifpackList.set( "fact: level-of-fill", 1 );
        prec = new Ifpack_ILU(A);
        prec->SetParameters(ifpackList);
        prec->Initialize();
        prec->Compute();
        solver.SetPrecOperator(prec);
    }
    else if (prec_type.compare("ILUT") == 0)
    {
        ifpackList.set( "fact: ilut level-of-fill", 2 );
        ifpackList.set( "fact: drop tolerance", 1e-8);
        prec = new Ifpack_ILUT(A);
        prec->SetParameters(ifpackList);
        prec->Initialize();
        prec->Compute();
        solver.SetPrecOperator(prec);
    }
    else if (prec_type.compare("ML") == 0)
    {
        Teuchos::ParameterList mlList; // TODO : Take it from i/p
        MLprec = new ML_Epetra::MultiLevelPreconditioner(*A, mlList, true);
        solver.SetPrecOperator(MLprec);
    }

    solver.SetAztecOption(AZ_solver, AZ_gmres);
    solver.SetMatrixName(333);
    //solver.SetAztecOption(AZ_output, 1);
    //solver.SetAztecOption(AZ_conv, AZ_Anorm);
    //cout << "Going to iterate for the global problem" << endl;

    solver.Iterate(maxiters, tol);

    // compute ||Ax - b||
    double Norm;
    Epetra_MultiVector Ax(vecMap, 1);

    Epetra_MultiVector *newAx; 
    rd.redistribute(Ax, newAx);
    A->Multiply(false, *newX, *newAx);
    newAx->Update(1.0, *newB, -1.0);
    newAx->Norm2(&Norm);
    double ANorm = A->NormOne();

    cout << "|Ax-b |/|A| = " << Norm/ANorm << endl;

    delete newAx;
    if (prec_type.compare("ML") == 0)
    {
        delete MLprec;
    }
    else
    {
        delete prec;
    }

    delete b1;
    delete newX;
    delete newB;
    delete A;
    delete partitioner;
}
// ============================================================================ 
int ML_Epetra::MatrixFreePreconditioner::
ApplyInverse(const Epetra_MultiVector& B, Epetra_MultiVector& X) const
{
  ResetStartTime();

  if (!X.Map().SameAs(R_->OperatorDomainMap())) ML_CHK_ERR(-1);
  if (X.NumVectors() != B.NumVectors()) ML_CHK_ERR(-1);

  Epetra_MultiVector B_c(R_->OperatorRangeMap(), B.NumVectors());
  Epetra_MultiVector X_c(R_->OperatorRangeMap(), B.NumVectors());

  if (PrecType_ == ML_MFP_PRESMOOTHER_ONLY)
  {
    ML_CHK_ERR(ApplyPreSmoother(X));
  }
  else if (PrecType_ == ML_MFP_ADDITIVE)
  {
    // ================================= //
    // ADDITIVE TWO-LEVEL PRECONDITIONER //
    // ================================= //

    Epetra_MultiVector tmp(B.Map(), B.NumVectors());

    ML_CHK_ERR(R_->Multiply(false, B, B_c));

    ML_CHK_ERR(MLP_->ApplyInverse(B_c, X_c));

    ML_CHK_ERR(R_->Multiply(true, X_c, tmp));

    // apply smoother with zero starting solution
    ML_CHK_ERR(ApplyPreSmoother(X)); 

    // sum up the two contributions
    ML_CHK_ERR(X.Update(1.0, tmp, 1.0));
  }
  else if (PrecType_ == ML_MFP_HYBRID)
  {
    // =============================== //
    // HYBRID TWO-LEVEL PRECONDITIONER //
    // =============================== //

    Epetra_MultiVector tmp(B.Map(), B.NumVectors());
    Epetra_MultiVector sol(B.Map(), B.NumVectors());
    sol = B;

    // apply pre-smoother
    ML_CHK_ERR(ApplyPreSmoother(sol));

    // new residual
    ML_CHK_ERR(Operator_.Apply(sol, tmp));
    ML_CHK_ERR(tmp.Update(1.0, B, -1.0));

    // restrict to coarse
    ML_CHK_ERR(R_->Multiply(false, tmp, B_c));

    X_c.PutScalar(0.0);
    // solve coarse problem
    ML_CHK_ERR(MLP_->ApplyInverse(B_c, X_c));

    // prolongate back
    ML_CHK_ERR(R_->Multiply(true, X_c, tmp));

    // add to solution, X now has the correction
    ML_CHK_ERR(sol.Update(1.0, tmp, 1.0));

    // apply post-smoother
    /////ML_CHK_ERR(PostSmoother_->ApplyInverse(B, sol));
    ML_CHK_ERR(ApplyPostSmoother(sol, B, tmp));
    X = sol;
  }
  else
    ML_CHK_ERR(-3); // type not recognized

  AddAndResetStartTime("ApplyInverse()");

  return(0);
}