예제 #1
0
파일: MultiApp.C 프로젝트: beelbw/moose
MeshTools::BoundingBox
MultiApp::getBoundingBox(unsigned int app)
{
  if (!_has_an_app)
    mooseError("No app for " << name() << " on processor " << _orig_rank);

  FEProblem * problem = appProblem(app);

  MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);

  MooseMesh & mesh = problem->mesh();
  MeshTools::BoundingBox bbox = MeshTools::bounding_box(mesh);

  Moose::swapLibMeshComm(swapped);

  Point min = bbox.min();
  Point max = bbox.max();

  Point inflation_amount = (max-min)*_inflation;

  Point inflated_min = min - inflation_amount;
  Point inflated_max = max + inflation_amount;

  // This is where the app is located.  We need to shift by this amount.
  Point p = position(app);

  Point shifted_min = inflated_min;
  Point shifted_max = inflated_max;

  // If the problem is RZ then we're going to invent a box that would cover the whole "3D" app
  // FIXME: Assuming all subdomains are the same coordinate system type!
  if (problem->getCoordSystem(*(problem->mesh().meshSubdomains().begin())) == Moose::COORD_RZ)
  {
    shifted_min(0) = -inflated_max(0);
    shifted_min(1) = inflated_min(1);
    shifted_min(2) = -inflated_max(0);

    shifted_max(0) = inflated_max(0);
    shifted_max(1) = inflated_max(1);
    shifted_max(2) = inflated_max(0);
  }

  // Shift them to the position they're supposed to be
  shifted_min += p;
  shifted_max += p;

  return MeshTools::BoundingBox(shifted_min, shifted_max);
}
예제 #2
0
ComputeJacobianBlockThread::ComputeJacobianBlockThread(FEProblem & fe_problem, libMesh::System & precond_system, SparseMatrix<Number> & jacobian, unsigned int ivar, unsigned int jvar) :
    _fe_problem(fe_problem),
    _precond_system(precond_system),
    _nl(_fe_problem.getNonlinearSystem()),
    _mesh(fe_problem.mesh()),
    _jacobian(jacobian),
    _ivar(ivar),
    _jvar(jvar)
{
}
예제 #3
0
FunctionPeriodicBoundary::FunctionPeriodicBoundary(FEProblem & feproblem, std::vector<std::string> fn_names) :
    _dim(fn_names.size()),
    _tr_x(&feproblem.getFunction(fn_names[0])),
    _tr_y(fn_names.size() > 1 ? &feproblem.getFunction(fn_names[1]) : NULL),
    _tr_z(fn_names.size() > 2 ? &feproblem.getFunction(fn_names[2]) : NULL)
{

  // Make certain the the dimensions agree
  if (_dim != feproblem.mesh().dimension())
    mooseError("Transform function has to have the same dimension as the problem being solved.");

  // Initialize the functions (i.e., call thier initialSetup methods)
  init();
}
예제 #4
0
파일: ConsoleUtils.C 프로젝트: Biyss/moose
std::string
outputMeshInformation(FEProblem & problem, bool verbose)
{
  std::stringstream oss;
  oss << std::left;

  MooseMesh & moose_mesh = problem.mesh();
  MeshBase & mesh = moose_mesh.getMesh();

  if (verbose)
  {
    oss << "Mesh: " << '\n'
        << std::setw(console_field_width) << "  Distribution: " << (moose_mesh.isParallelMesh() ? "parallel" : "serial")
        << (moose_mesh.isDistributionForced() ? " (forced) " : "") << '\n'
        << std::setw(console_field_width) << "  Mesh Dimension: " << mesh.mesh_dimension() << '\n'
        << std::setw(console_field_width) << "  Spatial Dimension: " << mesh.spatial_dimension() << '\n';
  }

  oss << std::setw(console_field_width) << "  Nodes:" << '\n'
      << std::setw(console_field_width) << "    Total:" << mesh.n_nodes() << '\n'
      << std::setw(console_field_width) << "    Local:" << mesh.n_local_nodes() << '\n'
      << std::setw(console_field_width) << "  Elems:" << '\n'
      << std::setw(console_field_width) << "    Total:" << mesh.n_elem() << '\n'
      << std::setw(console_field_width) << "    Local:" << mesh.n_local_elem() << '\n';

  if (verbose)
  {

    oss << std::setw(console_field_width) << "  Num Subdomains: "       << static_cast<std::size_t>(mesh.n_subdomains()) << '\n'
        << std::setw(console_field_width) << "  Num Partitions: "       << static_cast<std::size_t>(mesh.n_partitions()) << '\n';
  if (problem.n_processors() > 1 && moose_mesh.partitionerName() != "")
    oss << std::setw(console_field_width) << "  Partitioner: "       << moose_mesh.partitionerName()
        << (moose_mesh.isPartitionerForced() ? " (forced) " : "")
        << '\n';
  }

  oss << '\n';

  return oss.str();
}
예제 #5
0
void
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
  if (_sub_cycling && !auto_advance)
    mooseError("TransientMultiApp with sub_cycling=true is not compatible with auto_advance=false");

  if (_catch_up && !auto_advance)
    mooseError("TransientMultiApp with catch_up=true is not compatible with auto_advance=false");

  if (!_has_an_app)
    return;

  _auto_advance = auto_advance;

  Moose::out << "Solving MultiApp " << _name << std::endl;

// "target_time" must always be in global time
  target_time += _app.getGlobalTimeOffset();

  MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);

  int rank;
  int ierr;
  ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr);

  for (unsigned int i=0; i<_my_num_apps; i++)
  {

    FEProblem * problem = appProblem(_first_local_app + i);
    OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();

    Transient * ex = _transient_executioners[i];

    // The App might have a different local time from the rest of the problem
    Real app_time_offset = _apps[i]->getGlobalTimeOffset();

    if ((ex->getTime() + app_time_offset) + 2e-14 >= target_time) // Maybe this MultiApp was already solved
      continue;

    if (_sub_cycling)
    {
      Real time_old = ex->getTime() + app_time_offset;

      if (_interpolate_transfers)
      {
        AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
        System & libmesh_aux_system = aux_system.system();

        NumericVector<Number> & solution = *libmesh_aux_system.solution;
        NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");

        solution.close();

        // Save off the current auxiliary solution
        transfer_old = solution;

        transfer_old.close();

        // Snag all of the local dof indices for all of these variables
        AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
        ConstElemRange & elem_range = *problem->mesh().getActiveLocalElementRange();
        Threads::parallel_reduce(elem_range, aldit);

        _transferred_dofs = aldit._all_dof_indices;
      }

      if (_output_sub_cycles)
        output_warehouse.allowOutput(true);
      else
        output_warehouse.allowOutput(false);

      ex->setTargetTime(target_time-app_time_offset);

//      unsigned int failures = 0;

      bool at_steady = false;

      // Now do all of the solves we need
      while(true)
      {
        if (_first != true)
          ex->incrementStepOrReject();
        _first = false;

        if (!(!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time))
          break;

        ex->computeDT();

        if (_interpolate_transfers)
        {
          // See what time this executioner is going to go to.
          Real future_time = ex->getTime() + app_time_offset + ex->getDT();

          // How far along we are towards the target time:
          Real step_percent = (future_time - time_old) / (target_time - time_old);

          Real one_minus_step_percent = 1.0 - step_percent;

          // Do the interpolation for each variable that was transferred to
          FEProblem * problem = appProblem(_first_local_app + i);
          AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
          System & libmesh_aux_system = aux_system.system();

          NumericVector<Number> & solution = *libmesh_aux_system.solution;
          NumericVector<Number> & transfer = libmesh_aux_system.get_vector("transfer");
          NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");

          solution.close(); // Just to be sure
          transfer.close();
          transfer_old.close();

          std::set<dof_id_type>::iterator it  = _transferred_dofs.begin();
          std::set<dof_id_type>::iterator end = _transferred_dofs.end();

          for(; it != end; ++it)
          {
            dof_id_type dof = *it;
            solution.set(dof, (transfer_old(dof) * one_minus_step_percent) + (transfer(dof) * step_percent));
//            solution.set(dof, transfer_old(dof));
//            solution.set(dof, transfer(dof));
//            solution.set(dof, 1);
          }

          solution.close();
        }

        ex->takeStep();

        bool converged = ex->lastSolveConverged();

        if (!converged)
        {
          mooseWarning("While sub_cycling "<<_name<<_first_local_app+i<<" failed to converge!"<<std::endl);
          _failures++;

          if (_failures > _max_failures)
            mooseError("While sub_cycling "<<_name<<_first_local_app+i<<" REALLY failed!"<<std::endl);
        }

        Real solution_change_norm = ex->getSolutionChangeNorm();

        if (_detect_steady_state)
          Moose::out << "Solution change norm: " << solution_change_norm << std::endl;

        if (converged && _detect_steady_state && solution_change_norm < _steady_state_tol)
        {
          Moose::out << "Detected Steady State!  Fast-forwarding to " << target_time << std::endl;

          at_steady = true;

         // Indicate that the next output call (occurs in ex->endStep()) should output, regarless of intervals etc...
          output_warehouse.forceOutput();

          // Clean up the end
          ex->endStep(target_time-app_time_offset);
        }
        else
          ex->endStep();
      }

      // If we were looking for a steady state, but didn't reach one, we still need to output one more time
      if (!at_steady)
      {
        output_warehouse.forceOutput();
        output_warehouse.outputStep();
     }

    }
    else if (_tolerate_failure)
    {
      ex->takeStep(dt);
      output_warehouse.forceOutput();
      ex->endStep(target_time-app_time_offset);
    }
    else
    {
      Moose::out << "Solving Normal Step!" << std::endl;
      if (auto_advance)
        if (_first != true)
          ex->incrementStepOrReject();

      if (auto_advance)
        output_warehouse.allowOutput(true);

      ex->takeStep(dt);

      if (auto_advance)
      {
        ex->endStep();

        if (!ex->lastSolveConverged())
        {
          mooseWarning(_name << _first_local_app+i << " failed to converge!" << std::endl);

          if (_catch_up)
          {
            Moose::out << "Starting Catch Up!" << std::endl;

            bool caught_up = false;

            unsigned int catch_up_step = 0;

            Real catch_up_dt = dt/2;

            while(!caught_up && catch_up_step < _max_catch_up_steps)
            {
              Moose::err << "Solving " << _name << "catch up step " << catch_up_step << std::endl;
              ex->incrementStepOrReject();

              ex->computeDT();
              ex->takeStep(catch_up_dt); // Cut the timestep in half to try two half-step solves

              if (ex->lastSolveConverged())
              {
                if (ex->getTime() + app_time_offset + ex->timestepTol()*std::abs(ex->getTime()) >= target_time)
                {
                  output_warehouse.forceOutput();
                  output_warehouse.outputStep();
                  caught_up = true;
                }
              }
              else
                catch_up_dt /= 2.0;

              ex->endStep();

              catch_up_step++;
            }

            if (!caught_up)
              mooseError(_name << " Failed to catch up!\n");

            output_warehouse.allowOutput(true);
           }
        }
      }
    }
  }

  _first = false;

  // Swap back
  Moose::swapLibMeshComm(swapped);

  _transferred_vars.clear();

  Moose::out << "Finished Solving MultiApp " << _name << std::endl;
}
예제 #6
0
파일: PetscSupport.C 프로젝트: garvct/Moose
void
storePetscOptions(FEProblem & fe_problem, const InputParameters & params)
{
  // Note: Options set in the Preconditioner block will override those set in the Executioner block
  if (params.isParamValid("solve_type"))
  {
    // Extract the solve type
    const std::string & solve_type = params.get<MooseEnum>("solve_type");
    fe_problem.solverParams()._type = Moose::stringToEnum<Moose::SolveType>(solve_type);
  }

  if (params.isParamValid("line_search"))
  {
      MooseEnum line_search = params.get<MooseEnum>("line_search");
      if (fe_problem.solverParams()._line_search == Moose::LS_INVALID || line_search != "default")
        fe_problem.solverParams()._line_search = Moose::stringToEnum<Moose::LineSearchType>(line_search);
  }

  // The parameters contained in the Action
  const MultiMooseEnum & petsc_options = params.get<MultiMooseEnum>("petsc_options");
  const MultiMooseEnum & petsc_options_inames = params.get<MultiMooseEnum>("petsc_options_iname");
  const std::vector<std::string> & petsc_options_values = params.get<std::vector<std::string> >("petsc_options_value");

  // A reference to the PetscOptions object that contains the settings that will be used in the solve
  Moose::PetscSupport::PetscOptions & po = fe_problem.getPetscOptions();

  // Update the PETSc single flags
  for (const auto & option : petsc_options)
  {
    /**
     * "-log_summary" cannot be used in the input file. This option needs to be set when PETSc is initialized
     * which happens before the parser is even created.  We'll throw an error if somebody attempts to add this option later.
     */
    if (option == "-log_summary")
      mooseError("The PETSc option \"-log_summary\" can only be used on the command line.  Please remove it from the input file");

    // Warn about superseded PETSc options (Note: -snes is not a REAL option, but people used it in their input files)
    else
    {
      std::string help_string;
      if (option == "-snes" || option == "-snes_mf" || option == "-snes_mf_operator")
        help_string = "Please set the solver type through \"solve_type\".";
      else if (option == "-ksp_monitor")
        help_string = "Please use \"Outputs/print_linear_residuals=true\"";

      if (help_string != "")
        mooseWarning("The PETSc option " << option << " should not be used directly in a MOOSE input file. " << help_string);
    }

    // Update the stored items, but do not create duplicates
    if (find(po.flags.begin(), po.flags.end(), option) == po.flags.end())
      po.flags.push_back(option);
  }

  // Check that the name value pairs are sized correctly
  if (petsc_options_inames.size() != petsc_options_values.size())
    mooseError("PETSc names and options are not the same length");

  // Setup the name value pairs
  bool boomeramg_found = false;
  bool strong_threshold_found = false;
  std::string pc_description = "";
  for (unsigned int i = 0; i < petsc_options_inames.size(); i++)
  {
    // Do not add duplicate settings
    if (find(po.inames.begin(), po.inames.end(), petsc_options_inames[i]) == po.inames.end())
    {
      po.inames.push_back(petsc_options_inames[i]);
      po.values.push_back(petsc_options_values[i]);

      // Look for a pc description
      if (petsc_options_inames[i] == "-pc_type" || petsc_options_inames[i] == "-pc_sub_type" || petsc_options_inames[i] == "-pc_hypre_type")
        pc_description += petsc_options_values[i] + ' ';

      // This special case is common enough that we'd like to handle it for the user.
      if (petsc_options_inames[i] == "-pc_hypre_type" && petsc_options_values[i] == "boomeramg")
        boomeramg_found = true;
      if (petsc_options_inames[i] == "-pc_hypre_boomeramg_strong_threshold")
        strong_threshold_found = true;
    }
    else
    {
      for (unsigned int j = 0; j < po.inames.size(); j++)
        if (po.inames[j] == petsc_options_inames[i])
          po.values[j] = petsc_options_values[i];
    }
  }


  // When running a 3D mesh with boomeramg, it is almost always best to supply a strong threshold value
  // We will provide that for the user here if they haven't supplied it themselves.
  if (boomeramg_found && !strong_threshold_found && fe_problem.mesh().dimension() == 3)
  {
    po.inames.push_back("-pc_hypre_boomeramg_strong_threshold");
    po.values.push_back("0.7");
    pc_description += "strong_threshold: 0.7 (auto)";
  }

  // Set Preconditioner description
  po.pc_description = pc_description;
}