예제 #1
0
파일: fdtd.cpp 프로젝트: leios/simuleios
// TFSF boundaries
void TFSF(Field &EM, Loss &lass, Loss1d &lass1d, double Cour, double ppw){

    int dx, dy, loc = 0;

    // TFSF boundary
    Bound first, last;
    first.x = 10; last.x = 1990;
    first.y = 10; last.y = 1490;

    // Update along right edge!
    dx = last.x;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Hy(dx,dy) += lass.HyE(dx, dy) * EM.Ez1d[dx];
    }

    // Updating along left edge
    dx = first.x - 1;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Hy(dx,dy) -= lass.HyE(dx, dy) * EM.Ez1d[dx+1];
    }

    // Updating along top
    dy = last.y;
    for (int dx = first.x; dx <= last.x; dx++){
        EM.Hx(dx,dy) -= lass.HxE(dx, dy) * EM.Ez1d[dx];
    }

    // Update along bot
    dy = first.y - 1;
    for (int dx = first.x; dx <= last.x; dx++){
        EM.Hx(dx,dy) += lass.HxE(dx, dy) * EM.Ez1d[dx];
    }

    // Insert 1d grid stuff here. Update magnetic and electric field
    Hupdate1d(EM, lass1d, EM.t);
    Eupdate1d(EM, lass1d, EM.t);
    //EM.Ez1d[10] = ricker(EM.t,0, Cour);
    EM.Ez1d[10] = planewave(EM.t, loc, Cour, ppw);
    EM.t++;
    std::cout << EM.t << '\n';

    // Check mag instead of ricker.
    // Update along right
    dx = last.x;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Ez(dx, dy) += lass.EzH(dx, dy) * EM.Hy1d[dx];
    }

    // Updating Ez along left
    dx = first.x;
    for (int dy = first.y; dy <= last.y; dy++){
        EM.Ez(dx, dy) -= lass.EzH(dx, dy) * EM.Hy1d[dx - 1];
    }

    //return EM;

}
예제 #2
0
파일: fdtd.cpp 프로젝트: leios/simuleios
void Eupdate2d(Field &EM, Loss &lass, int t){
    // update electric field
    #pragma omp parallel for
    for (size_t dx = 1; dx < spacex - 1; dx++){
        for (size_t dy = 1; dy < spacey - 1; dy++){
           EM.Ez(dx,dy) = lass.EzE(dx,dy) * EM.Ez(dx,dy)
                       + lass.EzH(dx,dy) * ((EM.Hy(dx, dy)
                                         - EM.Hy(dx - 1, dy))
                                         - (EM.Hx(dx,dy)
                                         - EM.Hx(dx, dy - 1)));
        }
    }
    //return EM;
}
예제 #3
0
파일: fdtd.cpp 프로젝트: leios/simuleios
// 2 dimensional functions for E / H movement
void Hupdate2d(Field &EM, Loss &lass, int t){
    // update magnetic field, x direction
    #pragma omp parallel for
    for (size_t dx = 0; dx < spacex; dx++){
        for (size_t dy = 0; dy < spacey - 1; dy++){
           EM.Hx(dx,dy) = lass.HxH(dx,dy) * EM.Hx(dx, dy) 
                       - lass.HxE(dx,dy) * (EM.Ez(dx,dy + 1) 
                                            - EM.Ez(dx,dy));
        }
    }

    // update magnetic field, y direction
    #pragma omp parallel for
    for (size_t dx = 0; dx < spacex - 1; dx++){
        for (size_t dy = 0; dy < spacey; dy++){
           EM.Hy(dx,dy) = lass.HyH(dx,dy) * EM.Hy(dx,dy) 
                      + lass.HyE(dx,dy) * (EM.Ez(dx + 1,dy) 
                                            - EM.Ez(dx,dy));
        }
    }

    //return EM;

}
예제 #4
0
파일: fdtd.cpp 프로젝트: leios/simuleios
// This is the function we writs the bulk of the code in
void FDTD(Field &EM,
          int final_time, double eps,
          std::ofstream& output){

    double loss = 0.00;
    double Cour = 1 / sqrt(2), ppw;
    int numtry = 10;

    Loss lass;
    createloss2d(lass, eps, Cour, loss);
    Loss1d lass1d;
    createloss1d(lass1d, eps, Cour, loss);

    // Time looping
    for (int q = 0; q < numtry; q++){
        ppw = 5 + (1/(double)numtry) * q;
        for (int t = 0; t < final_time; t++){

            Hupdate2d(EM, lass, t);
            TFSF(EM, lass, lass1d, Cour, ppw);
            Eupdate2d(EM,lass,t);
            ABCcheck(EM, lass);
        
            // Outputting to a file
            int check = 30000;
            if (t % check == 0 && t != 0){
                for (size_t dx = 0; dx < spacex; dx++){
                    for (size_t dy = 0; dy < spacey; dy++){
                        output << t << '\t' << dx <<'\t' << dy << '\t'
                               << EM.Ez(dx, dy) << '\n';
                               // '\t' << EM.Hy(dx, dy) 
                               // << '\t' << EM.Hx(dx, dy) << '\t' << '\n';
                    }
                }

                output << '\n' << '\n';
            }

        }
    }
}
예제 #5
0
// This is the function we writs the bulk of the code in
void FDTD(Field EM,
          const int final_time, const double eps, const int space, Loss lass,
          std::ofstream& output){

    // For magnetic field:
    // double offset = 0.00005;

    // for electric field:
    double offset = 0.05;
    double loss = 0.0;
    double Cour = 1.0 / sqrt(2.0);

    // Relative permittivity
    for (int dx = 0; dx < space; dx++){
        for (int dy = 0; dy < space; dy++){
            if (dx > 100 && dx < 150){
                lass.EzH(dx, dy) =  Cour * eps;
                lass.EzE(dx, dy) = 1.0;
                lass.HyH(dx, dy) = 1.0;
                lass.HyE(dx, dy) = Cour / eps;
                lass.HxE(dx, dy) = Cour / eps;
                lass.HxH(dx, dy) = 1.0;

                /*
                lass.EzH(dx, dy) =  eps / 9.0 /(1.0 - loss);
                lass.EzE(dx, dy) = (1.0 - loss) / (1.0 + loss);
                lass.HyH(dx, dy) = (1.0 - loss) / (1.0 + loss);
                lass.HyE(dx, dy) = (1.0 / eps) / (1.0 + loss);
                lass.HxE(dx, dy) = (1.0 / eps) / (1.0 + loss);
                lass.HxH(dx, dy) = (1.0 - loss) / (1.0 + loss);
                */
            }
            else{
                lass.EzH(dx, dy) =  Cour * eps;
                lass.EzE(dx, dy) = 1.0;
                lass.HyH(dx, dy) = 1.0;
                lass.HyE(dx, dy) = Cour / eps;
                lass.HxE(dx, dy) = Cour / eps;
                lass.HxH(dx, dy) = 1.0;
                /*
                lass.EzH(dx, dy) =  eps;
                lass.EzE(dx, dy) = 1.0;
                lass.HyH(dx, dy) = 1.0;
                lass.HyE(dx, dy) = (1.0 / eps);
                lass.HxE(dx, dy) = (1.0 / eps);
                lass.HxH(dx, dy) = 1.0;
                */
            }
        }
    }

    // Time looping
    for (int t = 0; t < final_time; t++){

        // Linking the final two elements for an ABC
        for (int da = 0; da < space; da++){
            EM.Hy(da,space - 1) = EM.Hy(da,space - 2);
            EM.Hx(space - 1,da) = EM.Hx(space - 2,da);
        }

        // update magnetic field, y direction
        for (int dx = 0; dx < space - 1; dx++){
            for (int dy = 0; dy < space; dy++){
               EM.Hy(dx,dy) = lass.HyH(dx,dy) * EM.Hy(dx,dy) 
                           + lass.HyE(dx,dy) * (EM.Ez(dx + 1,dy) 
                                                - EM.Ez(dx,dy));
            }
        }

        // update magnetic field, x direction
        for (int dx = 0; dx < space; dx++){
            for (int dy = 0; dy < space - 1; dy++){
               EM.Hx(dx,dy) = lass.HxH(dx,dy) * EM.Hx(dx, dy) 
                           + lass.HxE(dx,dy) * (EM.Ez(dx,dy + 1) 
                                                - EM.Ez(dx,dy));
            }
        }


        // Correction to the H field for the TFSF boundary
        // Hy[49] -= exp(-(t - 40.) * (t - 40.)/100.0) / eps;
        // Hy[49] -= sin((t-10.0)*0.2)*0.0005;


        // Linking the first two elements in the electric field
        for (int dy = 0; dy < space; dy++){
            EM.Ez(0,dy) = EM.Ez(1,dy);
            EM.Ez(space - 1,dy) = EM.Ez(space - 2,dy);
        }

        // update electric field
        for (int dx = 1; dx < space - 1; dx++){
            for (int dy = 1; dy < space - 1; dy++){
               EM.Ez(dx,dy) = lass.EzE(dx,dy) * EM.Ez(dx,dy)
                           + lass.EzH[dx] * (EM.Hy(dx, dy)
                                             - EM.Hy(dx - 1, dy)
                                             - EM.Hx(dx,dy)
                                             - EM.Hx(dx, dy - 1));
            }
        }

        // set src for next step
        for (int dy = 0; dy < space; dy++){
            EM.Ez(50,dy) += exp(-((t + 1 - 40.) * (t + 1 - 40.))/100.0);
        }
        // EM.Ez[0] = 0;
        
        // Ez[50] += sin((t - 10.0 + 1)*0.2)*0.0005;
/*
        if (t > 0){
            Ez[50] = sin(0.1 * t) / (0.1 * t);
        }
        else{
            Ez[50] = 1;
        }
*/
        if (t % 50 == 0){
            for (int dx = 0; dx < space; dx = dx + 50){
                for (int dy = 0; dy < space; dy = dy + 50){
                    output << t << '\t' << dx <<'\t' << dy << '\t'
                           << EM.Ez(dx, dy) << '\n';
                    //output << Ez(dx,dy) + (t * offset) << '\n';
                    //output << Hy[dx] + (t * offset) << '\n';
                }
            }

            output << '\n' << '\n';
        }

    }
}
예제 #6
0
파일: fdtd.cpp 프로젝트: leios/simuleios
// Checking Absorbing Boundary Conditions (ABC)
void ABCcheck(Field &EM, Loss &lass){

    // defining constant for  ABC
    double c1, c2, c3, temp1, temp2;
    temp1 = sqrt(lass.EzH(0,0) * lass.HyE(0,0));
    temp2 = 1.0 / temp1 + 2.0 + temp1;
    c1 = -(1.0 / temp1 - 2.0 + temp1) / temp2;
    c2 = -2.0 * (temp1 - 1.0 / temp1) / temp2;
    c3 = 4.0 * (temp1 + 1.0 / temp1) / temp2;
    size_t dx, dy;

    // Setting ABC for top
    for (dx = 0; dx < spacex; dx++){
        EM.Ez(dx, spacey - 1) = c1 * (EM.Ez(dx, spacey - 3) + EM.Etop(0, 1, dx))
                      + c2 * (EM.Etop(0, 0, dx) + EM.Etop(2, 0 , dx)
                              -EM.Ez(dx,spacey - 2) -EM.Etop(1, 1, dx))
                      + c3 * EM.Etop(1, 0, dx) - EM.Etop(2, 1, dx); 

       // memorizing fields...
        for (dy = 0; dy < 3; dy++){
            EM.Etop(dy, 1, dx) = EM.Etop(dy, 0, dx);
            EM.Etop(dy, 0, dx) = EM.Ez(dx, spacey - 1 - dy);
        }
    }

    // Setting ABC for bottom
    for (dx = 0; dx < spacex; dx++){
        EM.Ez(dx,0) = c1 * (EM.Ez(dx, 2) + EM.Ebot(0, 1, dx))
                      + c2 * (EM.Ebot(0, 0, dx) + EM.Ebot(2, 0 , dx)
                              -EM.Ez(dx,1) -EM.Ebot(1, 1, dx))
                      + c3 * EM.Ebot(1, 0, dx) - EM.Ebot(2, 1, dx); 

        // memorizing fields...
        for (dy = 0; dy < 3; dy++){
            EM.Ebot(dy, 1, dx) = EM.Ebot(dy, 0, dx);
            EM.Ebot(dy, 0, dx) = EM.Ez(dx, dy);
        }
    }

    // ABC on right
    for (dy = 0; dy < spacey; dy++){
        EM.Ez(spacex - 1,dy) = c1 * (EM.Ez(spacex - 3,dy) + EM.Eright(0, 1, dy))
                      + c2 * (EM.Eright(0, 0, dy) + EM.Eright(2, 0 , dy)
                              -EM.Ez(spacex - 2,dy) -EM.Eright(1, 1, dy))
                      + c3 * EM.Eright(1, 0, dy) - EM.Eright(2, 1, dy); 

        // memorizing fields...
        for (dx = 0; dx < 3; dx++){
            EM.Eright(dx, 1, dy) = EM.Eright(dx, 0, dy);
            EM.Eright(dx, 0, dy) = EM.Ez(spacex - 1 - dx, dy);
        }
    }


    // Setting ABC for left side of grid. Woo!
    for (dy = 0; dy < spacey; dy++){
        EM.Ez(0,dy) = c1 * (EM.Ez(2,dy) + EM.Eleft(0, 1, dy))
                      + c2 * (EM.Eleft(0, 0, dy) + EM.Eleft(2, 0 , dy)
                              -EM.Ez(1,dy) -EM.Eleft(1, 1, dy))
                      + c3 * EM.Eleft(1, 0, dy) - EM.Eleft(2, 1, dy); 

        // memorizing fields...
        for (dx = 0; dx < 3; dx++){
            EM.Eleft(dx, 1, dy) = EM.Eleft(dx, 0, dy);
            EM.Eleft(dx, 0, dy) = EM.Ez(dx, dy);
        }
    }

    // return EM;
}