//------------------------------------------------------------------------------ // Path SamcraBeforeAlgorithm::compute(const Flow &flow) //------------------------------------------------------------------------------ Path SamcraBeforeAlgorithm::compute(const Flow &flow) { TRACE("SamcraBeforeAlgorithm::compute -->"); Path result; Topology *topology = flow.getTopology(); int number_of_nodes = topology->getNumNodes(); int number_of_qos = topology->getNumQos(); int min_k = 0; int k_used = 0; // used by samcra int* max = (int*) calloc(number_of_nodes + 1, sizeof(int)); int** adj = (int**) allocMatrix(number_of_nodes + 1, number_of_nodes + 1, sizeof(int)); double* flow_qos = (double*) calloc(number_of_qos + 1, sizeof(double)); double*** datadj = (double***) calloc(number_of_qos + 1, sizeof(double**)); for (int counter=1; counter <= number_of_qos; ++counter) { datadj[counter] = (double**) allocMatrix(number_of_nodes + 1, number_of_nodes + 1, sizeof(double)); flow_qos[counter] = flow.getQosCons()[counter-1]; } // filling adj and datadj, while pruning links with insuf. available cap. for (LinkListIterator iter = topology->getLinkIterator(); iter(); ++iter) { Link* link = *iter; if (link->getReservableCapacity() >= flow.getRequestedCapacity()) { int source = link->getSource(); int destination = link->getDestination(); adj[source + 1][++max[source + 1]] = destination + 1; for (int qos=1; qos <= number_of_qos; ++qos) { datadj[qos][source+1][max[source+1]] = link->getQoS(qos-1); } // end: for (qos } // end: if (link } // end: for (LinkListIterator // allocating memory for the path int path_length = 0; int* path = (int*) calloc(number_of_nodes + 1, sizeof(int)); // invoking SAMCRA TRACE("SamcraBeforeAlgorithm::compute: Invoking SAMCRA"); #ifndef NO_TIMER Timer timer; timer.start(); #endif // NO_TIMER samcrapath( flow.getSource()+1, flow.getDestination()+1, adj, max, datadj, number_of_qos, flow_qos, number_of_nodes, path, &path_length, &min_k, &k_used); TRACE("SamcraBeforeAlgorithm::compute: End SAMCRA"); // because function returns the path vector from the destination "d" to the // source "s" it is necessary to invert the array for (int counter=1; counter <= path_length; ++counter) { result.push_front(path[counter]-1); } #ifndef NO_TIMER const_cast<Flow&>(flow).setTime(timer.read()); #endif // NO_TIMER // freeing memory free(path); for (int counter = 1; counter <= number_of_qos; ++counter) { freeMatrix((void**) datadj[counter], number_of_nodes + 1); } free(datadj); free(flow_qos); freeMatrix((void**) adj, number_of_nodes + 1); free(max); TRACE("SamcraBeforeAlgorithm::compute <--"); return result; }
Path NewMIRAAlgorithm::compute(const Flow &flow) { TRACE("NewMIRAAlgorithm::compute -->"); Topology *topology = flow.getTopology(); const int f_src = flow.getSource(); const int f_dst = flow.getDestination(); // if link (i,j) exists, its metric is initialized with 0 (it increases each // time a maxflow computation is performed) and it is added to the list that // feeds the maxflow function int numarcs = 0; int number_of_nodes = topology->getNumNodes(); // data structure passed to maxflow function char** network = (char**) calloc(4, sizeof(char*)); for (LinkListIterator iter = topology->getLinkIterator(); iter(); ++iter) { Link* link = *iter; if (link->getCapacity() > 0.0) { link->metric = 0.0; ++numarcs; network = (char**) realloc(network, (numarcs+4)*sizeof(char*)); network[numarcs+2] = (char*) calloc(20, sizeof(char)); sprintf(network[numarcs+2],"a %d %d %d", link->getSource(), link->getDestination(), (int) floor(link->getReservableCapacity())); } // end: if (link-> } // end: for (LinkListIterator iter network[0] = (char*) calloc(20, sizeof(char)); // problem description network[1] = (char*) calloc(20, sizeof(char)); // source node network[2] = (char*) calloc(20, sizeof(char)); // destination node network[numarcs+3] = (char*) 0; // NULL terminated array sprintf(network[0],"p max %d %d", number_of_nodes, numarcs); #ifndef NO_TIMER Timer timer; timer.start(); #endif // NO_TIMER // Compute maxflow for each ingress-egress pair except (source,dest). // Each computation updates link weights //Timer timemaxflow; //timemaxflow.start(); //int n = 0; const IntVector edge_nodes = topology->getEdgeNodes(); for (IntVector::const_iterator s_iter = edge_nodes.begin(); s_iter != edge_nodes.end(); ++s_iter) { for (IntVector::const_iterator d_iter = edge_nodes.begin(); d_iter != edge_nodes.end(); ++d_iter) { if (*s_iter != *d_iter && !(f_src == *s_iter && f_dst == *d_iter)) { //PRINTLN("s: " << *s_iter << "\td: " << *d_iter << "\tn: " << n); //n++; // complete network with current ingress-egress pair sprintf(network[1],"n %d s", *s_iter); sprintf(network[2],"n %d t", *d_iter); // needed by maxflow function node *ndp; arc *arp; long *cap; double mflow; long nmin; //compute maxflow //Timer t; //t.start(); maxflow(network,&ndp,&arp,&cap,&mflow,&nmin); //PRINTLN("\tTimer: " << t.read()); // update link weights for (node* in = ndp; in < (ndp + number_of_nodes); ++in) { for (arc* a = in->first; a != 0; a = a->next) { long ni = N_NODE(in); long na = N_ARC(a); if ( cap[na] > 0 ) { Link* link = topology->link(ni, N_NODE(a->head)); link->metric +=(cap[na] - a->r_cap) / (mflow*link->getReservableCapacity()); } // end: if ( cap[na] > 0 ) } // end: for ( arc* } // end: for (node* // free memory free(ndp); free(arp); free(cap); } // end: if ( (source } // end: for (int dest } // end: for (int source //PRINTLN("Timer: " << timemaxflow.read() << "\tn:" << n); // free memory for (int i=0; i<numarcs+3; ++i) { free(network[i]); } free(network); double f_cap = flow.getRequestedCapacity(); // pruning of the links with insufficient bandwidth for (LinkListIterator iter = topology->getLinkIterator(); iter(); ++iter) { if ((*iter)->getReservableCapacity() < f_cap) { (*iter)->metric = -1.0; } } // invoking Dijkstra Path result(routing_alg->compute(flow)); #ifndef NO_TIMER const_cast<Flow&>(flow).setTime(timer.read()); #endif // NO_TIMER TRACE("NewMIRAAlgorithm::compute <--"); return result; }