예제 #1
0
//-----------------------------------------------------------------------------
void AssemblerBase::check(const Form& a)
{
    dolfin_assert(a.ufc_form());

    // Check the form
    a.check();

    // Extract mesh and coefficients
    const Mesh& mesh = a.mesh();
    const std::vector<std::shared_ptr<const GenericFunction>>
            coefficients = a.coefficients();

    // Check that we get the correct number of coefficients
    if (coefficients.size() != a.num_coefficients())
    {
        dolfin_error("AssemblerBase.cpp",
                     "assemble form",
                     "Incorrect number of coefficients (got %d but expecting %d)",
                     coefficients.size(), a.num_coefficients());
    }

    // Check that all coefficients have valid value dimensions
    for (std::size_t i = 0; i < coefficients.size(); ++i)
    {
        if (!coefficients[i])
        {
            dolfin_error("AssemblerBase.cpp",
                         "assemble form",
                         "Coefficient number %d (\"%s\") has not been set",
                         i, a.coefficient_name(i).c_str());
        }

        // unique_ptr deletes its object when it exits its scope
        std::unique_ptr<ufc::finite_element>
        fe(a.ufc_form()->create_finite_element(i + a.rank()));

        // Checks out-commented since they only work for Functions, not
        // Expressions
        const std::size_t r = coefficients[i]->value_rank();
        const std::size_t fe_r = fe->value_rank();
        if (fe_r != r)
        {
            dolfin_error("AssemblerBase.cpp",
                         "assemble form",
                         "Invalid value rank for coefficient %d (got %d but expecting %d). \
You might have forgotten to specify the value rank correctly in an Expression subclass", i, r, fe_r);
        }

        for (std::size_t j = 0; j < r; ++j)
        {
            const std::size_t dim = coefficients[i]->value_dimension(j);
            const std::size_t fe_dim = fe->value_dimension(j);
            if (dim != fe_dim)
            {
                dolfin_error("AssemblerBase.cpp",
                             "assemble form",
                             "Invalid value dimension %d for coefficient %d (got %d but expecting %d). \
You might have forgotten to specify the value dimension correctly in an Expression subclass", j, i, dim, fe_dim);
            }
        }
예제 #2
0
//----------------------------------------------------------------------------
void OpenMpAssembler::assemble(GenericTensor& A, const Form& a)
{
  // Get mesh
  const Mesh& mesh = a.mesh();

  if (MPI::size(mesh.mpi_comm()) > 1)
  {
    dolfin_error("OpenMPAssembler.cpp",
                 "perform multithreaded assembly using OpenMP assembler",
                 "The OpenMp assembler has not been tested in combination with MPI");
  }

  dolfin_assert(a.ufc_form());

  // All assembler functions above end up calling this function, which
  // in turn calls the assembler functions below to assemble over
  // cells, exterior and interior facets. Note the importance of
  // treating empty mesh functions as null pointers for the PyDOLFIN
  // interface.

  // Get cell domains
  std::shared_ptr<const MeshFunction<std::size_t>> cell_domains
    = a.cell_domains();

  // Get exterior facet domains
  std::shared_ptr<const MeshFunction<std::size_t>> exterior_facet_domains
    = a.exterior_facet_domains();

  // Get interior facet domains
  std::shared_ptr<const MeshFunction<std::size_t>> interior_facet_domains
    = a.interior_facet_domains();

  // Check form
  AssemblerBase::check(a);

  // Create data structure for local assembly data
  UFC ufc(a);

  // Initialize global tensor
  init_global_tensor(A, a);

  // FIXME: The below selections should be made robust
  if (a.ufc_form()->has_interior_facet_integrals())
    assemble_interior_facets(A, a, ufc, interior_facet_domains, cell_domains, 0);

  if (a.ufc_form()->has_exterior_facet_integrals())
  {
    assemble_cells_and_exterior_facets(A, a, ufc, cell_domains,
                                       exterior_facet_domains, 0);
  }
  else
    assemble_cells(A, a, ufc, cell_domains, 0);

  // Finalize assembly of global tensor
  if (finalize_tensor)
    A.apply("add");
}
예제 #3
0
//-----------------------------------------------------------------------------
void AssemblerBase::init_global_tensor(GenericTensor& A, const Form& a)
{
    dolfin_assert(a.ufc_form());

    // Get dof maps
    std::vector<const GenericDofMap*> dofmaps;
    for (std::size_t i = 0; i < a.rank(); ++i)
        dofmaps.push_back(a.function_space(i)->dofmap().get());

    if (A.empty())
    {
        Timer t0("Build sparsity");

        // Create layout for initialising tensor
        std::shared_ptr<TensorLayout> tensor_layout;
        tensor_layout = A.factory().create_layout(a.rank());
        dolfin_assert(tensor_layout);

        // Get dimensions and mapping across processes for each dimension
        std::vector<std::shared_ptr<const IndexMap> > index_maps;
        for (std::size_t i = 0; i < a.rank(); i++)
        {
            dolfin_assert(dofmaps[i]);
            index_maps.push_back(dofmaps[i]->index_map());
        }

        // Initialise tensor layout
        // FIXME: somewhere need to check block sizes are same on both axes
        // NOTE: Jan: that will be done on the backend side; IndexMap will
        //            provide tabulate functions with arbitrary block size;
        //            moreover the functions will tabulate directly using a
        //            correct int type
        tensor_layout->init(a.mesh().mpi_comm(), index_maps,
                            TensorLayout::Ghosts::UNGHOSTED);

        // Build sparsity pattern if required
        if (tensor_layout->sparsity_pattern())
        {
            GenericSparsityPattern& pattern = *tensor_layout->sparsity_pattern();
            SparsityPatternBuilder::build(pattern,
                                          a.mesh(), dofmaps,
                                          a.ufc_form()->has_cell_integrals(),
                                          a.ufc_form()->has_interior_facet_integrals(),
                                          a.ufc_form()->has_exterior_facet_integrals(),
                                          a.ufc_form()->has_vertex_integrals(),
                                          keep_diagonal);
        }
        t0.stop();

        // Initialize tensor
        Timer t1("Init tensor");
        A.init(*tensor_layout);
        t1.stop();

        // Insert zeros on the diagonal as diagonal entries may be
        // prematurely optimised away by the linear algebra backend when
        // calling GenericMatrix::apply, e.g. PETSc does this then errors
        // when matrices have no diagonal entry inserted.
        if (A.rank() == 2 && keep_diagonal)
        {
            // Down cast to GenericMatrix
            GenericMatrix& _matA = A.down_cast<GenericMatrix>();

            // Loop over rows and insert 0.0 on the diagonal
            const double block = 0.0;
            const std::pair<std::size_t, std::size_t> row_range = A.local_range(0);
            const std::size_t range = std::min(row_range.second, A.size(1));
            for (std::size_t i = row_range.first; i < range; i++)
            {
                dolfin::la_index _i = i;
                _matA.set(&block, 1, &_i, 1, &_i);
            }
            A.apply("flush");
        }

        // Delete sparsity pattern
        Timer t2("Delete sparsity");
        t2.stop();
    }
    else
    {
        // If tensor is not reset, check that dimensions are correct
        for (std::size_t i = 0; i < a.rank(); ++i)
        {
            if (A.size(i) != dofmaps[i]->global_dimension())
            {
                dolfin_error("AssemblerBase.cpp",
                             "assemble form",
                             "Dim %d of tensor does not match form", i);
            }
        }
    }

    if (!add_values)
        A.zero();
}
예제 #4
0
//-----------------------------------------------------------------------------
void AssemblerBase::init_global_tensor(GenericTensor& A, const Form& a)
{
  dolfin_assert(a.ufc_form());

  // Get dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < a.rank(); ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  if (A.size(0) == 0)
  {
    Timer t0("Build sparsity");

    // Create layout for initialising tensor
    std::shared_ptr<TensorLayout> tensor_layout;
    tensor_layout = A.factory().create_layout(a.rank());
    dolfin_assert(tensor_layout);

    // Get dimensions
    std::vector<std::size_t> global_dimensions;
    std::vector<std::pair<std::size_t, std::size_t> > local_range;
    std::vector<std::size_t> block_sizes;
    for (std::size_t i = 0; i < a.rank(); i++)
    {
      dolfin_assert(dofmaps[i]);
      global_dimensions.push_back(dofmaps[i]->global_dimension());
      local_range.push_back(dofmaps[i]->ownership_range());
      block_sizes.push_back(dofmaps[i]->block_size);
    }

    // Set block size for sparsity graphs
    std::size_t block_size = 1;
    if (a.rank() == 2)
    {
      const std::vector<std::size_t> _bs(a.rank(), dofmaps[0]->block_size);
      block_size = (block_sizes == _bs) ? dofmaps[0]->block_size : 1;
    }

    // Initialise tensor layout
    tensor_layout->init(a.mesh().mpi_comm(), global_dimensions, block_size,
                        local_range);

    // Build sparsity pattern if required
    if (tensor_layout->sparsity_pattern())
    {
      GenericSparsityPattern& pattern = *tensor_layout->sparsity_pattern();
      SparsityPatternBuilder::build(pattern,
                                a.mesh(), dofmaps,
                                a.ufc_form()->has_cell_integrals(),
                                a.ufc_form()->has_interior_facet_integrals(),
                                a.ufc_form()->has_exterior_facet_integrals(),
                                keep_diagonal);
    }
    t0.stop();

    // Initialize tensor
    Timer t1("Init tensor");
    A.init(*tensor_layout);
    t1.stop();

    // Insert zeros on the diagonal as diagonal entries may be prematurely
    // optimised away by the linear algebra backend when calling
    // GenericMatrix::apply, e.g. PETSc does this then errors when matrices
    // have no diagonal entry inserted.
    if (A.rank() == 2 && keep_diagonal)
    {
      // Down cast to GenericMatrix
      GenericMatrix& _A = A.down_cast<GenericMatrix>();

      // Loop over rows and insert 0.0 on the diagonal
      const double block = 0.0;
      const std::pair<std::size_t, std::size_t> row_range = A.local_range(0);
      const std::size_t range = std::min(row_range.second, A.size(1));
      for (std::size_t i = row_range.first; i < range; i++)
      {
        dolfin::la_index _i = i;
        _A.set(&block, 1, &_i, 1, &_i);
      }
      A.apply("flush");
    }

    // Delete sparsity pattern
    Timer t2("Delete sparsity");
    t2.stop();
  }
  else
  {
    // If tensor is not reset, check that dimensions are correct
    for (std::size_t i = 0; i < a.rank(); ++i)
    {
      if (A.size(i) != dofmaps[i]->global_dimension())
      {
        dolfin_error("AssemblerBase.cpp",
                     "assemble form",
                     "Reset of tensor in assembly not requested, but dim %d of tensor does not match form", i);
      }
    }
  }

  if (!add_values)
    A.zero();
}
예제 #5
0
//-----------------------------------------------------------------------------
void Assembler::assemble_vertices(
  GenericTensor& A,
  const Form& a,
  UFC& ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> domains)
{
  // Skip assembly if there are no point integrals
  if (!ufc.form.has_vertex_integrals())
    return;

  // Set timer
  Timer timer("Assemble vertices");

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // Compute cell and vertex - cell connectivity if not already
  // computed
  const std::size_t D = mesh.topology().dim();
  mesh.init(0);
  mesh.init(0, D);
  dolfin_assert(mesh.ordered());

  // Logics for shared vertices
  const bool has_shared_vertices = mesh.topology().have_shared_entities(0);
  const std::map<unsigned int, std::set<unsigned int>>&
    shared_vertices = mesh.topology().shared_entities(0);

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps(form_rank);

  // Create a vector for storying local to local map for vertex entity
  // dofs
  std::vector<std::vector<std::size_t>> local_to_local_dofs(form_rank);

  // Create a values vector to be used to fan out local tabulated
  // values to the global tensor
  std::vector<double> local_values(1);

  // Vector to hold local dof map for a vertex
  std::vector<std::vector<dolfin::la_index>> global_dofs(form_rank);
  std::vector<ArrayView<const dolfin::la_index>> global_dofs_p(form_rank);
  std::vector<dolfin::la_index> local_dof_size(form_rank);
  for (std::size_t i = 0; i < form_rank; ++i)
  {
    dofmaps[i] = a.function_space(i)->dofmap().get();

    // Check that the test and trial space as dofs on the vertices
    if (dofmaps[i]->num_entity_dofs(0) == 0)
    {
      dolfin_error("Assembler.cpp",
                   "assemble form over vertices",
                   "Expecting test and trial spaces to have dofs on "\
                   "vertices for point integrals");
    }

    // Check that the test and trial spaces do not have dofs other
    // than on vertices
    for (std::size_t j = 1; j <= D; j++)
    {
      if (dofmaps[i]->num_entity_dofs(j)!=0)
      {
        dolfin_error("Assembler.cpp",
                     "assemble form over vertices",
                     "Expecting test and trial spaces to only have dofs on " \
                     "vertices for point integrals");
      }
    }

    // Resize local values so it can hold dofs on one vertex
    local_values.resize(local_values.size()*dofmaps[i]->num_entity_dofs(0));

    // Resize local to local map according to the number of vertex
    // entities dofs
    local_to_local_dofs[i].resize(dofmaps[i]->num_entity_dofs(0));

    // Resize local dof map vector
    global_dofs[i].resize(dofmaps[i]->num_entity_dofs(0));

    // Get size of local dofs
    local_dof_size[i] = dofmaps[i]->ownership_range().second
      - dofmaps[i]->ownership_range().first;

    // Get pointer to global dofs
    global_dofs_p[i].set(global_dofs[i]);
  }

  // Vector to hold dof map for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // Exterior point integral
  const ufc::vertex_integral* integral
    = ufc.default_vertex_integral.get();

  // Check whether integral is domain-dependent
  bool use_domains = domains && !domains->empty();

  // MPI rank
  const unsigned int my_mpi_rank = MPI::rank(mesh.mpi_comm());

  // Assemble over vertices
  ufc::cell ufc_cell;
  std::vector<double> coordinate_dofs;
  Progress p(AssemblerBase::progress_message(A.rank(), "vertices"),
             mesh.num_vertices());
  for (VertexIterator vert(mesh); !vert.end(); ++vert)
  {
    // Get integral for sub domain (if any)
    if (use_domains)
      integral = ufc.get_vertex_integral((*domains)[*vert]);

    // Skip integral if zero
    if (!integral)
      continue;

    // Check if assembling a scalar and a vertex is shared
    if (form_rank == 0 && has_shared_vertices)
    {
      // Find shared processes for this global vertex
      std::map<unsigned int, std::set<unsigned int>>::const_iterator e;
      e = shared_vertices.find(vert->index());

      // If vertex is shared and this rank is not the lowest do not
      // include the contribution from this vertex to scalar sum
      if (e != shared_vertices.end())
      {
        bool skip_vertex = false;
        std::set<unsigned int>::const_iterator it;
        for (it = e->second.begin(); it != e->second.end(); it++)
        {
          // Check if a shared vertex has a lower process rank
          if (*it < my_mpi_rank)
          {
            skip_vertex = true;
            break;
          }
        }

        if (skip_vertex)
          continue;
      }
    }

    // Get mesh cell to which mesh vertex belongs (pick first)
    Cell mesh_cell(mesh, vert->entities(D)[0]);

    // Check that cell is not a ghost
    dolfin_assert(!mesh_cell.is_ghost());

    // Get local index of vertex with respect to the cell
    const std::size_t local_vertex = mesh_cell.index(*vert);

    // Update UFC cell
    mesh_cell.get_cell_data(ufc_cell);
    mesh_cell.get_coordinate_dofs(coordinate_dofs);

    // Update UFC object
    ufc.update(mesh_cell, coordinate_dofs, ufc_cell,
               integral->enabled_coefficients());

    // Tabulate vertex tensor
    integral->tabulate_tensor(ufc.A.data(),
                              ufc.w(),
                              coordinate_dofs.data(),
                              local_vertex,
                              ufc_cell.orientation);

    // For rank 1 and 2 tensors we need to check if tabulated dofs for
    // the test space is within the local range
    bool owns_all_dofs = true;
    for (std::size_t i = 0; i < form_rank; ++i)
    {
      // Get local-to-global dof maps for cell
      dofs[i] = dofmaps[i]->cell_dofs(mesh_cell.index());

      // Get local dofs of the local vertex
      dofmaps[i]->tabulate_entity_dofs(local_to_local_dofs[i], 0, local_vertex);

      // Copy cell dofs to local dofs and check owner ship range
      for (std::size_t j = 0; j < local_to_local_dofs[i].size(); ++j)
      {
        global_dofs[i][j] = dofs[i][local_to_local_dofs[i][j]];

        // It is the dofs for the test space that determines if a dof
        // is owned by a process, therefore i==0
        if (i == 0 && global_dofs[i][j] >= local_dof_size[i])
        {
          owns_all_dofs = false;
          break;
        }
      }
    }

    // If not owning all dofs
    if (!owns_all_dofs)
      continue;

    // Scalar
    if (form_rank == 0)
    {
      // Add entries to global tensor
      A.add_local(ufc.A.data(), dofs);
    }
    else if (form_rank == 1)
    {
      // Copy tabulated tensor to local value vector
      for (std::size_t i = 0; i < local_to_local_dofs[0].size(); ++i)
        local_values[i] = ufc.A[local_to_local_dofs[0][i]];

      // Add local entries to global tensor
      A.add_local(local_values.data(), global_dofs_p);
    }
    else
    {
      // Copy tabulated tensor to local value vector
      const std::size_t num_cols = dofs[1].size();
      for (std::size_t i = 0; i < local_to_local_dofs[0].size(); ++i)
      {
        for (std::size_t j = 0; j < local_to_local_dofs[1].size(); ++j)
        {
          local_values[i*local_to_local_dofs[1].size() + j]
            = ufc.A[local_to_local_dofs[0][i]*num_cols
                    + local_to_local_dofs[1][j]];
        }
      }

      // Add local entries to global tensor
      A.add_local(local_values.data(), global_dofs_p);
    }

    p++;
  }
}
예제 #6
0
//-----------------------------------------------------------------------------
void Assembler::assemble_interior_facets(
  GenericTensor& A,
  const Form& a,
  UFC& ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> domains,
  std::shared_ptr<const MeshFunction<std::size_t>> cell_domains,
  std::vector<double>* values)
{
  // Skip assembly if there are no interior facet integrals
  if (!ufc.form.has_interior_facet_integrals())
    return;

  // Set timer
  Timer timer("Assemble interior facets");

  // Extract mesh and coefficients
  const Mesh& mesh = a.mesh();

  // MPI rank
  const int my_mpi_rank = MPI::rank(mesh.mpi_comm());

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dofs for cells, and a vector holding pointers to same
  std::vector<std::vector<dolfin::la_index>> macro_dofs(form_rank);
  std::vector<ArrayView<const dolfin::la_index>> macro_dof_ptrs(form_rank);

  // Interior facet integral
  const ufc::interior_facet_integral* integral
    = ufc.default_interior_facet_integral.get();

  // Check whether integral is domain-dependent
  bool use_domains = domains && !domains->empty();
  bool use_cell_domains = cell_domains && !cell_domains->empty();

  // Compute facets and facet - cell connectivity if not already computed
  const std::size_t D = mesh.topology().dim();
  mesh.init(D - 1);
  mesh.init(D - 1, D);
  dolfin_assert(mesh.ordered());

  // Assemble over interior facets (the facets of the mesh)
  ufc::cell ufc_cell[2];
  std::vector<double> coordinate_dofs[2];
  Progress p(AssemblerBase::progress_message(A.rank(), "interior facets"),
             mesh.num_facets());
  for (FacetIterator facet(mesh); !facet.end(); ++facet)
  {
    if (facet->num_entities(D) == 1)
      continue;

    // Check that facet is not a ghost
    dolfin_assert(!facet->is_ghost());

    // Get integral for sub domain (if any)
    if (use_domains)
      integral = ufc.get_interior_facet_integral((*domains)[*facet]);

    // Skip integral if zero
    if (!integral)
      continue;

    // Get cells incident with facet (which is 0 and 1 here is arbitrary)
    dolfin_assert(facet->num_entities(D) == 2);
    std::size_t cell_index_plus = facet->entities(D)[0];
    std::size_t cell_index_minus = facet->entities(D)[1];

    if (use_cell_domains && (*cell_domains)[cell_index_plus]
        < (*cell_domains)[cell_index_minus])
    {
      std::swap(cell_index_plus, cell_index_minus);
    }

    // The convention '+' = 0, '-' = 1 is from ffc
    const Cell cell0(mesh, cell_index_plus);
    const Cell cell1(mesh, cell_index_minus);

    // Get local index of facet with respect to each cell
    std::size_t local_facet0 = cell0.index(*facet);
    std::size_t local_facet1 = cell1.index(*facet);

    // Update to current pair of cells
    cell0.get_cell_data(ufc_cell[0], local_facet0);
    cell0.get_coordinate_dofs(coordinate_dofs[0]);
    cell1.get_cell_data(ufc_cell[1], local_facet1);
    cell1.get_coordinate_dofs(coordinate_dofs[1]);

    ufc.update(cell0, coordinate_dofs[0], ufc_cell[0],
               cell1, coordinate_dofs[1], ufc_cell[1],
               integral->enabled_coefficients());

    // Tabulate dofs for each dimension on macro element
    for (std::size_t i = 0; i < form_rank; i++)
    {
      // Get dofs for each cell
      const ArrayView<const dolfin::la_index> cell_dofs0
        = dofmaps[i]->cell_dofs(cell0.index());
      const ArrayView<const dolfin::la_index> cell_dofs1
        = dofmaps[i]->cell_dofs(cell1.index());

      // Create space in macro dof vector
      macro_dofs[i].resize(cell_dofs0.size() + cell_dofs1.size());

      // Copy cell dofs into macro dof vector
      std::copy(cell_dofs0.data(), cell_dofs0.data() + cell_dofs0.size(),
                macro_dofs[i].begin());
      std::copy(cell_dofs1.data(), cell_dofs1.data() + cell_dofs1.size(),
                macro_dofs[i].begin() + cell_dofs0.size());
      macro_dof_ptrs[i].set(macro_dofs[i]);
    }

    // Tabulate interior facet tensor on macro element
    integral->tabulate_tensor(ufc.macro_A.data(),
                              ufc.macro_w(),
                              coordinate_dofs[0].data(),
                              coordinate_dofs[1].data(),
                              local_facet0,
                              local_facet1,
                              ufc_cell[0].orientation,
                              ufc_cell[1].orientation);

    if (cell0.is_ghost() != cell1.is_ghost())
    {
      int ghost_rank = -1;
      if (cell0.is_ghost())
        ghost_rank = cell0.owner();
      else
        ghost_rank = cell1.owner();

      dolfin_assert(my_mpi_rank != ghost_rank);
      dolfin_assert(ghost_rank != -1);
      if (ghost_rank < my_mpi_rank)
        continue;
    }

    // Add entries to global tensor
    A.add_local(ufc.macro_A.data(), macro_dof_ptrs);

    p++;
  }
}
예제 #7
0
//-----------------------------------------------------------------------------
void Assembler::assemble_exterior_facets(
  GenericTensor& A,
  const Form& a,
  UFC& ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> domains,
  std::vector<double>* values)
{
  // Skip assembly if there are no exterior facet integrals
  if (!ufc.form.has_exterior_facet_integrals())
    return;

  // Set timer
  Timer timer("Assemble exterior facets");

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // Exterior facet integral
  const ufc::exterior_facet_integral* integral
    = ufc.default_exterior_facet_integral.get();

  // Check whether integral is domain-dependent
  bool use_domains = domains && !domains->empty();

  // Compute facets and facet - cell connectivity if not already computed
  const std::size_t D = mesh.topology().dim();
  mesh.init(D - 1);
  mesh.init(D - 1, D);
  dolfin_assert(mesh.ordered());

  // Assemble over exterior facets (the cells of the boundary)
  ufc::cell ufc_cell;
  std::vector<double> coordinate_dofs;
  Progress p(AssemblerBase::progress_message(A.rank(), "exterior facets"),
             mesh.num_facets());
  for (FacetIterator facet(mesh); !facet.end(); ++facet)
  {
    // Only consider exterior facets
    if (!facet->exterior())
    {
      p++;
      continue;
    }

    // Get integral for sub domain (if any)
    if (use_domains)
      integral = ufc.get_exterior_facet_integral((*domains)[*facet]);

    // Skip integral if zero
    if (!integral)
      continue;

    // Get mesh cell to which mesh facet belongs (pick first, there is
    // only one)
    dolfin_assert(facet->num_entities(D) == 1);
    Cell mesh_cell(mesh, facet->entities(D)[0]);

    // Check that cell is not a ghost
    dolfin_assert(!mesh_cell.is_ghost());

    // Get local index of facet with respect to the cell
    const std::size_t local_facet = mesh_cell.index(*facet);

    // Update UFC cell
    mesh_cell.get_cell_data(ufc_cell, local_facet);
    mesh_cell.get_coordinate_dofs(coordinate_dofs);

    // Update UFC object
    ufc.update(mesh_cell, coordinate_dofs, ufc_cell,
               integral->enabled_coefficients());

    // Get local-to-global dof maps for cell
    for (std::size_t i = 0; i < form_rank; ++i)
      dofs[i] = dofmaps[i]->cell_dofs(mesh_cell.index());

    // Tabulate exterior facet tensor
    integral->tabulate_tensor(ufc.A.data(),
                              ufc.w(),
                              coordinate_dofs.data(),
                              local_facet,
                              ufc_cell.orientation);

    // Add entries to global tensor
    A.add_local(ufc.A.data(), dofs);

    p++;
  }
}
예제 #8
0
//-----------------------------------------------------------------------------
void Assembler::assemble_cells(
  GenericTensor& A,
  const Form& a,
  UFC& ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> domains,
  std::vector<double>* values)
{
  // Skip assembly if there are no cell integrals
  if (!ufc.form.has_cell_integrals())
    return;

  // Set timer
  Timer timer("Assemble cells");

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Check if form is a functional
  const bool is_cell_functional = (values && form_rank == 0) ? true : false;

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // Cell integral
  ufc::cell_integral* integral = ufc.default_cell_integral.get();

  // Check whether integral is domain-dependent
  bool use_domains = domains && !domains->empty();

  // Assemble over cells
  ufc::cell ufc_cell;
  std::vector<double> coordinate_dofs;
  Progress p(AssemblerBase::progress_message(A.rank(), "cells"),
             mesh.num_cells());
  for (CellIterator cell(mesh); !cell.end(); ++cell)
  {
    // Get integral for sub domain (if any)
    if (use_domains)
      integral = ufc.get_cell_integral((*domains)[*cell]);

    // Skip if no integral on current domain
    if (!integral)
      continue;

    // Check that cell is not a ghost
    dolfin_assert(!cell->is_ghost());

    // Update to current cell
    cell->get_cell_data(ufc_cell);
    cell->get_coordinate_dofs(coordinate_dofs);
    ufc.update(*cell, coordinate_dofs, ufc_cell,
               integral->enabled_coefficients());

    // Get local-to-global dof maps for cell
    bool empty_dofmap = false;
    for (std::size_t i = 0; i < form_rank; ++i)
    {
      dofs[i] = dofmaps[i]->cell_dofs(cell->index());
      empty_dofmap = empty_dofmap || dofs[i].size() == 0;
    }

    // Skip if at least one dofmap is empty
    if (empty_dofmap)
      continue;

    // Tabulate cell tensor
    integral->tabulate_tensor(ufc.A.data(), ufc.w(),
                              coordinate_dofs.data(),
                              ufc_cell.orientation);

    // Add entries to global tensor. Either store values cell-by-cell
    // (currently only available for functionals)
    if (is_cell_functional)
      (*values)[cell->index()] = ufc.A[0];
    else
      A.add_local(ufc.A.data(), dofs);

    p++;
  }
}
예제 #9
0
//-----------------------------------------------------------------------------
void OpenMpAssembler::assemble_interior_facets(
  GenericTensor& A,
  const Form& a, UFC& _ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> domains,
  std::shared_ptr<const MeshFunction<std::size_t>> cell_domains,
  std::vector<double>* values)
{
  warning("OpenMpAssembler::assemble_interior_facets is untested.");

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // Topological dimension
  const std::size_t D = mesh.topology().dim();

  dolfin_assert(!values);

  // Skip assembly if there are no interior facet integrals
  if (!_ufc.form.has_interior_facet_integrals())
    return;

  Timer timer("Assemble interior facets");

  // Set number of OpenMP threads (from parameter systems)
  omp_set_num_threads(parameters["num_threads"]);

  // Get integral for sub domain (if any)

  bool use_domains = domains && !domains->empty();
  bool use_cell_domains = cell_domains && !cell_domains->empty();
  if (use_domains)
  {
    dolfin_error("OpenMPAssembler.cpp",
                 "perform multithreaded assembly using OpenMP assembler",
                 "Subdomains are not yet handled");
  }

  // Color mesh
  std::vector<std::size_t> coloring_type = a.coloring(D - 1);
  mesh.color(coloring_type);

  // Dummy UFC object since each thread needs to created its own UFC object
  UFC ufc(_ufc);

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dofs for cells
  std::vector<std::vector<dolfin::la_index>> macro_dofs(form_rank);

  // Interior facet integral
  const ufc::interior_facet_integral* integral
    = ufc.default_interior_facet_integral.get();

  // Compute facets and facet - cell connectivity if not already computed
  mesh.init(D - 1);
  mesh.init(D - 1, D);
  dolfin_assert(mesh.ordered());

  // Get coloring data
  std::map<const std::vector<std::size_t>,
           std::pair<std::vector<std::size_t>,
                     std::vector<std::vector<std::size_t>>>>::const_iterator
    mesh_coloring;
  mesh_coloring = mesh.topology().coloring.find(coloring_type);

  // Check that requested coloring has been computed
  if (mesh_coloring == mesh.topology().coloring.end())
  {
    dolfin_error("OpenMPAssembler.cpp",
                 "perform multithreaded assembly using OpenMP assembler",
                 "Requested mesh coloring has not been computed");
  }

  // Get coloring data
  const std::vector<std::vector<std::size_t>>& entities_of_color
    = mesh_coloring->second.second;

  // UFC cells and vertex coordinates
  ufc::cell ufc_cell0, ufc_cell1;
  std::vector<double> vertex_coordinates0, vertex_coordinates1;

  // Assemble over interior facets (loop over colours, then cells of same color)
  const std::size_t num_colors = entities_of_color.size();
  for (std::size_t color = 0; color < num_colors; ++color)
  {
    // Get the array of facet indices of current color
    const std::vector<std::size_t>& colored_facets = entities_of_color[color];

    // Number of facets of current color
    const int num_facets = colored_facets.size();

    // OpenMP test loop over cells of the same color
    Progress p(AssemblerBase::progress_message(A.rank(), "interior facets"),
               mesh.num_facets());
#pragma omp parallel for schedule(guided, 20) firstprivate(ufc, ufc_cell0, ufc_cell1, vertex_coordinates0, vertex_coordinates1, macro_dofs, integral)
    for (int facet_index = 0; facet_index < num_facets; ++facet_index)
    {
      // Facet index
      const std::size_t index = colored_facets[facet_index];

      // Create cell
      const Facet facet(mesh, index);

      // Only consider interior facets
      if (facet.exterior())
      {
        p++;
        continue;
      }

      // Get integral for sub domain (if any)
      if (use_domains)
        integral = ufc.get_interior_facet_integral((*domains)[facet]);

      // Skip integral if zero
      if (!integral)
        continue;

      // Get cells incident with facet (which is 0 and 1 here is arbitrary)
      dolfin_assert(facet.num_entities(D) == 2);
      std::size_t cell_index_plus = facet.entities(D)[0];
      std::size_t cell_index_minus = facet.entities(D)[1];

      if (use_cell_domains && (*cell_domains)[cell_index_plus] < (*cell_domains)[cell_index_minus])
        std::swap(cell_index_plus, cell_index_minus);

      // The convention '+' = 0, '-' = 1 is from ffc
      const Cell cell0(mesh, cell_index_plus);
      const Cell cell1(mesh, cell_index_minus);

      // Get local index of facet with respect to each cell
      const std::size_t local_facet0 = cell0.index(facet);
      const std::size_t local_facet1 = cell1.index(facet);

      // Update UFC cell
      cell0.get_vertex_coordinates(vertex_coordinates0);
      cell0.get_cell_data(ufc_cell0, local_facet0);
      cell1.get_vertex_coordinates(vertex_coordinates1);
      cell1.get_cell_data(ufc_cell1, local_facet1);

      // Update to current pair of cells
      ufc.update(cell0, vertex_coordinates0, ufc_cell0,
                 cell1, vertex_coordinates1, ufc_cell1,
                 integral->enabled_coefficients());

      // Tabulate dofs for each dimension on macro element
      for (std::size_t i = 0; i < form_rank; i++)
      {
        // Get dofs for each cell
        const ArrayView<const dolfin::la_index> cell_dofs0
          = dofmaps[i]->cell_dofs(cell0.index());
        const ArrayView<const dolfin::la_index> cell_dofs1
          = dofmaps[i]->cell_dofs(cell1.index());

        // Create space in macro dof vector
        macro_dofs[i].resize(cell_dofs0.size() + cell_dofs1.size());

        // Copy cell dofs into macro dof vector
        std::copy(cell_dofs0.begin(), cell_dofs0.end(), macro_dofs[i].begin());
        std::copy(cell_dofs1.begin(), cell_dofs1.end(),
                  macro_dofs[i].begin() + cell_dofs0.size());
      }

      // Tabulate exterior interior facet tensor on macro element
      integral->tabulate_tensor(ufc.macro_A.data(),
                                ufc.macro_w(),
                                vertex_coordinates0.data(),
                                vertex_coordinates1.data(),
                                local_facet0,
                                local_facet1,
                                ufc_cell0.orientation,
                                ufc_cell1.orientation);

      // Add entries to global tensor
      std::vector<ArrayView<const la_index>>
        macro_dofs_p(macro_dofs.size());
      for (std::size_t i = 0; i < macro_dofs.size(); ++i)
        macro_dofs_p[i].set(macro_dofs[i]);
      A.add_local(ufc.macro_A.data(), macro_dofs_p);

      p++;
    }
  }
}
예제 #10
0
//-----------------------------------------------------------------------------
void OpenMpAssembler::assemble_cells_and_exterior_facets(
  GenericTensor& A,
  const Form& a, UFC& _ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> cell_domains,
  std::shared_ptr<const MeshFunction<std::size_t>> exterior_facet_domains,
  std::vector<double>* values)
{
  Timer timer("Assemble cells and exterior facets");

  // Set number of OpenMP threads (from parameter systems)
  const int num_threads = parameters["num_threads"];
  omp_set_num_threads(num_threads);

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // Compute facets and facet - cell connectivity if not already computed
  const std::size_t D = mesh.topology().dim();
  mesh.init(D - 1);
  mesh.init(D - 1, D);
  dolfin_assert(mesh.ordered());

  // Get connectivity
  const MeshConnectivity& connectivity = mesh.topology()(D, D - 1);
  dolfin_assert(!connectivity.empty());

  // Dummy UFC object since each thread needs to created its own UFC object
  UFC ufc(_ufc);

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Cell and facet integrals
  ufc::cell_integral* cell_integral = ufc.default_cell_integral.get();
  ufc::exterior_facet_integral* facet_integral
    = ufc.default_exterior_facet_integral.get();

  // Check whether integrals are domain-dependent
  bool use_cell_domains = cell_domains && !cell_domains->empty();
  bool use_exterior_facet_domains
    = exterior_facet_domains && !exterior_facet_domains->empty();

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof maps for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // FIXME: Pass or determine coloring type
  // Define graph type
  std::vector<std::size_t> coloring_type = a.coloring(mesh.topology().dim());
  mesh.color(coloring_type);

  // Get coloring data
  std::map<const std::vector<std::size_t>,
           std::pair<std::vector<std::size_t>,
                     std::vector<std::vector<std::size_t>>>>::const_iterator
    mesh_coloring;
  mesh_coloring = mesh.topology().coloring.find(coloring_type);
  if (mesh_coloring == mesh.topology().coloring.end())
  {
    dolfin_error("OpenMPAssembler.cpp",
                 "perform multithreaded assembly using OpenMP assembler",
                 "Requested mesh coloring has not been computed");
  }

  // Get coloring data
  const std::vector<std::vector<std::size_t>>& entities_of_color
  = mesh_coloring->second.second;

  // If assembling a scalar we need to ensure each threads assemble
  // its own scalar
  std::vector<double> scalars(num_threads, 0.0);

  // UFC cell and vertex coordinates
  ufc::cell ufc_cell;
  std::vector<double> vertex_coordinates;

  // Assemble over cells (loop over colors, then cells of same color)
  const std::size_t num_colors = entities_of_color.size();
  for (std::size_t color = 0; color < num_colors; ++color)
  {
    // Get the array of cell indices of current color
    const std::vector<std::size_t>& colored_cells = entities_of_color[color];

    // Number of cells of current color
    const int num_cell_in_color = colored_cells.size();

    // OpenMP test loop over cells of the same color
    Progress p(AssemblerBase::progress_message(A.rank(), "cells"), num_colors);
#pragma omp parallel for schedule(guided, 20) firstprivate(ufc, ufc_cell, vertex_coordinates, dofs, cell_integral, facet_integral)
    for (int index = 0; index < num_cell_in_color; ++index)
    {
      // Cell index
      const std::size_t cell_index = colored_cells[index];

      // Create cell
      const Cell cell(mesh, cell_index);

      // Get integral for sub domain (if any)
      if (use_cell_domains)
        cell_integral = ufc.get_cell_integral((*cell_domains)[cell_index]);

      // Update to current cell
      cell.get_cell_data(ufc_cell);
      cell.get_vertex_coordinates(vertex_coordinates);

      // Get local-to-global dof maps for cell
      for (std::size_t i = 0; i < form_rank; ++i)
        dofs[i] = dofmaps[i]->cell_dofs(cell_index);

      // Get number of entries in cell tensor
      std::size_t dim = 1;
      for (std::size_t i = 0; i < form_rank; ++i)
        dim *= dofs[i].size();

      // Tabulate cell tensor if we have a cell_integral
      if (cell_integral)
      {
        ufc.update(cell, vertex_coordinates, ufc_cell,
                   cell_integral->enabled_coefficients());
        cell_integral->tabulate_tensor(ufc.A.data(),
                                       ufc.w(),
                                       vertex_coordinates.data(),
                                       ufc_cell.orientation);
      }
      else
        std::fill(ufc.A.begin(), ufc.A.end(), 0.0);

      // Assemble over external facet
      for (FacetIterator facet(cell); !facet.end(); ++facet)
      {
        // Only consider exterior facets
        if (!facet->exterior())
        {
          p++;
          continue;
        }

        // Get local facet index
        const std::size_t local_facet = cell.index(*facet);

        // Get integral for sub domain (if any)
        if (use_exterior_facet_domains)
        {
          // Get global facet index
          const std::size_t facet_index = connectivity(cell_index)[local_facet];
          facet_integral = ufc.get_exterior_facet_integral((*exterior_facet_domains)[facet_index]);
        }

        // Skip integral if zero
        if (!facet_integral)
          continue;

        // FIXME: Do we really need an update version with the local
        //        facet index?
        // Update UFC object
        ufc_cell.local_facet = local_facet;
        ufc.update(cell, vertex_coordinates, ufc_cell,
                  facet_integral->enabled_coefficients());

        // Tabulate tensor
        facet_integral->tabulate_tensor(ufc.A_facet.data(),
                                        ufc.w(),
                                        vertex_coordinates.data(),
                                        local_facet,
                                        ufc_cell.orientation);

        // Add facet contribution
        for (std::size_t i = 0; i < dim; ++i)
          ufc.A[i] += ufc.A_facet[i];
      }

      // Add entries to global tensor
      if (values && form_rank == 0)
        (*values)[cell_index] = ufc.A[0];
      else if (form_rank == 0)
        scalars[omp_get_thread_num()] += ufc.A[0];
      else
        A.add_local(&ufc.A[0], dofs);
    }

    p++;
  }

  // If we assemble a scalar we need to sum the contributions from each thread
  if (form_rank == 0)
  {
    const double scalar_sum = std::accumulate(scalars.begin(),
                                              scalars.end(), 0.0);
    A.add_local(&scalar_sum, dofs);
  }
}
예제 #11
0
//-----------------------------------------------------------------------------
void OpenMpAssembler::assemble_cells(
  GenericTensor& A, const Form& a,
  UFC& _ufc,
  std::shared_ptr<const MeshFunction<std::size_t>> domains,
  std::vector<double>* values)
{
  // Skip assembly if there are no cell integrals
  if (!_ufc.form.has_cell_integrals())
    return;

  Timer timer("Assemble cells");

  // Set number of OpenMP threads (from parameter systems)
  const std::size_t num_threads = parameters["num_threads"];
  omp_set_num_threads(num_threads);

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // FIXME: Check that UFC copy constructor is dealing with copying
  // pointers correctly
  // Dummy UFC object since each thread needs to created its own UFC object
  UFC ufc(_ufc);

  // Form rank
  const std::size_t form_rank = ufc.form.rank();

  // Cell integral
  const ufc::cell_integral* integral = ufc.default_cell_integral.get();

  // Check whether integral is domain-dependent
  bool use_domains = domains && !domains->empty();

  // Collect pointers to dof maps
  std::vector<const GenericDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; ++i)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // Color mesh
  std::vector<std::size_t> coloring_type = a.coloring(mesh.topology().dim());
  mesh.color(coloring_type);

  // Get coloring data
  std::map<const std::vector<std::size_t>,
           std::pair<std::vector<std::size_t>,
                     std::vector<std::vector<std::size_t>>>>::const_iterator
    mesh_coloring;
  mesh_coloring = mesh.topology().coloring.find(coloring_type);
  if (mesh_coloring == mesh.topology().coloring.end())
  {
    dolfin_error("OpenMPAssembler.cpp",
                 "perform multithreaded assembly using OpenMP assembler",
                 "Requested mesh coloring has not been computed");
  }

  // Get coloring data
  const std::vector<std::vector<std::size_t>>& entities_of_color
    = mesh_coloring->second.second;

  // If assembling a scalar we need to ensure each threads assemble
  // its own scalar
  std::vector<double> scalars(num_threads, 0.0);

  // Assemble over cells (loop over colours, then cells of same color)
  const std::size_t num_colors = entities_of_color.size();
  Progress p("Assembling cells (threaded)", num_colors);
  for (std::size_t color = 0; color < num_colors; ++color)
  {
    // Get the array of cell indices of current color
    const std::vector<std::size_t>& colored_cells = entities_of_color[color];

    // Number of cells of current color
    const int num_cells = colored_cells.size();

    ufc::cell ufc_cell;
    std::vector<double> vertex_coordinates;

    // OpenMP test loop over cells of the same color
#pragma omp parallel for schedule(guided, 20) firstprivate(ufc, ufc_cell, vertex_coordinates, dofs, integral)
    for (int cell_index = 0; cell_index < num_cells; ++cell_index)
    {
      // Cell index
      const std::size_t index = colored_cells[cell_index];

      // Create cell
      const Cell cell(mesh, index);

      // Get integral for sub domain (if any)
      if (use_domains)
        integral = ufc.get_cell_integral((*domains)[cell]);

      // Skip integral if zero
      if (!integral)
        continue;

      // Update to current cell
      cell.get_cell_data(ufc_cell);
      cell.get_vertex_coordinates(vertex_coordinates);
      ufc.update(cell, vertex_coordinates, ufc_cell,
                 integral->enabled_coefficients());

      // Get local-to-global dof maps for cell
      for (std::size_t i = 0; i < form_rank; ++i)
        dofs[i] = dofmaps[i]->cell_dofs(index);

      // Tabulate cell tensor
      integral->tabulate_tensor(ufc.A.data(),
                                ufc.w(),
                                vertex_coordinates.data(),
                                ufc_cell.orientation);

      // Add entries to global tensor
      if (values && form_rank == 0)
        (*values)[cell_index] = ufc.A[0];
      else if (form_rank == 0)
        scalars[omp_get_thread_num()] += ufc.A[0];
      else
        A.add_local(ufc.A.data(), dofs);
    }
    p++;
  }

  // If we assemble a scalar we need to sum the contributions from each thread
  if (form_rank == 0)
  {
    const double scalar_sum = std::accumulate(scalars.begin(), scalars.end(),
                                              0.0);
    A.add_local(&scalar_sum, dofs);
  }
}
예제 #12
0
//----------------------------------------------------------------------------
void LocalSolver::solve(GenericVector& x, const Form& a, const Form& L,
                        bool symmetric) const
{
  UFC ufc_a(a);
  UFC ufc_L(L);

  // Set timer
  Timer timer("Local solver");

  // Extract mesh
  const Mesh& mesh = a.mesh();

  // Form ranks
  const std::size_t rank_a = ufc_a.form.rank();
  const std::size_t rank_L = ufc_L.form.rank();

  // Check form ranks
  dolfin_assert(rank_a == 2);
  dolfin_assert(rank_L == 1);

  // Collect pointers to dof maps
  std::shared_ptr<const GenericDofMap> dofmap_a0
    = a.function_space(0)->dofmap();
  std::shared_ptr<const GenericDofMap> dofmap_a1
    = a.function_space(1)->dofmap();
  std::shared_ptr<const GenericDofMap> dofmap_L
    = a.function_space(0)->dofmap();
  dolfin_assert(dofmap_a0);
  dolfin_assert(dofmap_a1);
  dolfin_assert(dofmap_L);

  // Initialise vector
  if (x.empty())
  {
    std::pair<std::size_t, std::size_t> local_range
      = dofmap_L->ownership_range();
    x.init(mesh.mpi_comm(), local_range);
  }

  // Cell integrals
  ufc::cell_integral* integral_a = ufc_a.default_cell_integral.get();
  ufc::cell_integral* integral_L = ufc_L.default_cell_integral.get();

  // Eigen data structures
  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> A;
  Eigen::VectorXd b, x_local;

  // Assemble over cells
  Progress p("Performing local (cell-wise) solve", mesh.num_cells());
  ufc::cell ufc_cell;
  std::vector<double> vertex_coordinates;
  for (CellIterator cell(mesh); !cell.end(); ++cell)
  {
    // Update to current cell
    cell->get_vertex_coordinates(vertex_coordinates);
    cell->get_cell_data(ufc_cell);
    ufc_a.update(*cell, vertex_coordinates, ufc_cell,
                 integral_a->enabled_coefficients());
    ufc_L.update(*cell, vertex_coordinates, ufc_cell,
                 integral_L->enabled_coefficients());

    // Get local-to-global dof maps for cell
    const std::vector<dolfin::la_index>& dofs_a0
      = dofmap_a0->cell_dofs(cell->index());
    const std::vector<dolfin::la_index>& dofs_a1
      = dofmap_a1->cell_dofs(cell->index());
    const std::vector<dolfin::la_index>& dofs_L
      = dofmap_L->cell_dofs(cell->index());

    // Check that local problem is square and a and L match
    dolfin_assert(dofs_a0.size() == dofs_a1.size());
    dolfin_assert(dofs_a1.size() == dofs_L.size());

    // Resize A and b
    A.resize(dofs_a0.size(), dofs_a1.size());
    b.resize(dofs_L.size());

    // Tabulate A and b on cell
    integral_a->tabulate_tensor(A.data(),
                                ufc_a.w(),
                                vertex_coordinates.data(),
                                ufc_cell.orientation);
    integral_L->tabulate_tensor(b.data(),
                                ufc_L.w(),
                                vertex_coordinates.data(),
                                ufc_cell.orientation);

    // Solve local problem
    x_local = A.partialPivLu().solve(b);

    // Set solution in global vector
    x.set(x_local.data(), dofs_a0.size(), dofs_a0.data());

    p++;
  }

  // Finalise vector
  x.apply("insert");
}