/***********************************************************************//** * @brief Test binned observation handling ***************************************************************************/ void TestGCTAObservation::test_binned_obs(void) { // Set filenames const std::string file1 = "test_cta_obs_binned.xml"; // Declare observations GObservations obs; GCTAObservation run; // Load binned CTA observation test_try("Load unbinned CTA observation"); try { run.load_binned(cta_cntmap); run.response(cta_irf,cta_caldb); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Test XML loading test_try("Test XML loading"); try { obs = GObservations(cta_bin_xml); obs.save(file1); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Exit test return; }
/***********************************************************************//** * @brief Save counts map(s) in XML format. * * Save the counts map(s) into FITS files and write the file path information * into a XML file. The filename of the XML file is specified by the * m_outfile member, the filename(s) of the counts map(s) are built by * prepending the prefix given by the m_prefix member to the input counts * map(s) filenames. Any path present in the input filename will be stripped, * i.e. the counts map(s) will be written in the local working directory * (unless a path is specified in the m_prefix member). ***************************************************************************/ void ctbin::save_xml(void) { // Get output filename and prefix m_outfile = (*this)["outfile"].filename(); m_prefix = (*this)["prefix"].string(); // Loop over all observation in the container for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(&m_obs[i]); // Handle only CTA observations if (obs != NULL) { // Set event output file name std::string outfile = set_outfile_name(m_infiles[i]); // Store output file name in observation obs->eventfile(outfile); // Save event list save_counts_map(obs, outfile); } // endif: observation was a CTA observations } // endfor: looped over observations // Save observations in XML file m_obs.save(m_outfile); // Return return; }
/***********************************************************************//** * @brief Save counts cube * * This method saves the counts cube into a FITS file. ***************************************************************************/ void ctbin::save(void) { // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Save observations"); } else { log.header1("Save observation"); } } // Get output filename m_outcube = (*this)["outcube"].filename(); // Get CTA observation from observation container GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[0]); // Save only if observation is valid if (obs != NULL) { obs->save(m_outcube, clobber()); } // Return return; }
/***********************************************************************//** * @brief Generate the model map(s) * * This method reads the task parameters from the parfile, sets up the * observation container, loops over all CTA observations in the container * and generates a PSF cube from the CTA observations. ***************************************************************************/ void ctpsfcube::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Generate PSF cube"); } // Fill PSF m_psfcube.fill(m_obs); // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Test unbinned optimizer ***************************************************************************/ void TestGCTAOptimize::test_unbinned_optimizer(void) { // Declare observations GObservations obs; GCTAObservation run; // Load unbinned CTA observation test_try("Load unbinned CTA observation"); try { run.load_unbinned(cta_events); run.response(cta_irf,cta_caldb); obs.append(run); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Load models from XML file obs.models(cta_model_xml); // Perform LM optimization double fit_results[] = {83.6331, 0, 22.0145, 0, 5.656246512e-16, 1.91458426e-17, -2.484100472, -0.02573396361, 300000, 0, 1, 0, 2.993705325, 0.03572658413, 6.490832107e-05, 1.749021094e-06, -1.833584022, -0.01512223495, 1000000, 0, 1, 0}; test_try("Perform LM optimization"); try { GOptimizerLM opt; opt.max_iter(100); obs.optimize(opt); test_try_success(); for (int i = 0, j = 0; i < obs.models().size(); ++i) { GModel* model = obs.models()[i]; for (int k = 0; k < model->size(); ++k) { GModelPar& par = (*model)[k]; std::string msg = "Verify optimization result for " + par.print(); test_value(par.real_value(), fit_results[j++], 5.0e-5, msg); test_value(par.real_error(), fit_results[j++], 5.0e-5, msg); } } } catch (std::exception &e) { test_try_failure(e); } // Exit test return; }
/***********************************************************************//** * @brief Test binned optimizer ***************************************************************************/ void TestGCTAOptimize::test_binned_optimizer(void) { // Declare observations GObservations obs; GCTAObservation run; // Load binned CTA observation test_try("Load binned CTA observation"); try { run.load_binned(cta_cntmap); run.response(cta_irf,cta_caldb); obs.append(run); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Load models from XML file obs.models(cta_model_xml); // Perform LM optimization double fit_results[] = {83.6331, 0, 22.0145, 0, 5.616410411e-16, 1.904730785e-17, -2.481781246, -0.02580905077, 300000, 0, 1, 0, 2.933677595, 0.06639644824, 6.550723074e-05, 1.945714239e-06, -1.833781187, -0.0161464076, 1000000, 0, 1, 0}; test_try("Perform LM optimization"); try { GOptimizerLM opt; opt.max_iter(100); obs.optimize(opt); test_try_success(); for (int i = 0, j = 0; i < obs.models().size(); ++i) { GModel* model = obs.models()[i]; for (int k = 0; k < model->size(); ++k) { GModelPar& par = (*model)[k]; std::string msg = "Verify optimization result for " + par.print(); test_value(par.real_value(), fit_results[j++], 5.0e-5, msg); test_value(par.real_error(), fit_results[j++], 5.0e-5, msg); } } } catch (std::exception &e) { test_try_failure(e); } // Exit test return; }
/***********************************************************************//** * @brief Save event list(s) in XML format. * * Save the event list(s) into FITS files and write the file path information * into a XML file. The filename of the XML file is specified by the outfile * parameter, the filename(s) of the event lists are built by prepending a * prefix to the input event list filenames. Any path present in the input * filename will be stripped, i.e. the event list(s) will be written in the * local working directory (unless a path is specified in the prefix). ***************************************************************************/ void ctobssim::save_xml(void) { // Get output filename and prefix m_outevents = (*this)["outevents"].filename(); m_prefix = (*this)["prefix"].string(); // Issue warning if output filename has no .xml suffix std::string suffix = gammalib::tolower(m_outevents.substr(m_outevents.length()-4,4)); if (suffix != ".xml") { log << "*** WARNING: Name of observation definition output file \""+ m_outevents+"\"" << std::endl; log << "*** WARNING: does not terminate with \".xml\"." << std::endl; log << "*** WARNING: This is not an error, but might be misleading." " It is recommended" << std::endl; log << "*** WARNING: to use the suffix \".xml\" for observation" " definition files." << std::endl; } // Save only if event lists have not yet been saved and disposed if (!m_save_and_dispose) { // Loop over all observation in the container for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Handle only CTA observations if (obs != NULL) { // Continue only if there is an event list (it may have been disposed) if (obs->events()->size() != 0) { // Set event output file name std::string outfile = m_prefix + gammalib::str(i) + ".fits"; // Store output file name in observation obs->eventfile(outfile); // Save observation into FITS file obs->save(outfile, clobber()); } } // endif: observation was a CTA observations } // endfor: looped over observations } // endif: event list has not yet been saved and disposed // Save observations in XML file m_obs.save(m_outevents); // Return return; }
/***********************************************************************//** * @brief Save event list(s) in XML format. * * Save the event list(s) into FITS files and write the file path information * into a XML file. The filename of the XML file is specified by the outfile * parameter, the filename(s) of the event lists are built by prepending a * prefix to the input event list filenames. Any path present in the input * filename will be stripped, i.e. the event list(s) will be written in the * local working directory (unless a path is specified in the prefix). ***************************************************************************/ void ctobssim::save_xml(void) { // Get output filename and prefix m_outfile = (*this)["outfile"].filename(); m_prefix = (*this)["prefix"].string(); // Issue warning if output filename has no .xml suffix std::string suffix = gammalib::tolower(m_outfile.substr(m_outfile.length()-4,4)); if (suffix != ".xml") { log << "*** WARNING: Name of observation definition output file \""+ m_outfile+"\"" << std::endl; log << "*** WARNING: does not terminate with \".xml\"." << std::endl; log << "*** WARNING: This is not an error, but might be misleading." " It is recommended" << std::endl; log << "*** WARNING: to use the suffix \".xml\" for observation" " definition files." << std::endl; } // Initialise file number int file_num = 0; // Loop over all observation in the container for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Handle only CTA observations if (obs != NULL) { // Set event output file name std::string outfile = m_prefix + gammalib::str(file_num) + ".fits"; // Store output file name in observation obs->eventfile(outfile); // Save observation into FITS file obs->save(outfile, clobber()); // Increment file number file_num++; } // endif: observation was a CTA observations } // endfor: looped over observations // Save observations in XML file m_obs.save(m_outfile); // Return return; }
/***********************************************************************//** * @brief Save event list in FITS format. * * Save the event list as a FITS file. The filename of the FITS file is * specified by the outfile parameter. ***************************************************************************/ void ctobssim::save_fits(void) { // Get output filename m_outfile = (*this)["outfile"].filename(); // Get CTA observation from observation container GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[0]); // Save observation into FITS file obs->save(m_outfile, clobber()); // Return return; }
/***********************************************************************//** * @brief Test CTA Npred computation * * Tests the Npred computation for the diffuse source model. This is done * by loading the model from the XML file and by calling the * GCTAObservation::npred method which in turn calls the * GCTAResponse::npred_diffuse method. The test takes a few seconds. ***************************************************************************/ void TestGCTAResponse::test_response_npred_diffuse(void) { // Set reference value double ref = 11212.26274; // Set parameters double src_ra = 201.3651; double src_dec = -43.0191; double roi_rad = 4.0; // Setup ROI centred on Cen A with a radius of 4 deg GCTARoi roi; GCTAInstDir instDir; instDir.radec_deg(src_ra, src_dec); roi.centre(instDir); roi.radius(roi_rad); // Setup pointing on Cen A GSkyDir skyDir; skyDir.radec_deg(src_ra, src_dec); GCTAPointing pnt; pnt.dir(skyDir); // Setup dummy event list GGti gti; GEbounds ebounds; GTime tstart(0.0); GTime tstop(1800.0); GEnergy emin; GEnergy emax; emin.TeV(0.1); emax.TeV(100.0); gti.append(tstart, tstop); ebounds.append(emin, emax); GCTAEventList events; events.roi(roi); events.gti(gti); events.ebounds(ebounds); // Setup dummy CTA observation GCTAObservation obs; obs.ontime(1800.0); obs.livetime(1600.0); obs.deadc(1600.0/1800.0); obs.response(cta_irf, cta_caldb); obs.events(&events); obs.pointing(pnt); // Load models for Npred computation GModels models(cta_rsp_xml); // Perform Npred computation double npred = obs.npred(models, NULL); // Test Npred test_value(npred, ref, 1.0e-5, "Diffuse Npred computation"); // Return return; }
/***********************************************************************//** * @brief Save event list in FITS format. * * Save the event list as a FITS file. The filename of the FITS file is * specified by the outfile parameter. ***************************************************************************/ void ctobssim::save_fits(void) { // Save only if event list has not yet been saved and disposed if (!m_save_and_dispose) { // Get output filename m_outevents = (*this)["outevents"].filename(); // Get CTA observation from observation container GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[0]); // Save observation into FITS file obs->save(m_outevents, clobber()); } // endif: event list has not yet been saved and disposed // Return return; }
/***********************************************************************//** * @brief Set exposure cube from one CTA observation * * @param[in] obs CTA observation. * * Set the exposure cube from a single CTA observations. The cube pixel * values are computed as product of the effective area and the livetime. * * @todo: Throw an exception if response is not valid ***************************************************************************/ void GCTACubeExposure::set(const GCTAObservation& obs) { // Clear GTIs, reset livetime and exposure cube pixels m_gti.clear(); m_livetime = 0.0; m_cube = 0.0; // Extract region of interest from CTA observation GCTARoi roi = obs.roi(); // Get references on CTA response and pointing direction const GCTAResponseIrf* rsp = dynamic_cast<const GCTAResponseIrf*>(obs.response()); const GSkyDir& pnt = obs.pointing().dir(); // Continue only if response is valid if (rsp != NULL) { // Loop over all pixels in sky map for (int pixel = 0; pixel < m_cube.npix(); ++pixel) { // Get pixel sky direction GSkyDir dir = m_cube.inx2dir(pixel); // Continue only if pixel is within RoI if (roi.centre().dir().dist_deg(dir) <= roi.radius()) { // Compute theta angle with respect to pointing direction // in radians double theta = pnt.dist(dir); // Loop over all exposure cube energy bins for (int iebin = 0; iebin < m_ebounds.size(); ++iebin){ // Get logE/TeV double logE = m_ebounds.elogmean(iebin).log10TeV(); // Set exposure cube (effective area * lifetime) m_cube(pixel, iebin) = rsp->aeff(theta, 0.0, 0.0, 0.0, logE) * obs.livetime(); } // endfor: looped over energy bins } // endif: pixel was within RoI } // endfor: looped over all pixels // Append GTIs and increment livetime m_gti.extend(obs.gti()); m_livetime += obs.livetime(); } // endif: response was valid // Return return; }
/***********************************************************************//** * @brief Test unbinned observation handling ***************************************************************************/ void TestGCTAObservation::test_unbinned_obs(void) { // Set filenames const std::string file1 = "test_cta_obs_unbinned.xml"; // Declare observations GObservations obs; GCTAObservation run; // Load unbinned CTA observation test_try("Load unbinned CTA observation"); try { run.load_unbinned(cta_events); run.response(cta_irf,cta_caldb); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Add observation (twice) to data test_try("Load unbinned CTA observation"); try { obs.append(run); obs.append(run); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Loop over all events using iterators int num = 0; for (GObservations::iterator event = obs.begin(); event != obs.end(); ++event) { num++; } test_value(num, 8794, 1.0e-20, "Test observation iterator"); // Loop over all events using iterator num = 0; GCTAEventList *ptr = static_cast<GCTAEventList*>(const_cast<GEvents*>(run.events())); for (GCTAEventList::iterator event = ptr->begin(); event != ptr->end(); ++event) { num++; } test_value(num, 4397, 1.0e-20, "Test event iterator"); // Test XML loading test_try("Test XML loading"); try { obs = GObservations(cta_unbin_xml); obs.save(file1); test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Exit test return; }
/***********************************************************************//** * @brief Test CTA IRF computation for diffuse source model * * Tests the IRF computation for the diffuse source model. This is done * by calling the GCTAObservation::model method which in turn calls the * GCTAResponse::irf_diffuse method. The test is done for a small counts * map to keep the test executing reasonably fast. ***************************************************************************/ void TestGCTAResponse::test_response_irf_diffuse(void) { // Set reference value double ref = 13803.800313356; // Set parameters double src_ra = 201.3651; double src_dec = -43.0191; int nebins = 5; // Setup pointing on Cen A GSkyDir skyDir; skyDir.radec_deg(src_ra, src_dec); GCTAPointing pnt; pnt.dir(skyDir); // Setup skymap (10 energy layers) GSkymap map("CAR", "CEL", src_ra, src_dec, 0.5, 0.5, 10, 10, nebins); // Setup time interval GGti gti; GTime tstart(0.0); GTime tstop(1800.0); gti.append(tstart, tstop); // Setup energy boundaries GEbounds ebounds; GEnergy emin; GEnergy emax; emin.TeV(0.1); emax.TeV(100.0); ebounds.setlog(emin, emax, nebins); // Setup event cube centered on Cen A GCTAEventCube cube(map, ebounds, gti); // Setup dummy CTA observation GCTAObservation obs; obs.ontime(1800.0); obs.livetime(1600.0); obs.deadc(1600.0/1800.0); obs.response(cta_irf, cta_caldb); obs.events(&cube); obs.pointing(pnt); // Load model for IRF computation GModels models(cta_rsp_xml); // Reset sum double sum = 0.0; // Iterate over all bins in event cube for (int i = 0; i < obs.events()->size(); ++i) { // Get event pointer const GEventBin* bin = (*(static_cast<const GEventCube*>(obs.events())))[i]; // Get model and add to sum double model = obs.model(models, *bin, NULL) * bin->size(); sum += model; } // Test sum test_value(sum, ref, 1.0e-5, "Diffuse IRF computation"); // Return return; }
/***********************************************************************//** * @brief Computes ***************************************************************************/ void cterror::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Compute best-fit likelihood"); } // Optimize and save best log-likelihood m_obs.optimize(m_opt); m_obs.errors(m_opt); m_best_logL = m_obs.logL(); // Store optimizer for later recovery GOptimizerLM best_opt = m_opt; // Write optimised model into logger if (logTerse()) { log << m_opt << std::endl; log << gammalib::parformat("Maximum log likelihood"); log << gammalib::str(m_best_logL,3) << std::endl; log << m_obs.models() << std::endl; } // Continue only if source model exists if (m_obs.models().contains(m_srcname)) { // Save best fitting models GModels models_best = m_obs.models(); // Get pointer on model GModel* model = models_best[m_srcname]; // Get number of parameters int npars = model->size(); // Loop over parameters of sky model for (int i = 0; i < npars; ++i) { // Skip parameter if it is fixed if (model->at(i).is_fixed()) { continue; } // Initialise with best fitting models m_obs.models(models_best); // Get pointer on model parameter GModels& current_models = const_cast<GModels&>(m_obs.models()); m_model_par = &(current_models[m_srcname]->at(i)); // Extract current value m_value = m_model_par->factor_value(); // Compute parameter bracketing double parmin = std::max(m_model_par->factor_min(), m_value - 10.0*m_model_par->factor_error()); double parmax = std::min(m_model_par->factor_max(), m_value + 10.0*m_model_par->factor_error()); // Write header if (logTerse()) { log << std::endl; log.header1("Compute error for source \""+m_srcname+"\"" " parameter \""+m_model_par->name()+"\""); log << gammalib::parformat("Confidence level"); log << m_confidence*100.0 << "%" << std::endl; log << gammalib::parformat("Log-likelihood difference"); log << m_dlogL << std::endl; log << gammalib::parformat("Initial factor range"); log << "["; log << parmin; log << ", "; log << parmax; log << "]" << std::endl; } // Compute lower boundary double value_lo = error_bisection(parmin, m_value); // Write lower parameter value if (logTerse()) { log << gammalib::parformat("Lower parameter factor"); log << value_lo << std::endl; } // Compute upper boundary double value_hi = error_bisection(m_value, parmax); // Write upper parameter value if (logTerse()) { log << gammalib::parformat("Upper parameter factor"); log << value_hi << std::endl; } // Compute errors double error = 0.5 * (value_hi - value_lo); double error_neg = m_value - value_lo; double error_pos = value_hi - m_value; //double error_max = std::max(value_hi-m_value, m_value-value_lo); //double error_min = std::min(value_hi-m_value, m_value-value_lo); // Write errors if (logTerse()) { log << gammalib::parformat("Error from curvature"); log << m_model_par->error(); log << " " << m_model_par->unit() << std::endl; log << gammalib::parformat("Error from profile"); log << std::abs(error*m_model_par->scale()); log << " " << m_model_par->unit() << std::endl; log << gammalib::parformat("Negative profile error"); log << std::abs(error_neg*m_model_par->scale()); log << " " << m_model_par->unit() << std::endl; log << gammalib::parformat("Positive profile error"); log << std::abs(error_pos*m_model_par->scale()); log << " " << m_model_par->unit() << std::endl; } // Save error result model->at(i).factor_error(error); } // endfor: looped over spectral parameters // Restore best fitting models (now with new errors computed) m_obs.models(models_best); } // endif: source model exists // Recover optimizer m_opt = best_opt; // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Simulate event data * * This method runs the simulation. Results are not saved by this method. * Invoke "save" to save the results. ***************************************************************************/ void ctobssim::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write input parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Special mode: if read ahead is specified we know that we called // the execute() method, hence files are saved immediately and event // lists are disposed afterwards. if (read_ahead()) { m_save_and_dispose = true; } // Determine the number of valid CTA observations, set energy dispersion flag // for all CTA observations and save old values in save_edisp vector int n_observations = 0; std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); n_observations++; } } // If more than a single observation has been handled then make sure that // an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Write execution mode into logger if (logTerse()) { log << std::endl; log.header1("Execution mode"); log << gammalib::parformat("Event list management"); if (m_save_and_dispose) { log << "Save and dispose (reduces memory needs)" << std::endl; } else { log << "Keep events in memory" << std::endl; } log << gammalib::parformat("Output format"); if (m_use_xml) { log << "Write Observation Definition XML file" << std::endl; } else { log << "Write single event list FITS file" << std::endl; } } // Write seed values into logger if (logTerse()) { log << std::endl; log.header1("Seed values"); for (int i = 0; i < m_rans.size(); ++i) { log << gammalib::parformat("Seed "+gammalib::str(i)); log << gammalib::str(m_rans[i].seed()) << std::endl; } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Simulate observations"); } else { log.header1("Simulate observation"); } } // From here on the code can be parallelized if OpenMP support // is enabled. The code in the following block corresponds to the // code that will be executed in each thread #pragma omp parallel { // Each thread will have it's own logger to avoid conflicts GLog wrklog; if (logDebug()) { wrklog.cout(true); } // Allocate and initialize copies for multi-threading GModels models(m_obs.models()); // Copy configuration from application logger to thread logger wrklog.date(log.date()); wrklog.name(log.name()); // Set a big value to avoid flushing wrklog.max_size(10000000); // Loop over all observation in the container. If OpenMP support // is enabled, this loop will be parallelized. #pragma omp for for (int i = 0; i < m_obs.size(); ++i) { // Get pointer on CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { wrklog.header3("Observation "+obs->name()); } else { wrklog.header3("Observation"); } } // Work on a clone of the CTA observation. This makes sure that // any memory allocated for computing (for example a response // cache) is properly de-allocated on exit of this run GCTAObservation obs_clone = *obs; // Save number of events before entering simulation int events_before = obs_clone.events()->size(); // Simulate source events simulate_source(&obs_clone, models, m_rans[i], &wrklog); // Simulate source events simulate_background(&obs_clone, models, m_rans[i], &wrklog); // Dump simulation results if (logNormal()) { wrklog << gammalib::parformat("MC events"); wrklog << obs_clone.events()->size() - events_before; wrklog << " (all models)"; wrklog << std::endl; } // Append the event list to the original observation obs->events(*(obs_clone.events())); // If requested, event lists are saved immediately if (m_save_and_dispose) { // Set event output file name. If multiple observations are // handled, build the filename from prefix and observation // index. Otherwise use the outfile parameter. std::string outfile; if (m_use_xml) { m_prefix = (*this)["prefix"].string(); outfile = m_prefix + gammalib::str(i) + ".fits"; } else { outfile = (*this)["outevents"].filename(); } // Store output file name in original observation obs->eventfile(outfile); // Save observation into FITS file. This is a critical zone // to avoid multiple threads writing simultaneously #pragma omp critical { obs_clone.save(outfile, clobber()); } // Dispose events obs->dispose_events(); } // ... otherwise append the event list to the original observation /* else { obs->events(*(obs_clone.events())); } */ } // endif: CTA observation found } // endfor: looped over observations // At the end, the content of the thread logger is added to // the application logger #pragma omp critical (log) { log << wrklog; } } // end pragma omp parallel // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Create output observation container. * * Creates an output observation container that combines all input CTA * observation into a single cube-style observation. All non CTA observations * present in the observation container are kept. The method furthermore * conserves any response information in case that a single CTA observation * is provided. This supports the original binned analysis. ***************************************************************************/ void ctbin::obs_cube(void) { // If we have only a single CTA observation in the container, then // keep that observation and just attach the event cube to it. Reset // the filename, otherwise we still will have the old event filename // in the log file. if (m_obs.size() == 1) { // Attach event cube to CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[0]); if (obs != NULL) { obs->events(this->cube()); obs->eventfile(""); } } // ... otherwise put a single CTA observation in container else { // Allocate observation container GObservations container; // Allocate CTA observation. GCTAObservation obs; // Attach event cube to CTA observation obs.events(this->cube()); // Set map centre as pointing GSkyPixel pixel(0.5*double(m_cube.nx()), 0.5*double(m_cube.ny())); GSkyDir centre = m_cube.pix2dir(pixel); GCTAPointing pointing(centre); // Compute deadtime correction double deadc = (m_ontime > 0.0) ? m_livetime / m_ontime : 0.0; // Set CTA observation attributes obs.pointing(pointing); obs.obs_id(0); obs.ra_obj(centre.ra_deg()); //!< Dummy obs.dec_obj(centre.dec_deg()); //!< Dummy obs.ontime(m_ontime); obs.livetime(m_livetime); obs.deadc(deadc); // Set models in observation container container.models(m_obs.models()); // Append CTA observation container.append(obs); // Copy over all remaining non-CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs == NULL) { container.append(*m_obs[i]); } } // Set observation container m_obs = container; } // endelse: there was not a single CTA observation // Return return; }
/***********************************************************************//** * @brief Get application parameters * * Get all task parameters from parameter file or (if required) by querying * the user. Times are assumed to be in the native CTA MJD format. * * This method also loads observations if no observations are yet allocated. * Observations are either loaded from a single CTA even list, or from a * XML file using the metadata information that is stored in that file. ***************************************************************************/ void ctselect::get_parameters(void) { // If there are no observations in container then add a single CTA // observation using the parameters from the parameter file if (m_obs.size() == 0) { // Get CTA event list file name m_infile = (*this)["infile"].filename(); // Allocate CTA observation GCTAObservation obs; // Try first to open as FITS file try { // Load event list in CTA observation obs.load_unbinned(m_infile); // Append CTA observation to container m_obs.append(obs); // Signal that no XML file should be used for storage m_use_xml = false; } // ... otherwise try to open as XML file catch (GException::fits_open_error &e) { // Load observations from XML file m_obs.load(m_infile); // Signal that XML file should be used for storage m_use_xml = true; } } // endif: there was no observation in the container // Get parameters m_usepnt = (*this)["usepnt"].boolean(); if (!m_usepnt) { m_ra = (*this)["ra"].real(); m_dec = (*this)["dec"].real(); } m_rad = (*this)["rad"].real(); m_tmin = (*this)["tmin"].real(); m_tmax = (*this)["tmax"].real(); m_emin = (*this)["emin"].real(); m_emax = (*this)["emax"].real(); m_expr = (*this)["expr"].string(); // Optionally read ahead parameters so that they get correctly // dumped into the log file if (m_read_ahead) { m_outfile = (*this)["outfile"].filename(); m_prefix = (*this)["prefix"].string(); } // Set time interval with input times given in CTA reference // time (in seconds) m_timemin.set(m_tmin, m_cta_ref); m_timemax.set(m_tmax, m_cta_ref); // Return return; }
/***********************************************************************//** * @brief Get application parameters * * Get all task parameters from parameter file or (if required) by querying * the user. Most parameters are only required if no observation exists so * far in the observation container. In this case, a single CTA observation * will be added to the container, using the definition provided in the * parameter file. ***************************************************************************/ void ctobssim::get_parameters(void) { // If there are no observations in container then add a single CTA // observation using the parameters from the parameter file if (m_obs.size() == 0) { // Get CTA observation parameters m_infile = (*this)["infile"].filename(); m_caldb = (*this)["caldb"].string(); m_irf = (*this)["irf"].string(); m_ra = (*this)["ra"].real(); m_dec = (*this)["dec"].real(); // Set pointing direction GCTAPointing pnt; GSkyDir skydir; skydir.radec_deg(m_ra, m_dec); pnt.dir(skydir); // Allocate CTA observation GCTAObservation obs; // Set calibration database. If specified parameter is a directory // then use this as the pathname to the calibration database. Other- // wise interpret this as the instrument name, the mission being // "cta" GCaldb caldb; if (gammalib::dir_exists(m_caldb)) { caldb.rootdir(m_caldb); } else { caldb.open("cta", m_caldb); } // Set CTA observation attributes obs.pointing(pnt); obs.response(m_irf, caldb); // Set event list (queries remaining parameters) set_list(&obs); // Append CTA observation to container m_obs.append(obs); // Load models into container m_obs.models(m_infile); // Signal that no XML file should be used for storage m_use_xml = false; } // endif: there was no observation in the container // ... otherwise we signal that an XML file should be written else { m_use_xml = true; } // Get other parameters m_seed = (*this)["seed"].integer(); // Optionally read ahead parameters so that they get correctly // dumped into the log file if (m_read_ahead) { m_outfile = (*this)["outfile"].filename(); m_prefix = (*this)["prefix"].string(); } // Initialise random number generators. We initialise here one random // number generator per observation so that each observation will // get it's own random number generator. This will lead to identical // results independently of code parallelization with OpenMP. The // seeds for all random number generators are derived randomly but // fully deterministacally from the seed parameter, so that a given // seed parameter leads always to the same set of simulated events, and // this independently of parallelization. // Get a random number generator for seed determination GRan master(m_seed); // Allocate vector of random number generator seeds std::vector<unsigned long long int> seeds; // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Allocate new seed value unsigned long long int new_seed; // Determine new seed value. We make sure that the new seed // value has not been used already for another observation. bool repeat = false; do { new_seed = (unsigned long long int)(master.uniform() * 1.0e10) + m_seed; repeat = false; for (int j = 0; j < seeds.size(); ++j) { if (new_seed == seeds[j]) { repeat = true; break; } } } while(repeat); // Add the seed to the vector for bookkeeping seeds.push_back(new_seed); // Use the seed to create a random number generator for the // actual observation m_rans.push_back(GRan(new_seed)); } // endfor: looped over observations // Return return; }
/***********************************************************************//** * @brief Simulate event data * * This method runs the simulation. Results are not saved by this method. * Invoke "save" to save the results. ***************************************************************************/ void ctobssim::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write input parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write seed values into logger if (logTerse()) { log << std::endl; log.header1("Seed values"); for (int i = 0; i < m_rans.size(); ++i) { log << gammalib::parformat("Seed "+gammalib::str(i)); log << gammalib::str(m_rans[i].seed()) << std::endl; } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Simulate observations"); } else { log.header1("Simulate observation"); } } // Initialise counters int n_observations = 0; // From here on the code can be parallelized if OpenMP support // is enabled. The code in the following block corresponds to the // code that will be executed in each thread #pragma omp parallel { // Each thread will have it's own logger to avoid conflicts GLog wrklog; if (logDebug()) { wrklog.cout(true); } // Copy configuration from application logger to thread logger wrklog.date(log.date()); wrklog.name(log.name()); // Set a big value to avoid flushing wrklog.max_size(10000000); // Loop over all observation in the container. If OpenMP support // is enabled, this looped will be parallelized. #pragma omp for for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { wrklog.header3("Observation "+obs->name()); } else { wrklog.header3("Observation"); } } // Increment counter n_observations++; // Save number of events before entering simulation int events_before = obs->events()->size(); // Simulate source events simulate_source(obs, m_obs.models(), m_rans[i], &wrklog); // Simulate source events simulate_background(obs, m_obs.models(), m_rans[i], &wrklog); // Dump simulation results if (logNormal()) { wrklog << gammalib::parformat("MC events"); wrklog << obs->events()->size() - events_before; wrklog << " (all models)"; wrklog << std::endl; } } // endif: CTA observation found } // endfor: looped over observations // At the end, the content of the thread logger is added to // the application logger #pragma omp critical (log) { log << wrklog; } } // end pragma omp parallel // If more than a single observation has been handled then make sure that // an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Return return; }
/***********************************************************************//** * @brief Get observation container * * Get an observation container according to the user parameters. The method * supports loading of a individual FITS file or an observation definition * file in XML format. * * If the input filename is empty, the method checks for the existence of the * "expcube", "psfcube" and "bkgcube" parameters. If file names have been * specified, the method loads the files and creates a dummy events cube that * is appended to the observation container. * * If no file names are specified for the "expcube", "psfcube" or "bkgcube" * parameters, the method reads the necessary parameters to build a CTA * observation from scratch. * * The method sets m_append_cube = true and m_binned = true in case that * a stacked observation is requested (as detected by the presence of the * "expcube", "psfcube", and "bkgcube" parameters). In that case, it appended * a dummy event cube to the observation. ***************************************************************************/ void ctmodel::get_obs(void) { // Get the filename from the input parameters std::string filename = (*this)["inobs"].filename(); // If no observation definition file has been specified then read all // parameters that are necessary to create an observation from scratch if ((filename == "NONE") || (gammalib::strip_whitespace(filename) == "")) { // Get response cube filenames std::string expcube = (*this)["expcube"].filename(); std::string psfcube = (*this)["psfcube"].filename(); std::string bkgcube = (*this)["bkgcube"].filename(); // If the filenames are valid then build an observation from cube // response information if ((expcube != "NONE") && (psfcube != "NONE") && (bkgcube != "NONE") && (gammalib::strip_whitespace(expcube) != "") && (gammalib::strip_whitespace(psfcube) != "") && (gammalib::strip_whitespace(bkgcube) != "")) { // Get exposure, PSF and background cubes GCTACubeExposure exposure(expcube); GCTACubePsf psf(psfcube); GCTACubeBackground background(bkgcube); // Create energy boundaries GEbounds ebounds = create_ebounds(); // Create dummy sky map cube GSkyMap map("CAR","GAL",0.0,0.0,1.0,1.0,1,1,ebounds.size()); // Create event cube GCTAEventCube cube(map, ebounds, exposure.gti()); // Create CTA observation GCTAObservation cta; cta.events(cube); cta.response(exposure, psf, background); // Append observation to container m_obs.append(cta); // Signal that we are in binned mode m_binned = true; // Signal that we appended a cube m_append_cube = true; } // endif: cube response information was available // ... otherwise build an observation from IRF response information else { // Create CTA observation GCTAObservation cta = create_cta_obs(); // Set response set_obs_response(&cta); // Append observation to container m_obs.append(cta); } } // endif: filename was "NONE" or "" // ... otherwise we have a file name else { // If file is a FITS file then create an empty CTA observation // and load file into observation if (gammalib::is_fits(filename)) { // Allocate empty CTA observation GCTAObservation cta; // Load data cta.load(filename); // Set response set_obs_response(&cta); // Append observation to container m_obs.append(cta); // Signal that no XML file should be used for storage m_use_xml = false; } // ... otherwise load file into observation container else { // Load observations from XML file m_obs.load(filename); // For all observations that have no response, set the response // from the task parameters set_response(m_obs); // Set observation boundary parameters (emin, emax, rad) set_obs_bounds(m_obs); // Signal that XML file should be used for storage m_use_xml = true; } // endelse: file was an XML file } // Return return; }
/***********************************************************************//** * @brief Select event data * * This method reads in the application parameters and loops over all * observations that were found to perform an event selection. Event * selection is done by writing each observation to a temporary file and * re-opening the temporary file using the cfitsio event filter syntax. * The temporary file is deleted after this action so that no disk overflow * will occur. ***************************************************************************/ void ctselect::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write observation(s) into logger if (logTerse()) { log << std::endl; log.header1("Observations before selection"); log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Event selection"); } // Initialise counters int n_observations = 0; // Loop over all observation in the container for (int i = 0; i < m_obs.size(); ++i) { // Initialise event input and output filenames m_infiles.push_back(""); // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(&m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { log.header3("Observation "+obs->name()); } else { log.header3("Observation"); } } // Increment counter n_observations++; // Save event file name (for possible saving) m_infiles[i] = obs->eventfile(); // Get temporary file name std::string filename = std::tmpnam(NULL); // Save observation in temporary file obs->save(filename, true); // Log saved FITS file if (logExplicit()) { GFits tmpfile(filename); log << std::endl; log.header1("FITS file content of temporary file"); log << tmpfile << std::endl; tmpfile.close(); } // Check temporary file std::string message = check_infile(filename); if (message.length() > 0) { throw GException::app_error(G_RUN, message); } // Load observation from temporary file, including event selection select_events(obs, filename); // Remove temporary file std::remove(filename.c_str()); } // endif: had a CTA observation } // endfor: looped over all observations // If more than a single observation has been handled then make sure that // an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Write observation(s) into logger if (logTerse()) { log << std::endl; log.header1("Observations after selection"); log << m_obs << std::endl; } // Return return; }
/***********************************************************************//** * @brief Setup observation container * * @exception GException::no_cube * No event cube found in CTA observation. * * This method sets up the observation container for processing. There are * two cases: * * If there are no observations in the actual observation container, the * method will check in "infile" parameter. If this parameter is "NONE" or * empty, the task parameters will be used to construct a model map. * Otherwise, the method first tries to interpret the "infile" parameter as * a counts map, and attemps loading of the file in an event cube. If this * fails, the method tries to interpret the "infile" parameter as an * observation definition XML file. If this also fails, an exception will * be thrown. * * If observations exist already in the observation container, the method * will simply keep them. * * Test if all CTA observations contain counts maps. * * Finally, if no models exist so far in the observation container, the * models will be loaded from the model XML file. ***************************************************************************/ void ctmodel::setup_obs(void) { // If there are no observations in the container then try to build some if (m_obs.size() == 0) { // If no input filename has been specified, then create a model map // from the task parameters if ((m_infile == "NONE") || (gammalib::strip_whitespace(m_infile) == "")) { // Set pointing direction GCTAPointing pnt; GSkyDir skydir; skydir.radec_deg(m_ra, m_dec); pnt.dir(skydir); // Setup energy range covered by model GEnergy emin(m_emin, "TeV"); GEnergy emax(m_emax, "TeV"); GEbounds ebds(m_enumbins, emin, emax); // Setup time interval covered by model GGti gti; GTime tmin(m_tmin); GTime tmax(m_tmax); gti.append(tmin, tmax); // Setup skymap GSkymap map = GSkymap(m_proj, m_coordsys, m_xref, m_yref, -m_binsz, m_binsz, m_nxpix, m_nypix, m_enumbins); // Create model cube from sky map GCTAEventCube cube(map, ebds, gti); // Allocate CTA observation GCTAObservation obs; // Set CTA observation attributes obs.pointing(pnt); obs.ontime(gti.ontime()); obs.livetime(gti.ontime()*m_deadc); obs.deadc(m_deadc); // Set event cube in observation obs.events(cube); // Append CTA observation to container m_obs.append(obs); // Signal that no XML file should be used for storage m_use_xml = false; } // endif: created model map from task parameters // ... otherwise try to load information from the file else { // First try to open the file as a counts map try { // Allocate CTA observation GCTAObservation obs; // Load counts map in CTA observation obs.load_binned(m_infile); // Append CTA observation to container m_obs.append(obs); // Signal that no XML file should be used for storage m_use_xml = false; } // ... otherwise try to open as XML file catch (GException::fits_open_error &e) { // Load observations from XML file. This will throw // an exception if it fails. m_obs.load(m_infile); // Signal that XML file should be used for storage m_use_xml = true; } } // endelse: loaded information from input file } // endif: there was no observation in the container // If there are no models associated with the observations then // load now the model definition from the XML file if (m_obs.models().size() == 0) { m_obs.models(GModels(m_srcmdl)); } // Check if all CTA observations contain an event cube and setup response // for all observations for (int i = 0; i < m_obs.size(); ++i) { // Is this observation a CTA observation? GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Yes ... if (obs != NULL) { // Throw an exception if this observation does not contain // an event cube if (dynamic_cast<const GCTAEventCube*>(obs->events()) == NULL) { throw GException::no_cube(G_SETUP_OBS); } // Set response if it isn't set already if (obs->response().aeff() == NULL) { // Set calibration database. If specified parameter is a // directory then use this as the pathname to the calibration // database. Otherwise interpret this as the instrument name, // the mission being "cta" GCaldb caldb; if (gammalib::dir_exists(m_caldb)) { caldb.rootdir(m_caldb); } else { caldb.open("cta", m_caldb); } // Set reponse obs->response(m_irf, caldb); } // endif: observation already has a response } // endif: observation was a CTA observation } // endfor: looped over all observations // Return return; }
/***********************************************************************//** * @brief Generate the model map(s) * * This method reads the task parameters from the parfile, sets up the * observation container, loops over all CTA observations in the container * and generates a model map for each CTA observation. ***************************************************************************/ void ctmodel::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Setup observation container setup_obs(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Generate model maps"); } else { log.header1("Generate model map"); } } // Initialise observation counter int n_observations = 0; // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Initialise event input and output filenames m_infiles.push_back(""); // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { log.header3("Observation "+obs->name()); } else { log.header3("Observation"); } } // Increment number of observations n_observations++; // Save event file name (for possible saving) m_infiles[i] = obs->eventfile(); // Generate model map model_map(obs, m_obs.models()); } // endif: CTA observation found } // endfor: looped over observations // If more than a single observation has been handled then make sure // that an XML file will be used for storage if (n_observations > 1) { m_use_xml = true; } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations after model map generation"); } else { log.header1("Observation after model map generation"); } log << m_obs << std::endl; } // Return return; }
/***********************************************************************//** * @brief Generate the model map(s) * * This method reads the task parameters from the parfile, sets up the * observation container, loops over all CTA observations in the container * and generates a model map for each CTA observation. ***************************************************************************/ void ctmodel::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write models into logger if (logTerse()) { log << std::endl; log.header1("Models"); log << m_obs.models() << std::endl; } // Write header if (logTerse()) { log << std::endl; log.header1("Generate model cube"); } // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Write header for observation if (logTerse()) { std::string header = m_obs[i]->instrument() + " observation"; if (m_obs[i]->name().length() > 1) { header += " \"" + m_obs[i]->name() + "\""; } if (m_obs[i]->id().length() > 1) { header += " (id=" + m_obs[i]->id() +")"; } log.header3(header); } // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Skip observation if it's not CTA if (obs == NULL) { if (logTerse()) { log << " Skipping "; log << m_obs[i]->instrument(); log << " observation" << std::endl; } continue; } // Fill cube and leave loop if we are binned mode (meaning we // only have one binned observation) if (m_binned) { fill_cube(obs); break; } // Skip observation if we have a binned observation if (obs->eventtype() == "CountsCube") { if (logTerse()) { log << " Skipping binned "; log << obs->instrument(); log << " observation" << std::endl; } continue; } // Fill the cube fill_cube(obs); // Dispose events to free memory if event file exists on disk if (obs->eventfile().length() > 0 && gammalib::file_exists(obs->eventfile())) { obs->dispose_events(); } } // endfor: looped over observations // Log cube if (logTerse()) { log << std::endl; log.header1("Model cube"); log << m_cube << std::endl; } // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Get application parameters * * Get all task parameters from parameter file or (if required) by querying * the user. Most parameters are only required if no observation exists so * far in the observation container. In this case, a single CTA observation * will be added to the container, using the definition provided in the * parameter file. ***************************************************************************/ void ctbin::get_parameters(void) { // If there are no observations in container then add a single CTA // observation using the parameters from the parameter file if (m_obs.size() == 0) { // Get name of CTA events file m_evfile = (*this)["evfile"].filename(); // Allocate CTA observation GCTAObservation obs; // Try first to open as FITS file try { // Load event list in CTA observation obs.load_unbinned(m_evfile); // Append CTA observation to container m_obs.append(obs); // Signal that no XML file should be used for storage m_use_xml = false; } // ... otherwise try to open as XML file catch (GException::fits_open_error &e) { // Load observations from XML file m_obs.load(m_evfile); // Signal that XML file should be used for storage m_use_xml = true; } // Use the xref and yref parameters for binning (otherwise the // pointing direction(s) is/are used) //m_xref = (*this)["xref"].real(); //m_yref = (*this)["yref"].real(); } // endif: there was no observation in the container // Get remaining parameters m_emin = (*this)["emin"].real(); m_emax = (*this)["emax"].real(); m_enumbins = (*this)["enumbins"].integer(); m_proj = (*this)["proj"].string(); m_coordsys = (*this)["coordsys"].string(); m_xref = (*this)["xref"].real(); m_yref = (*this)["yref"].real(); m_binsz = (*this)["binsz"].real(); m_nxpix = (*this)["nxpix"].integer(); m_nypix = (*this)["nypix"].integer(); // Optionally read ahead parameters so that they get correctly // dumped into the log file if (m_read_ahead) { m_outfile = (*this)["outfile"].filename(); m_prefix = (*this)["prefix"].string(); } // Return return; }
/***********************************************************************//** * @brief Get application parameters * * Get all task parameters from parameter file or (if required) by querying * the user. The parameters are read in the correct order. ***************************************************************************/ void ctmodel::get_parameters(void) { // Reset cube append flag m_append_cube = false; // If there are no observations in container then load them via user // parameters. if (m_obs.size() == 0) { get_obs(); } // If we have now excactly one CTA observation (but no cube has yet been // appended to the observation) then check whether this observation // is a binned observation, and if yes, extract the counts cube for // model generation if ((m_obs.size() == 1) && (m_append_cube == false)) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[0]); // Continue only if observation is a CTA observation if (obs != NULL) { // Check for binned observation if (obs->eventtype() == "CountsCube") { // Set cube from binned observation GCTAEventCube* evtcube = dynamic_cast<GCTAEventCube*>(const_cast<GEvents*>(obs->events())); cube(*evtcube); // Signal that cube has been set m_has_cube = true; // Signal that we are in binned mode m_binned = true; } // endif: observation was binned } // endif: observation was CTA } // endif: had exactly one observation // Read model definition file if required if (m_obs.models().size() == 0) { // Get model filename std::string inmodel = (*this)["inmodel"].filename(); // Load models from file m_obs.models(inmodel); } // endif: there were no models // Get energy dispersion flag parameters m_apply_edisp = (*this)["edisp"].boolean(); // If we do not have yet a counts cube for model computation then check // whether we should read it from the "incube" parameter or whether we // should create it from scratch using the task parameters if (!m_has_cube) { // Read cube definition file std::string incube = (*this)["incube"].filename(); // If no cube file has been specified then create a cube from // the task parameters ... if ((incube == "NONE") || (gammalib::strip_whitespace(incube) == "")) { // Create cube from scratch m_cube = create_cube(m_obs); } // ... otherwise load the cube from file and reset all bins // to zero else { // Load cube from given file m_cube.load(incube); // Set all cube bins to zero for (int i = 0; i < m_cube.size(); ++i) { m_cube[i]->counts(0.0); } } // Signal that cube has been set m_has_cube = true; } // endif: we had no cube yet // Read optionally output cube filenames if (read_ahead()) { m_outcube = (*this)["outcube"].filename(); } // If cube should be appended to first observation then do that now. // This is a kluge that makes sure that the cube is passed as part // of the observation in case that a cube response is used. The kluge // is needed because the GCTACubeSourceDiffuse::set method needs to // get the full event cube from the observation. It is also at this // step that the GTI, which may just be a dummy GTI when create_cube() // has been used, will be set. if (m_append_cube) { //TODO: Check that energy boundaries are compatible // Attach GTI of observations to model cube m_cube.gti(m_obs[0]->events()->gti()); // Attach model cube to observations m_obs[0]->events(m_cube); } // endif: cube was scheduled for appending // Return return; }
/***********************************************************************//** * @brief Run maximum likelihood analysis * * The following analysis steps are performed: * 1. Read the parameters (and write them into logger) * 2. Load observation * 3. Setup models for optimizing * 4. Optimize model (and write result into logger) ***************************************************************************/ void ctlike::run(void) { // Switch screen logging on in debug mode if (logDebug()) { log.cout(true); } // Get parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Set energy dispersion flag for all CTA observations and save old // values in save_edisp vector std::vector<bool> save_edisp; save_edisp.assign(m_obs.size(), false); for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { save_edisp[i] = obs->response()->apply_edisp(); obs->response()->apply_edisp(m_apply_edisp); } } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Optimize model parameters using LM optimizer optimize_lm(); // Store Npred double npred = m_obs.npred(); // Store models for which TS should be computed std::vector<std::string> ts_srcs; GModels models_orig = m_obs.models(); for (int i = 0; i < models_orig.size(); ++i) { GModel* model = models_orig[i]; if (model->tscalc()) { ts_srcs.push_back(model->name()); } } // Compute TS values if requested if (!ts_srcs.empty()) { // Store original maximum likelihood and models double logL_src = m_logL; GModels models = m_obs.models(); // Fix spatial parameters if requested if (m_fix_spat_for_ts) { // Loop over all models for (int i = 0; i < models.size(); ++i) { // Continue only if model is skymodel GModelSky* sky= dynamic_cast<GModelSky*>(models[i]); if (sky != NULL) { // Fix spatial parameters GModelSpatial* spatial = sky->spatial(); for (int j = 0; j < spatial->size(); j++) { (*spatial)[j].fix(); } // endfor: looped over spatial parameters } // endif: there was a sky model } // endfor: looped over models } // endif: spatial parameter should be fixed // Loop over stored models, remove source and refit for (int i = 0; i < ts_srcs.size(); ++i) { models.remove(ts_srcs[i]); m_obs.models(models); double logL_nosrc = reoptimize_lm(); double ts = 2.0 * (logL_src-logL_nosrc); models_orig[ts_srcs[i]]->ts(ts); models = models_orig; } // Restore best fit values m_obs.models(models_orig); } // Compute number of observed events in all observations double num_events = 0.0; for (int i = 0; i < m_obs.size(); ++i) { double data = m_obs[i]->events()->number(); if (data >= 0.0) { num_events += data; } } // Write results into logger if (logTerse()) { log << std::endl; log.header1("Maximum likelihood optimisation results"); log << *m_opt << std::endl; log << gammalib::parformat("Maximum log likelihood"); log << gammalib::str(m_logL,3) << std::endl; log << gammalib::parformat("Observed events (Nobs)"); log << gammalib::str(num_events, 3) << std::endl; log << gammalib::parformat("Predicted events (Npred)"); log << gammalib::str(npred, 3); log << " (Nobs - Npred = "; log << gammalib::str(num_events-npred); log << ")" << std::endl; log << m_obs.models() << std::endl; } // Restore energy dispersion flag for all CTA observations for (int i = 0; i < m_obs.size(); ++i) { GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); if (obs != NULL) { obs->response()->apply_edisp(save_edisp[i]); } } // Return return; }
/***********************************************************************//** * @brief Bin the event data * * This method loops over all observations found in the observation conatiner * and bins all events from the event list(s) into counts map(s). Note that * each event list is binned in a separate counts map, hence no summing of * events is done. ***************************************************************************/ void ctbin::run(void) { // If we're in debug mode then all output is also dumped on the screen if (logDebug()) { log.cout(true); } // Get task parameters get_parameters(); // Write parameters into logger if (logTerse()) { log_parameters(); log << std::endl; } // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Observations"); } else { log.header1("Observation"); } log << m_obs << std::endl; } // Write header if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Bin observations"); } else { log.header1("Bin observation"); } } // Loop over all observations in the container for (int i = 0; i < m_obs.size(); ++i) { // Get CTA observation GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]); // Continue only if observation is a CTA observation if (obs != NULL) { // Write header for observation if (logTerse()) { if (obs->name().length() > 1) { log.header3("Observation "+obs->name()); } else { log.header3("Observation"); } } // Fill the cube fill_cube(obs); // Dispose events to free memory obs->dispose_events(); } // endif: CTA observation found } // endfor: looped over observations // Set a single cube in the observation container obs_cube(); // Write observation(s) into logger if (logTerse()) { log << std::endl; if (m_obs.size() > 1) { log.header1("Binned observations"); } else { log.header1("Binned observation"); } log << m_obs << std::endl; } // Return return; }