예제 #1
0
파일: fiberedcs.C 프로젝트: xyuan/oofem
void
FiberedCrossSection :: giveGeneralizedStress_Beam3d(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
    double fiberThick, fiberWidth, fiberZCoord, fiberYCoord;
    FloatArray fiberStrain, fullStressVect, reducedFiberStress;
    StructuralElement *element = static_cast< StructuralElement * >( gp->giveElement() );
    FiberedCrossSectionInterface *interface;

    if ( ( interface = static_cast< FiberedCrossSectionInterface * >( element->giveInterface(FiberedCrossSectionInterfaceType) ) ) == NULL ) {
        OOFEM_ERROR("element with no fiber support encountered");
    }

    answer.resize(6);
    answer.zero();

    for ( int i = 1; i <= numberOfFibers; i++ ) {
        GaussPoint *fiberGp = this->giveSlaveGaussPoint(gp, i - 1);
        StructuralMaterial *fiberMat = static_cast< StructuralMaterial * >( domain->giveMaterial( fiberMaterials.at(i) ) );
        // the question is whether this function should exist ?
        // if yes the element details will be hidden.
        // good idea also should be existence of element::GiveBmatrixOfLayer
        // and computing strains here - but first idea looks better
        // but treating of geometric non-linearities may become more complicated
        // another approach - use several functions with assumed kinematic constraints

        // resolve current layer z-coordinate
        fiberThick  = this->fiberThicks.at(i);
        fiberWidth  = this->fiberWidths.at(i);
        fiberYCoord = fiberGp->giveCoordinate(1);
        fiberZCoord = fiberGp->giveCoordinate(2);

        interface->FiberedCrossSectionInterface_computeStrainVectorInFiber(fiberStrain, strain, fiberGp, tStep);

        fiberMat->giveRealStressVector_Fiber(reducedFiberStress, fiberGp, fiberStrain, tStep);

        // perform integration
        // 1) membrane terms N, Qz, Qy
        answer.at(1) += reducedFiberStress.at(1) * fiberWidth * fiberThick;
        answer.at(2) += reducedFiberStress.at(2) * fiberWidth * fiberThick;
        answer.at(3) += reducedFiberStress.at(3) * fiberWidth * fiberThick;
        // 2) bending terms mx, my, mxy
        answer.at(4) += ( reducedFiberStress.at(2) * fiberWidth * fiberThick * fiberYCoord -
                          reducedFiberStress.at(3) * fiberWidth * fiberThick * fiberZCoord );
        answer.at(5) += reducedFiberStress.at(1) * fiberWidth * fiberThick * fiberZCoord;
        answer.at(6) -= reducedFiberStress.at(1) * fiberWidth * fiberThick * fiberYCoord;
    }

    // now we must update master gp ///@ todo simply chosen the first fiber material as master material /JB
    StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >
                                       ( domain->giveMaterial( fiberMaterials.at(1) )->giveStatus(gp) );
    status->letTempStrainVectorBe(strain);
    status->letTempStressVectorBe(answer);
}
예제 #2
0
void Line2SurfaceTension :: computeLoadVector(FloatArray &answer, ValueModeType mode, TimeStep *tStep)
{
    ///@todo Support axisymm.
    //domainType dt = this->giveDomain()->giveDomainType();
    IntegrationRule *iRule = this->integrationRulesArray [ 0 ];
    double t = 1, gamma_s;
    ///@todo Should i use this? Not used in FM module (but perhaps it should?) / Mikael.
    //t = this->giveDomain()->giveCrossSection(1)->give(CS_Thickness);
    gamma_s = this->giveMaterial()->give('g', NULL);

    FloatMatrix xy(2, 3);
    Node *node;
    for ( int i = 1; i <= 3; i++ ) {
        node = giveNode(i);
        xy.at(1, i) = node->giveCoordinate(1);
        xy.at(2, i) = node->giveCoordinate(2);
    }

    FloatArray A;
    FloatArray dNdxi(3);
    FloatArray es(2); // tangent vector to curve
    FloatMatrix BJ(2, 6);
    BJ.zero();

    answer.resize(6);
    answer.zero();

    for ( int k = 0; k < iRule->getNumberOfIntegrationPoints(); k++ ) {
        GaussPoint *gp = iRule->getIntegrationPoint(k);
        //interpolation.evaldNdx(dN, domain, dofManArray, * gp->giveCoordinates(), 0.0);
        double xi = gp->giveCoordinate(1);

        // Some simplifications can be performed, since the mapping J is a scalar.
        dNdxi.at(1) = -0.5 + xi;
        dNdxi.at(2) =  0.5 + xi;
        dNdxi.at(3) = -2.0 * xi;

        es.beProductOf(xy, dNdxi);
        double J = es.computeNorm();
        es.times(1 / J); //es.normalize();

        // dNds = dNdxi/J
        // B.at(1,1) = dNds.at(1); and so on.

        BJ.at(1, 1) = BJ.at(2, 2) = dNdxi.at(1);
        BJ.at(1, 3) = BJ.at(2, 4) = dNdxi.at(2);
        BJ.at(1, 5) = BJ.at(2, 6) = dNdxi.at(3);

        A.beTProductOf(BJ, es);
        answer.add( - gamma_s * t * gp->giveWeight(), A); // Note! Negative sign!
    }
}
예제 #3
0
void Line2SurfaceTension :: computeTangent(FloatMatrix &answer, TimeStep *tStep)
{
#if 1
    answer.resize(6, 6);
    answer.zero();
#else
    ///@todo Support axisymm.
    domainType dt = this->giveDomain()->giveDomainType();
    if (dt == _3dAxisymmMode) {
        OOFEM_ERROR("Line2SurfaceTension :: computeTangent - Axisymm not implemented");
    }
    IntegrationRule *iRule = this->integrationRulesArray [ 0 ];
    double t = 1, gamma_s;
    ///@todo Should i use this? Not that meaningful for flow problems.
    //t = this->giveDomain()->giveCrossSection(1)->give(CS_Thickness);
    gamma_s = this->giveMaterial()->give('g', NULL);

    FloatMatrix xy(2,3);
    Node *node;
    for (int i = 1; i <= 3; i++) {
        node = giveNode(i);
        xy.at(1,i) = node->giveCoordinate(1);
        xy.at(2,i) = node->giveCoordinate(2);
    }

    FloatArray A;
    FloatArray dNdxi(3);
    FloatArray es(2); // tangent vector to curve
    FloatMatrix BJ(2,6);
    BJ.zero();
    FloatMatrix temp1,temp2;

    answer.resize(6,6);
    answer.zero();
    for (int k = 0; k < iRule->getNumberOfIntegrationPoints(); k++ ) {
        GaussPoint *gp = iRule->getIntegrationPoint(k);

        double xi = gp->giveCoordinate(1);

        dNdxi.at(1) = -0.5+xi;
        dNdxi.at(2) =  0.5+xi;
        dNdxi.at(3) = -2.0*xi;

        es.beProductOf(xy,dNdxi);
        double J = es.computeNorm();
        es.times(1/J); //es.normalize();

        BJ.at(1,1) = BJ.at(2,2) = dNdxi.at(1);
        BJ.at(1,3) = BJ.at(2,4) = dNdxi.at(2);
        BJ.at(1,5) = BJ.at(2,6) = dNdxi.at(3);

        A.beTProductOf(BJ,es);

        temp1.beTProductOf(BJ,BJ);
        temp2.beDyadicProductOf(A,A);
        temp1.subtract(temp2);
        temp1.times(t*gp->giveWeight()/J*(tStep->giveTimeIncrement()));
        answer.add(temp1);
    }
    answer.times(gamma_s);
#endif
}