void GenMarkSweep::mark_sweep_phase3() { GenCollectedHeap* gch = GenCollectedHeap::heap(); // Adjust the pointers to reflect the new locations GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", gc_timer()); // Need new claim bits for the pointer adjustment tracing. ClassLoaderDataGraph::clear_claimed_marks(); // Because the closure below is created statically, we cannot // use OopsInGenClosure constructor which takes a generation, // as the Universe has not been created when the static constructors // are run. adjust_pointer_closure.set_orig_generation(gch->old_gen()); { StrongRootsScope srs(1); gch->gen_process_roots(&srs, GenCollectedHeap::OldGen, false, // Younger gens are not roots. GenCollectedHeap::SO_AllCodeCache, GenCollectedHeap::StrongAndWeakRoots, &adjust_pointer_closure, &adjust_pointer_closure, &adjust_cld_closure); } gch->gen_process_weak_roots(&adjust_pointer_closure); adjust_marks(); GenAdjustPointersClosure blk; gch->generation_iterate(&blk, true); }
void GenMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) { // Recursively traverse all live objects and mark them GCTraceTime(Trace, gc) tm("Phase 1: Mark live objects", _gc_timer); GenCollectedHeap* gch = GenCollectedHeap::heap(); // Because follow_root_closure is created statically, cannot // use OopsInGenClosure constructor which takes a generation, // as the Universe has not been created when the static constructors // are run. follow_root_closure.set_orig_generation(gch->old_gen()); // Need new claim bits before marking starts. ClassLoaderDataGraph::clear_claimed_marks(); { StrongRootsScope srs(1); gch->gen_process_roots(&srs, GenCollectedHeap::OldGen, false, // Younger gens are not roots. GenCollectedHeap::SO_None, ClassUnloading, &follow_root_closure, &follow_root_closure, &follow_cld_closure); } // Process reference objects found during marking { ref_processor()->setup_policy(clear_all_softrefs); const ReferenceProcessorStats& stats = ref_processor()->process_discovered_references( &is_alive, &keep_alive, &follow_stack_closure, NULL, _gc_timer); gc_tracer()->report_gc_reference_stats(stats); } // This is the point where the entire marking should have completed. assert(_marking_stack.is_empty(), "Marking should have completed"); // Unload classes and purge the SystemDictionary. bool purged_class = SystemDictionary::do_unloading(&is_alive); // Unload nmethods. CodeCache::do_unloading(&is_alive, purged_class); // Prune dead klasses from subklass/sibling/implementor lists. Klass::clean_weak_klass_links(&is_alive); // Delete entries for dead interned strings. StringTable::unlink(&is_alive); // Clean up unreferenced symbols in symbol table. SymbolTable::unlink(); gc_tracer()->report_object_count_after_gc(&is_alive); }
bool DefNewGeneration::collection_attempt_is_safe() { if (!to()->is_empty()) { log_trace(gc)(":: to is not empty ::"); return false; } if (_old_gen == NULL) { GenCollectedHeap* gch = GenCollectedHeap::heap(); _old_gen = gch->old_gen(); } return _old_gen->promotion_attempt_is_safe(used()); }
void GenMarkSweep::allocate_stacks() { GenCollectedHeap* gch = GenCollectedHeap::heap(); // Scratch request on behalf of old generation; will do no allocation. ScratchBlock* scratch = gch->gather_scratch(gch->old_gen(), 0); // $$$ To cut a corner, we'll only use the first scratch block, and then // revert to malloc. if (scratch != NULL) { _preserved_count_max = scratch->num_words * HeapWordSize / sizeof(PreservedMark); } else { _preserved_count_max = 0; } _preserved_marks = (PreservedMark*)scratch; _preserved_count = 0; }
HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size, bool is_tlab) { GenCollectedHeap *gch = GenCollectedHeap::heap(); HeapWord* result = NULL; Generation *old = gch->old_gen(); if (old->should_allocate(size, is_tlab)) { result = old->expand_and_allocate(size, is_tlab); } if (result == NULL) { Generation *young = gch->young_gen(); if (young->should_allocate(size, is_tlab)) { result = young->expand_and_allocate(size, is_tlab); } } assert(result == NULL || gch->is_in_reserved(result), "result not in heap"); return result; }
void GenMarkSweep::invoke_at_safepoint(ReferenceProcessor* rp, bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); GenCollectedHeap* gch = GenCollectedHeap::heap(); #ifdef ASSERT if (gch->collector_policy()->should_clear_all_soft_refs()) { assert(clear_all_softrefs, "Policy should have been checked earlier"); } #endif // hook up weak ref data so it can be used during Mark-Sweep assert(ref_processor() == NULL, "no stomping"); assert(rp != NULL, "should be non-NULL"); set_ref_processor(rp); rp->setup_policy(clear_all_softrefs); gch->trace_heap_before_gc(_gc_tracer); // When collecting the permanent generation Method*s may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); // Increment the invocation count _total_invocations++; // Capture used regions for each generation that will be // subject to collection, so that card table adjustments can // be made intelligently (see clear / invalidate further below). gch->save_used_regions(); allocate_stacks(); mark_sweep_phase1(clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 #if defined(COMPILER2) || INCLUDE_JVMCI assert(DerivedPointerTable::is_active(), "Sanity"); DerivedPointerTable::set_active(false); #endif mark_sweep_phase3(); mark_sweep_phase4(); restore_marks(); // Set saved marks for allocation profiler (and other things? -- dld) // (Should this be in general part?) gch->save_marks(); deallocate_stacks(); // If compaction completely evacuated the young generation then we // can clear the card table. Otherwise, we must invalidate // it (consider all cards dirty). In the future, we might consider doing // compaction within generations only, and doing card-table sliding. CardTableRS* rs = gch->rem_set(); Generation* old_gen = gch->old_gen(); // Clear/invalidate below make use of the "prev_used_regions" saved earlier. if (gch->young_gen()->used() == 0) { // We've evacuated the young generation. rs->clear_into_younger(old_gen); } else { // Invalidate the cards corresponding to the currently used // region and clear those corresponding to the evacuated region. rs->invalidate_or_clear(old_gen); } CodeCache::gc_epilogue(); JvmtiExport::gc_epilogue(); // refs processing: clean slate set_ref_processor(NULL); // Update heap occupancy information which is used as // input to soft ref clearing policy at the next gc. Universe::update_heap_info_at_gc(); // Update time of last gc for all generations we collected // (which currently is all the generations in the heap). // We need to use a monotonically non-decreasing time in ms // or we will see time-warp warnings and os::javaTimeMillis() // does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; gch->update_time_of_last_gc(now); gch->trace_heap_after_gc(_gc_tracer); }
void DefNewGeneration::collect(bool full, bool clear_all_soft_refs, size_t size, bool is_tlab) { assert(full || size > 0, "otherwise we don't want to collect"); GenCollectedHeap* gch = GenCollectedHeap::heap(); _gc_timer->register_gc_start(); DefNewTracer gc_tracer; gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start()); _old_gen = gch->old_gen(); // If the next generation is too full to accommodate promotion // from this generation, pass on collection; let the next generation // do it. if (!collection_attempt_is_safe()) { log_trace(gc)(":: Collection attempt not safe ::"); gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one return; } assert(to()->is_empty(), "Else not collection_attempt_is_safe"); init_assuming_no_promotion_failure(); GCTraceTime(Trace, gc) tm("DefNew", NULL, gch->gc_cause()); gch->trace_heap_before_gc(&gc_tracer); // These can be shared for all code paths IsAliveClosure is_alive(this); ScanWeakRefClosure scan_weak_ref(this); age_table()->clear(); to()->clear(SpaceDecorator::Mangle); gch->rem_set()->prepare_for_younger_refs_iterate(false); assert(gch->no_allocs_since_save_marks(), "save marks have not been newly set."); // Not very pretty. CollectorPolicy* cp = gch->collector_policy(); FastScanClosure fsc_with_no_gc_barrier(this, false); FastScanClosure fsc_with_gc_barrier(this, true); KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier, gch->rem_set()->klass_rem_set()); CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure, &fsc_with_no_gc_barrier, false); set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier); FastEvacuateFollowersClosure evacuate_followers(gch, &fsc_with_no_gc_barrier, &fsc_with_gc_barrier); assert(gch->no_allocs_since_save_marks(), "save marks have not been newly set."); { // DefNew needs to run with n_threads == 0, to make sure the serial // version of the card table scanning code is used. // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel. StrongRootsScope srs(0); gch->gen_process_roots(&srs, GenCollectedHeap::YoungGen, true, // Process younger gens, if any, // as strong roots. GenCollectedHeap::SO_ScavengeCodeCache, GenCollectedHeap::StrongAndWeakRoots, &fsc_with_no_gc_barrier, &fsc_with_gc_barrier, &cld_scan_closure); } // "evacuate followers". evacuate_followers.do_void(); FastKeepAliveClosure keep_alive(this, &scan_weak_ref); ReferenceProcessor* rp = ref_processor(); rp->setup_policy(clear_all_soft_refs); const ReferenceProcessorStats& stats = rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers, NULL, _gc_timer); gc_tracer.report_gc_reference_stats(stats); gc_tracer.report_tenuring_threshold(tenuring_threshold()); if (!_promotion_failed) { // Swap the survivor spaces. eden()->clear(SpaceDecorator::Mangle); from()->clear(SpaceDecorator::Mangle); if (ZapUnusedHeapArea) { // This is now done here because of the piece-meal mangling which // can check for valid mangling at intermediate points in the // collection(s). When a young collection fails to collect // sufficient space resizing of the young generation can occur // an redistribute the spaces in the young generation. Mangle // here so that unzapped regions don't get distributed to // other spaces. to()->mangle_unused_area(); } swap_spaces(); assert(to()->is_empty(), "to space should be empty now"); adjust_desired_tenuring_threshold(); // A successful scavenge should restart the GC time limit count which is // for full GC's. AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy(); size_policy->reset_gc_overhead_limit_count(); assert(!gch->incremental_collection_failed(), "Should be clear"); } else { assert(_promo_failure_scan_stack.is_empty(), "post condition"); _promo_failure_scan_stack.clear(true); // Clear cached segments. remove_forwarding_pointers(); log_debug(gc)("Promotion failed"); // Add to-space to the list of space to compact // when a promotion failure has occurred. In that // case there can be live objects in to-space // as a result of a partial evacuation of eden // and from-space. swap_spaces(); // For uniformity wrt ParNewGeneration. from()->set_next_compaction_space(to()); gch->set_incremental_collection_failed(); // Inform the next generation that a promotion failure occurred. _old_gen->promotion_failure_occurred(); gc_tracer.report_promotion_failed(_promotion_failed_info); // Reset the PromotionFailureALot counters. NOT_PRODUCT(gch->reset_promotion_should_fail();) } // set new iteration safe limit for the survivor spaces from()->set_concurrent_iteration_safe_limit(from()->top()); to()->set_concurrent_iteration_safe_limit(to()->top()); // We need to use a monotonically non-decreasing time in ms // or we will see time-warp warnings and os::javaTimeMillis() // does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; update_time_of_last_gc(now); gch->trace_heap_after_gc(&gc_tracer); _gc_timer->register_gc_end(); gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); }
void DefNewGeneration::compute_new_size() { // This is called after a GC that includes the old generation, so from-space // will normally be empty. // Note that we check both spaces, since if scavenge failed they revert roles. // If not we bail out (otherwise we would have to relocate the objects). if (!from()->is_empty() || !to()->is_empty()) { return; } GenCollectedHeap* gch = GenCollectedHeap::heap(); size_t old_size = gch->old_gen()->capacity(); size_t new_size_before = _virtual_space.committed_size(); size_t min_new_size = initial_size(); size_t max_new_size = reserved().byte_size(); assert(min_new_size <= new_size_before && new_size_before <= max_new_size, "just checking"); // All space sizes must be multiples of Generation::GenGrain. size_t alignment = Generation::GenGrain; // Compute desired new generation size based on NewRatio and // NewSizeThreadIncrease size_t desired_new_size = old_size/NewRatio; int threads_count = Threads::number_of_non_daemon_threads(); size_t thread_increase_size = threads_count * NewSizeThreadIncrease; desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment); // Adjust new generation size desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size); assert(desired_new_size <= max_new_size, "just checking"); bool changed = false; if (desired_new_size > new_size_before) { size_t change = desired_new_size - new_size_before; assert(change % alignment == 0, "just checking"); if (expand(change)) { changed = true; } // If the heap failed to expand to the desired size, // "changed" will be false. If the expansion failed // (and at this point it was expected to succeed), // ignore the failure (leaving "changed" as false). } if (desired_new_size < new_size_before && eden()->is_empty()) { // bail out of shrinking if objects in eden size_t change = new_size_before - desired_new_size; assert(change % alignment == 0, "just checking"); _virtual_space.shrink_by(change); changed = true; } if (changed) { // The spaces have already been mangled at this point but // may not have been cleared (set top = bottom) and should be. // Mangling was done when the heap was being expanded. compute_space_boundaries(eden()->used(), SpaceDecorator::Clear, SpaceDecorator::DontMangle); MemRegion cmr((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high()); gch->barrier_set()->resize_covered_region(cmr); log_debug(gc, heap, ergo)( "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]", new_size_before/K, _virtual_space.committed_size()/K, eden()->capacity()/K, from()->capacity()/K); log_trace(gc, heap, ergo)( " [allowed " SIZE_FORMAT "K extra for %d threads]", thread_increase_size/K, threads_count); } }