// Given a lclvar use, try to find the lclvar's defining assignment and its containing block. GenTreeOp* RangeCheck::GetSsaDefAsg(GenTreeLclVarCommon* lclUse, BasicBlock** asgBlock) { unsigned ssaNum = lclUse->GetSsaNum(); if (ssaNum == SsaConfig::RESERVED_SSA_NUM) { return nullptr; } LclSsaVarDsc* ssaData = m_pCompiler->lvaTable[lclUse->GetLclNum()].GetPerSsaData(ssaNum); GenTree* lclDef = ssaData->m_defLoc.m_tree; if (lclDef == nullptr) { return nullptr; } // We have the def node but we also need the assignment node to get its source. // gtGetParent can be used to get the assignment node but it's rather expensive // and not strictly necessary here, there shouldn't be any other node between // the assignment node and its destination node. GenTree* asg = lclDef->gtNext; if (!asg->OperIs(GT_ASG) || (asg->gtGetOp1() != lclDef)) { return nullptr; } #ifdef DEBUG Location* loc = GetDef(lclUse); assert(loc->parent == asg); assert(loc->block == ssaData->m_defLoc.m_blk); #endif *asgBlock = ssaData->m_defLoc.m_blk; return asg->AsOp(); }
Compiler::fgWalkResult Rationalizer::RewriteNode(GenTree** useEdge, ArrayStack<GenTree*>& parentStack) { assert(useEdge != nullptr); GenTree* node = *useEdge; assert(node != nullptr); #ifdef DEBUG const bool isLateArg = (node->gtFlags & GTF_LATE_ARG) != 0; #endif // First, remove any preceeding list nodes, which are not otherwise visited by the tree walk. // // NOTE: GT_FIELD_LIST head nodes, and GT_LIST nodes used by phi nodes will in fact be visited. for (GenTree* prev = node->gtPrev; prev != nullptr && prev->OperIsAnyList() && !(prev->OperIsFieldListHead()); prev = node->gtPrev) { prev->gtFlags &= ~GTF_REVERSE_OPS; BlockRange().Remove(prev); } // Now clear the REVERSE_OPS flag on the current node. node->gtFlags &= ~GTF_REVERSE_OPS; // In addition, remove the current node if it is a GT_LIST node that is not an aggregate. if (node->OperIsAnyList()) { GenTreeArgList* list = node->AsArgList(); if (!list->OperIsFieldListHead()) { BlockRange().Remove(list); } return Compiler::WALK_CONTINUE; } LIR::Use use; if (parentStack.Height() < 2) { use = LIR::Use::GetDummyUse(BlockRange(), *useEdge); } else { use = LIR::Use(BlockRange(), useEdge, parentStack.Index(1)); } assert(node == use.Def()); switch (node->OperGet()) { case GT_ASG: RewriteAssignment(use); break; case GT_BOX: // GT_BOX at this level just passes through so get rid of it use.ReplaceWith(comp, node->gtGetOp1()); BlockRange().Remove(node); break; case GT_ADDR: RewriteAddress(use); break; case GT_IND: // Clear the `GTF_IND_ASG_LHS` flag, which overlaps with `GTF_IND_REQ_ADDR_IN_REG`. node->gtFlags &= ~GTF_IND_ASG_LHS; if (varTypeIsSIMD(node)) { RewriteSIMDOperand(use, false); } else { // Due to promotion of structs containing fields of type struct with a // single scalar type field, we could potentially see IR nodes of the // form GT_IND(GT_ADD(lclvarAddr, 0)) where 0 is an offset representing // a field-seq. These get folded here. // // TODO: This code can be removed once JIT implements recursive struct // promotion instead of lying about the type of struct field as the type // of its single scalar field. GenTree* addr = node->AsIndir()->Addr(); if (addr->OperGet() == GT_ADD && addr->gtGetOp1()->OperGet() == GT_LCL_VAR_ADDR && addr->gtGetOp2()->IsIntegralConst(0)) { GenTreeLclVarCommon* lclVarNode = addr->gtGetOp1()->AsLclVarCommon(); unsigned lclNum = lclVarNode->GetLclNum(); LclVarDsc* varDsc = comp->lvaTable + lclNum; if (node->TypeGet() == varDsc->TypeGet()) { JITDUMP("Rewriting GT_IND(GT_ADD(LCL_VAR_ADDR,0)) to LCL_VAR\n"); lclVarNode->SetOper(GT_LCL_VAR); lclVarNode->gtType = node->TypeGet(); use.ReplaceWith(comp, lclVarNode); BlockRange().Remove(addr); BlockRange().Remove(addr->gtGetOp2()); BlockRange().Remove(node); } } } break; case GT_NOP: // fgMorph sometimes inserts NOP nodes between defs and uses // supposedly 'to prevent constant folding'. In this case, remove the // NOP. if (node->gtGetOp1() != nullptr) { use.ReplaceWith(comp, node->gtGetOp1()); BlockRange().Remove(node); } break; case GT_COMMA: { GenTree* op1 = node->gtGetOp1(); bool isClosed = false; unsigned sideEffects = 0; LIR::ReadOnlyRange lhsRange = BlockRange().GetTreeRange(op1, &isClosed, &sideEffects); if ((sideEffects & GTF_ALL_EFFECT) == 0) { // The LHS has no side effects. Remove it. // None of the transforms performed herein violate tree order, so isClosed // should always be true. assert(isClosed); BlockRange().Delete(comp, m_block, std::move(lhsRange)); } else if (op1->IsValue()) { op1->SetUnusedValue(); } BlockRange().Remove(node); GenTree* replacement = node->gtGetOp2(); if (!use.IsDummyUse()) { use.ReplaceWith(comp, replacement); node = replacement; } else { // This is a top-level comma. If the RHS has no side effects we can remove // it as well. bool isClosed = false; unsigned sideEffects = 0; LIR::ReadOnlyRange rhsRange = BlockRange().GetTreeRange(replacement, &isClosed, &sideEffects); if ((sideEffects & GTF_ALL_EFFECT) == 0) { // None of the transforms performed herein violate tree order, so isClosed // should always be true. assert(isClosed); BlockRange().Delete(comp, m_block, std::move(rhsRange)); } else { node = replacement; } } } break; case GT_ARGPLACE: // Remove argplace and list nodes from the execution order. // // TODO: remove phi args and phi nodes as well? BlockRange().Remove(node); break; #if defined(_TARGET_XARCH_) || defined(_TARGET_ARM_) case GT_CLS_VAR: { // Class vars that are the target of an assignment will get rewritten into // GT_STOREIND(GT_CLS_VAR_ADDR, val) by RewriteAssignment. This check is // not strictly necessary--the GT_IND(GT_CLS_VAR_ADDR) pattern that would // otherwise be generated would also be picked up by RewriteAssignment--but // skipping the rewrite here saves an allocation and a bit of extra work. const bool isLHSOfAssignment = (use.User()->OperGet() == GT_ASG) && (use.User()->gtGetOp1() == node); if (!isLHSOfAssignment) { GenTree* ind = comp->gtNewOperNode(GT_IND, node->TypeGet(), node); node->SetOper(GT_CLS_VAR_ADDR); node->gtType = TYP_BYREF; BlockRange().InsertAfter(node, ind); use.ReplaceWith(comp, ind); // TODO: JIT dump } } break; #endif // _TARGET_XARCH_ case GT_INTRINSIC: // Non-target intrinsics should have already been rewritten back into user calls. assert(Compiler::IsTargetIntrinsic(node->gtIntrinsic.gtIntrinsicId)); break; #ifdef FEATURE_SIMD case GT_BLK: case GT_OBJ: { // TODO-1stClassStructs: These should have been transformed to GT_INDs, but in order // to preserve existing behavior, we will keep this as a block node if this is the // lhs of a block assignment, and either: // - It is a "generic" TYP_STRUCT assignment, OR // - It is an initblk, OR // - Neither the lhs or rhs are known to be of SIMD type. GenTree* parent = use.User(); bool keepBlk = false; if ((parent->OperGet() == GT_ASG) && (node == parent->gtGetOp1())) { if ((node->TypeGet() == TYP_STRUCT) || parent->OperIsInitBlkOp()) { keepBlk = true; } else if (!comp->isAddrOfSIMDType(node->AsBlk()->Addr())) { GenTree* dataSrc = parent->gtGetOp2(); if (!dataSrc->IsLocal() && (dataSrc->OperGet() != GT_SIMD)) { noway_assert(dataSrc->OperIsIndir()); keepBlk = !comp->isAddrOfSIMDType(dataSrc->AsIndir()->Addr()); } } } RewriteSIMDOperand(use, keepBlk); } break; case GT_LCL_FLD: case GT_STORE_LCL_FLD: // TODO-1stClassStructs: Eliminate this. FixupIfSIMDLocal(node->AsLclVarCommon()); break; case GT_SIMD: { noway_assert(comp->featureSIMD); GenTreeSIMD* simdNode = node->AsSIMD(); unsigned simdSize = simdNode->gtSIMDSize; var_types simdType = comp->getSIMDTypeForSize(simdSize); // TODO-1stClassStructs: This should be handled more generally for enregistered or promoted // structs that are passed or returned in a different register type than their enregistered // type(s). if (simdNode->gtType == TYP_I_IMPL && simdNode->gtSIMDSize == TARGET_POINTER_SIZE) { // This happens when it is consumed by a GT_RET_EXPR. // It can only be a Vector2f or Vector2i. assert(genTypeSize(simdNode->gtSIMDBaseType) == 4); simdNode->gtType = TYP_SIMD8; } // Certain SIMD trees require rationalizing. if (simdNode->gtSIMD.gtSIMDIntrinsicID == SIMDIntrinsicInitArray) { // Rewrite this as an explicit load. JITDUMP("Rewriting GT_SIMD array init as an explicit load:\n"); unsigned int baseTypeSize = genTypeSize(simdNode->gtSIMDBaseType); GenTree* address = new (comp, GT_LEA) GenTreeAddrMode(TYP_BYREF, simdNode->gtOp1, simdNode->gtOp2, baseTypeSize, offsetof(CORINFO_Array, u1Elems)); GenTree* ind = comp->gtNewOperNode(GT_IND, simdType, address); BlockRange().InsertBefore(simdNode, address, ind); use.ReplaceWith(comp, ind); BlockRange().Remove(simdNode); DISPTREERANGE(BlockRange(), use.Def()); JITDUMP("\n"); } else { // This code depends on the fact that NONE of the SIMD intrinsics take vector operands // of a different width. If that assumption changes, we will EITHER have to make these type // transformations during importation, and plumb the types all the way through the JIT, // OR add a lot of special handling here. GenTree* op1 = simdNode->gtGetOp1(); if (op1 != nullptr && op1->gtType == TYP_STRUCT) { op1->gtType = simdType; } GenTree* op2 = simdNode->gtGetOp2IfPresent(); if (op2 != nullptr && op2->gtType == TYP_STRUCT) { op2->gtType = simdType; } } } break; #endif // FEATURE_SIMD default: // CMP, SETCC and JCC nodes should not be present in HIR. assert(!node->OperIs(GT_CMP, GT_SETCC, GT_JCC)); break; } // Do some extra processing on top-level nodes to remove unused local reads. if (node->OperIsLocalRead()) { if (use.IsDummyUse()) { comp->lvaDecRefCnts(node); BlockRange().Remove(node); } else { // Local reads are side-effect-free; clear any flags leftover from frontend transformations. node->gtFlags &= ~GTF_ALL_EFFECT; } } else { if (!node->OperIsStore()) { // Clear the GTF_ASG flag for all nodes but stores node->gtFlags &= ~GTF_ASG; } if (!node->IsCall()) { // Clear the GTF_CALL flag for all nodes but calls node->gtFlags &= ~GTF_CALL; } if (node->IsValue() && use.IsDummyUse()) { node->SetUnusedValue(); } if (node->TypeGet() == TYP_LONG) { comp->compLongUsed = true; } } assert(isLateArg == ((use.Def()->gtFlags & GTF_LATE_ARG) != 0)); return Compiler::WALK_CONTINUE; }