void DefaultTestKernelTrialIntegral<IntegrandFunctor>:: evaluateWithTensorQuadratureRule( const GeometricalData<CoordinateType> &testGeomData, const GeometricalData<CoordinateType> &trialGeomData, const CollectionOf3dArrays<BasisFunctionType> &testValues, const CollectionOf3dArrays<BasisFunctionType> &trialValues, const CollectionOf4dArrays<KernelType> &kernelValues, const std::vector<CoordinateType> &testQuadWeights, const std::vector<CoordinateType> &trialQuadWeights, Matrix<ResultType> &result) const { // Evaluate constants const size_t testDofCount = testValues[0].extent(1); const size_t trialDofCount = trialValues[0].extent(1); const size_t testPointCount = testQuadWeights.size(); const size_t trialPointCount = trialQuadWeights.size(); // Assert that array dimensions are correct for (size_t i = 0; i < kernelValues.size(); ++i) { assert(kernelValues[i].extent(2) == testPointCount); assert(kernelValues[i].extent(3) == trialPointCount); } for (size_t i = 0; i < testValues.size(); ++i) assert(testValues[i].extent(2) == testPointCount); for (size_t i = 0; i < trialValues.size(); ++i) assert(trialValues[i].extent(2) == trialPointCount); assert(result.rows() == testDofCount); assert(result.cols() == trialDofCount); // Integrate for (size_t trialDof = 0; trialDof < trialDofCount; ++trialDof) for (size_t testDof = 0; testDof < testDofCount; ++testDof) { ResultType sum = 0.; for (size_t trialPoint = 0; trialPoint < trialPointCount; ++trialPoint) { const CoordinateType trialWeight = trialGeomData.integrationElements(trialPoint) * trialQuadWeights[trialPoint]; ResultType partialSum = 0.; for (size_t testPoint = 0; testPoint < testPointCount; ++testPoint) { const CoordinateType testWeight = testGeomData.integrationElements(testPoint) * testQuadWeights[testPoint]; partialSum += m_functor.evaluate( testGeomData.const_slice(testPoint), trialGeomData.const_slice(trialPoint), testValues.const_slice(testDof, testPoint), trialValues.const_slice(trialDof, trialPoint), kernelValues.const_slice(testPoint, trialPoint)) * testWeight; } sum += partialSum * trialWeight; } result(testDof, trialDof) = sum; } }
void DefaultTestTrialIntegral<IntegrandFunctor>::evaluate( const GeometricalData<CoordinateType>& geomData, const CollectionOf3dArrays<BasisFunctionType>& testValues, const CollectionOf3dArrays<BasisFunctionType>& trialValues, const std::vector<CoordinateType>& weights, arma::Mat<ResultType>& result) const { const size_t pointCount = weights.size(); assert(testValues.size() == 1); assert(trialValues.size() == 1); // We don't care about the number of rows of testValues[0] and trialValues[0] // -- it's up to the integrand functor const size_t testDofCount = testValues[0].extent(1); const size_t trialDofCount = trialValues[0].extent(1); assert(testValues[0].extent(2) == pointCount); assert(trialValues[0].extent(2) == pointCount); for (size_t trialDof = 0; trialDof < trialDofCount; ++trialDof) for (size_t testDof = 0; testDof < testDofCount; ++testDof) { ResultType sum = 0.; for (size_t point = 0; point < pointCount; ++point) sum += m_functor.evaluate( geomData.const_slice(point), testValues.const_slice(testDof, point), trialValues.const_slice(trialDof, point)) * geomData.integrationElements(point) * weights[point]; result(testDof, trialDof) = sum; } }
void DefaultTestKernelTrialIntegral<IntegrandFunctor>:: evaluateWithNontensorQuadratureRule( const GeometricalData<CoordinateType> &testGeomData, const GeometricalData<CoordinateType> &trialGeomData, const CollectionOf3dArrays<BasisFunctionType> &testValues, const CollectionOf3dArrays<BasisFunctionType> &trialValues, const CollectionOf3dArrays<KernelType> &kernelValues, const std::vector<CoordinateType> &quadWeights, Matrix<ResultType> &result) const { // Evaluate constants const size_t testDofCount = testValues[0].extent(1); const size_t trialDofCount = trialValues[0].extent(1); const size_t pointCount = quadWeights.size(); // Assert that array dimensions are correct for (size_t i = 0; i < kernelValues.size(); ++i) assert(kernelValues[i].extent(2) == pointCount); for (size_t i = 0; i < testValues.size(); ++i) assert(testValues[i].extent(2) == pointCount); for (size_t i = 0; i < trialValues.size(); ++i) assert(trialValues[i].extent(2) == pointCount); // Integrate for (size_t trialDof = 0; trialDof < trialDofCount; ++trialDof) for (size_t testDof = 0; testDof < testDofCount; ++testDof) { ResultType sum = 0.; for (size_t point = 0; point < pointCount; ++point) sum += m_functor.evaluate(testGeomData.const_slice(point), trialGeomData.const_slice(point), testValues.const_slice(testDof, point), trialValues.const_slice(trialDof, point), kernelValues.const_slice(point)) * (testGeomData.integrationElements(point) * trialGeomData.integrationElements(point) * quadWeights[point]); result(testDof, trialDof) = sum; } }
void NumericalTestTrialIntegrator<BasisFunctionType, ResultType, GeometryFactory>::integrate( const std::vector<int>& elementIndices, const Basis<BasisFunctionType>& testBasis, const Basis<BasisFunctionType>& trialBasis, arma::Cube<ResultType>& result) const { const size_t pointCount = m_localQuadPoints.n_cols; const size_t elementCount = elementIndices.size(); if (pointCount == 0 || elementCount == 0) return; // TODO: in the (pathological) case that pointCount == 0 but // elementCount != 0, set elements of result to 0. // Evaluate constants const int componentCount = m_testTransformations.resultDimension(0); const int testDofCount = testBasis.size(); const int trialDofCount = trialBasis.size(); // if (m_trialTransformations.codomainDimension() != componentCount) // throw std::runtime_error("NumericalTestTrialIntegrator::integrate(): " // "test and trial functions " // "must have the same number of components"); BasisData<BasisFunctionType> testBasisData, trialBasisData; GeometricalData<CoordinateType> geomData; size_t testBasisDeps = 0, trialBasisDeps = 0; size_t geomDeps = INTEGRATION_ELEMENTS; m_testTransformations.addDependencies(testBasisDeps, geomDeps); m_trialTransformations.addDependencies(trialBasisDeps, geomDeps); typedef typename GeometryFactory::Geometry Geometry; std::auto_ptr<Geometry> geometry(m_geometryFactory.make()); CollectionOf3dArrays<BasisFunctionType> testValues, trialValues; result.set_size(testDofCount, trialDofCount, elementCount); testBasis.evaluate(testBasisDeps, m_localQuadPoints, ALL_DOFS, testBasisData); trialBasis.evaluate(trialBasisDeps, m_localQuadPoints, ALL_DOFS, trialBasisData); // Iterate over the elements for (size_t e = 0; e < elementCount; ++e) { m_rawGeometry.setupGeometry(elementIndices[e], *geometry); geometry->getData(geomDeps, m_localQuadPoints, geomData); m_testTransformations.evaluate(testBasisData, geomData, testValues); m_trialTransformations.evaluate(trialBasisData, geomData, trialValues); for (int trialDof = 0; trialDof < trialDofCount; ++trialDof) for (int testDof = 0; testDof < testDofCount; ++testDof) { ResultType sum = 0.; for (size_t point = 0; point < pointCount; ++point) for (int dim = 0; dim < componentCount; ++dim) sum += m_quadWeights[point] * geomData.integrationElements(point) * conjugate(testValues[0](dim, testDof, point)) * trialValues[0](dim, trialDof, point); result(testDof, trialDof, e) = sum; } } }