void LTOModule::addDefinedSymbol(GlobalValue *def, bool isFunction) { // ignore all llvm.* symbols if (def->getName().startswith("llvm.")) return; // string is owned by _defines SmallString<64> Buffer; _mangler.getNameWithPrefix(Buffer, def, false); // set alignment part log2() can have rounding errors uint32_t align = def->getAlignment(); uint32_t attr = align ? CountTrailingZeros_32(def->getAlignment()) : 0; // set permissions part if (isFunction) attr |= LTO_SYMBOL_PERMISSIONS_CODE; else { GlobalVariable *gv = dyn_cast<GlobalVariable>(def); if (gv && gv->isConstant()) attr |= LTO_SYMBOL_PERMISSIONS_RODATA; else attr |= LTO_SYMBOL_PERMISSIONS_DATA; } // set definition part if (def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasLinkerPrivateWeakLinkage() || def->hasLinkerPrivateWeakDefAutoLinkage()) attr |= LTO_SYMBOL_DEFINITION_WEAK; else if (def->hasCommonLinkage()) attr |= LTO_SYMBOL_DEFINITION_TENTATIVE; else attr |= LTO_SYMBOL_DEFINITION_REGULAR; // set scope part if (def->hasHiddenVisibility()) attr |= LTO_SYMBOL_SCOPE_HIDDEN; else if (def->hasProtectedVisibility()) attr |= LTO_SYMBOL_SCOPE_PROTECTED; else if (def->hasExternalLinkage() || def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasCommonLinkage() || def->hasLinkerPrivateWeakLinkage()) attr |= LTO_SYMBOL_SCOPE_DEFAULT; else if (def->hasLinkerPrivateWeakDefAutoLinkage()) attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN; else attr |= LTO_SYMBOL_SCOPE_INTERNAL; // add to table of symbols NameAndAttributes info; StringSet::value_type &entry = _defines.GetOrCreateValue(Buffer); entry.setValue(1); StringRef Name = entry.getKey(); info.name = Name.data(); assert(info.name[Name.size()] == '\0'); info.attributes = (lto_symbol_attributes)attr; _symbols.push_back(info); }
void LTOModule::addDefinedSymbol(GlobalValue* def, Mangler &mangler, bool isFunction) { // string is owned by _defines const char* symbolName = ::strdup(mangler.getValueName(def).c_str()); // set alignment part log2() can have rounding errors uint32_t align = def->getAlignment(); uint32_t attr = align ? CountTrailingZeros_32(def->getAlignment()) : 0; // set permissions part if ( isFunction ) attr |= LTO_SYMBOL_PERMISSIONS_CODE; else { GlobalVariable* gv = dyn_cast<GlobalVariable>(def); if ( (gv != NULL) && gv->isConstant() ) attr |= LTO_SYMBOL_PERMISSIONS_RODATA; else attr |= LTO_SYMBOL_PERMISSIONS_DATA; } // set definition part if ( def->hasWeakLinkage() || def->hasLinkOnceLinkage() ) { // lvm bitcode does not differenciate between weak def data // and tentative definitions! // HACK HACK HACK // C++ does not use tentative definitions, but does use weak symbols // so guess that anything that looks like a C++ symbol is weak and others // are tentative definitions if ( (strncmp(symbolName, "__Z", 3) == 0) ) attr |= LTO_SYMBOL_DEFINITION_WEAK; else { attr |= LTO_SYMBOL_DEFINITION_TENTATIVE; } } else { attr |= LTO_SYMBOL_DEFINITION_REGULAR; } // set scope part if ( def->hasHiddenVisibility() ) attr |= LTO_SYMBOL_SCOPE_HIDDEN; else if ( def->hasExternalLinkage() || def->hasWeakLinkage() ) attr |= LTO_SYMBOL_SCOPE_DEFAULT; else attr |= LTO_SYMBOL_SCOPE_INTERNAL; // add to table of symbols NameAndAttributes info; info.name = symbolName; info.attributes = (lto_symbol_attributes)attr; _symbols.push_back(info); _defines[info.name] = 1; }
// // Method: runOnModule() // // Description: // Entry point for this LLVM pass. // // Return value: // true - The module was modified. // false - The module was not modified. // bool BreakConstantStrings::runOnModule (Module & M) { bool modified = false; const Type * Int8Type = IntegerType::getInt8Ty(getGlobalContext()); // // Scan through all the global variables in the module. Mark a variable as // non-constant if: // o) The variable is constant // o) The variable is an array of characters (Int8Ty). // o) The variable is not in a special section (e.g. debug info section). // This ensures that we don't mess up debug information or other special // strings within the code. // Module::global_iterator i,e; for (i = M.global_begin(), e = M.global_end(); i != e; ++i) { GlobalVariable * GV = i; // // All global variables are pointer types. Find the type of what the // global variable pointer is pointing at. // if (GV->isConstant() && (!GV->hasSection())) { const PointerType * PT = dyn_cast<PointerType>(GV->getType()); if (const ArrayType * AT = dyn_cast<ArrayType>(PT->getElementType())) { if (AT->getElementType() == Int8Type) { modified = true; ++GVChanges; GV->setConstant (false); } } } } return modified; }
/// GetConstantStringInfo - This function computes the length of a /// null-terminated C string pointed to by V. If successful, it returns true /// and returns the string in Str. If unsuccessful, it returns false. bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset, bool StopAtNul) { // If V is NULL then return false; if (V == NULL) return false; // Look through bitcast instructions. if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); // If the value is not a GEP instruction nor a constant expression with a // GEP instruction, then return false because ConstantArray can't occur // any other way User *GEP = 0; if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { GEP = GEPI; } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { if (CE->getOpcode() == Instruction::BitCast) return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); if (CE->getOpcode() != Instruction::GetElementPtr) return false; GEP = CE; } if (GEP) { // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return false; // Make sure the index-ee is a pointer to array of i8. const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); if (AT == 0 || AT->getElementType() != Type::Int8Ty) return false; // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); if (FirstIdx == 0 || !FirstIdx->isZero()) return false; // If the second index isn't a ConstantInt, then this is a variable index // into the array. If this occurs, we can't say anything meaningful about // the string. uint64_t StartIdx = 0; if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) StartIdx = CI->getZExtValue(); else return false; return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, StopAtNul); } // The GEP instruction, constant or instruction, must reference a global // variable that is a constant and is initialized. The referenced constant // initializer is the array that we'll use for optimization. GlobalVariable* GV = dyn_cast<GlobalVariable>(V); if (!GV || !GV->isConstant() || !GV->hasInitializer()) return false; Constant *GlobalInit = GV->getInitializer(); // Handle the ConstantAggregateZero case if (isa<ConstantAggregateZero>(GlobalInit)) { // This is a degenerate case. The initializer is constant zero so the // length of the string must be zero. Str.clear(); return true; } // Must be a Constant Array ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty) return false; // Get the number of elements in the array uint64_t NumElts = Array->getType()->getNumElements(); if (Offset > NumElts) return false; // Traverse the constant array from 'Offset' which is the place the GEP refers // to in the array. Str.reserve(NumElts-Offset); for (unsigned i = Offset; i != NumElts; ++i) { Constant *Elt = Array->getOperand(i); ConstantInt *CI = dyn_cast<ConstantInt>(Elt); if (!CI) // This array isn't suitable, non-int initializer. return false; if (StopAtNul && CI->isZero()) return true; // we found end of string, success! Str += (char)CI->getZExtValue(); } // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. return true; }
bool ConstantMerge::runOnModule(Module &M) { TD = getAnalysisIfAvailable<TargetData>(); // Find all the globals that are marked "used". These cannot be merged. SmallPtrSet<const GlobalValue*, 8> UsedGlobals; FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals); FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals); // Map unique <constants, has-unknown-alignment> pairs to globals. We don't // want to merge globals of unknown alignment with those of explicit // alignment. If we have TargetData, we always know the alignment. DenseMap<PointerIntPair<Constant*, 1, bool>, GlobalVariable*> CMap; // Replacements - This vector contains a list of replacements to perform. SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements; bool MadeChange = false; // Iterate constant merging while we are still making progress. Merging two // constants together may allow us to merge other constants together if the // second level constants have initializers which point to the globals that // were just merged. while (1) { // First: Find the canonical constants others will be merged with. for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); GVI != E; ) { GlobalVariable *GV = GVI++; // If this GV is dead, remove it. GV->removeDeadConstantUsers(); if (GV->use_empty() && GV->hasLocalLinkage()) { GV->eraseFromParent(); continue; } // Only process constants with initializers in the default address space. if (!GV->isConstant() || !GV->hasDefinitiveInitializer() || GV->getType()->getAddressSpace() != 0 || GV->hasSection() || // Don't touch values marked with attribute(used). UsedGlobals.count(GV)) continue; // This transformation is legal for weak ODR globals in the sense it // doesn't change semantics, but we really don't want to perform it // anyway; it's likely to pessimize code generation, and some tools // (like the Darwin linker in cases involving CFString) don't expect it. if (GV->isWeakForLinker()) continue; Constant *Init = GV->getInitializer(); // Check to see if the initializer is already known. PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV)); GlobalVariable *&Slot = CMap[Pair]; // If this is the first constant we find or if the old one is local, // replace with the current one. If the current is externally visible // it cannot be replace, but can be the canonical constant we merge with. if (Slot == 0 || IsBetterCannonical(*GV, *Slot)) Slot = GV; } // Second: identify all globals that can be merged together, filling in // the Replacements vector. We cannot do the replacement in this pass // because doing so may cause initializers of other globals to be rewritten, // invalidating the Constant* pointers in CMap. for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); GVI != E; ) { GlobalVariable *GV = GVI++; // Only process constants with initializers in the default address space. if (!GV->isConstant() || !GV->hasDefinitiveInitializer() || GV->getType()->getAddressSpace() != 0 || GV->hasSection() || // Don't touch values marked with attribute(used). UsedGlobals.count(GV)) continue; // We can only replace constant with local linkage. if (!GV->hasLocalLinkage()) continue; Constant *Init = GV->getInitializer(); // Check to see if the initializer is already known. PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV)); GlobalVariable *Slot = CMap[Pair]; if (!Slot || Slot == GV) continue; if (!Slot->hasUnnamedAddr() && !GV->hasUnnamedAddr()) continue; if (!GV->hasUnnamedAddr()) Slot->setUnnamedAddr(false); // Make all uses of the duplicate constant use the canonical version. Replacements.push_back(std::make_pair(GV, Slot)); } if (Replacements.empty()) return MadeChange; CMap.clear(); // Now that we have figured out which replacements must be made, do them all // now. This avoid invalidating the pointers in CMap, which are unneeded // now. for (unsigned i = 0, e = Replacements.size(); i != e; ++i) { // Bump the alignment if necessary. if (Replacements[i].first->getAlignment() || Replacements[i].second->getAlignment()) { Replacements[i].second->setAlignment(std::max( Replacements[i].first->getAlignment(), Replacements[i].second->getAlignment())); } // Eliminate any uses of the dead global. Replacements[i].first->replaceAllUsesWith(Replacements[i].second); // Delete the global value from the module. assert(Replacements[i].first->hasLocalLinkage() && "Refusing to delete an externally visible global variable."); Replacements[i].first->eraseFromParent(); } NumMerged += Replacements.size(); Replacements.clear(); } }
bool ConstantMerge::runOnModule(Module &M) { // Find all the globals that are marked "used". These cannot be merged. SmallPtrSet<const GlobalValue*, 8> UsedGlobals; FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals); FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals); // Map unique constant/section pairs to globals. We don't want to merge // globals in different sections. DenseMap<Constant*, GlobalVariable*> CMap; // Replacements - This vector contains a list of replacements to perform. SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements; bool MadeChange = false; // Iterate constant merging while we are still making progress. Merging two // constants together may allow us to merge other constants together if the // second level constants have initializers which point to the globals that // were just merged. while (1) { // First pass: identify all globals that can be merged together, filling in // the Replacements vector. We cannot do the replacement in this pass // because doing so may cause initializers of other globals to be rewritten, // invalidating the Constant* pointers in CMap. // for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); GVI != E; ) { GlobalVariable *GV = GVI++; // If this GV is dead, remove it. GV->removeDeadConstantUsers(); if (GV->use_empty() && GV->hasLocalLinkage()) { GV->eraseFromParent(); continue; } // Only process constants with initializers in the default addres space. if (!GV->isConstant() ||!GV->hasDefinitiveInitializer() || GV->getType()->getAddressSpace() != 0 || !GV->getSection().empty() || // Don't touch values marked with attribute(used). UsedGlobals.count(GV)) continue; Constant *Init = GV->getInitializer(); // Check to see if the initializer is already known. GlobalVariable *&Slot = CMap[Init]; if (Slot == 0) { // Nope, add it to the map. Slot = GV; } else if (GV->hasLocalLinkage()) { // Yup, this is a duplicate! // Make all uses of the duplicate constant use the canonical version. Replacements.push_back(std::make_pair(GV, Slot)); } } if (Replacements.empty()) return MadeChange; CMap.clear(); // Now that we have figured out which replacements must be made, do them all // now. This avoid invalidating the pointers in CMap, which are unneeded // now. for (unsigned i = 0, e = Replacements.size(); i != e; ++i) { // Eliminate any uses of the dead global. Replacements[i].first->replaceAllUsesWith(Replacements[i].second); // Delete the global value from the module. Replacements[i].first->eraseFromParent(); } NumMerged += Replacements.size(); Replacements.clear(); } }
bool GenericToNVVM::runOnModule(Module &M) { // Create a clone of each global variable that has the default address space. // The clone is created with the global address space specifier, and the pair // of original global variable and its clone is placed in the GVMap for later // use. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;) { GlobalVariable *GV = &*I++; if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC && !llvm::isTexture(*GV) && !llvm::isSurface(*GV) && !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) { GlobalVariable *NewGV = new GlobalVariable( M, GV->getValueType(), GV->isConstant(), GV->getLinkage(), GV->hasInitializer() ? GV->getInitializer() : nullptr, "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL); NewGV->copyAttributesFrom(GV); GVMap[GV] = NewGV; } } // Return immediately, if every global variable has a specific address space // specifier. if (GVMap.empty()) { return false; } // Walk through the instructions in function defitinions, and replace any use // of original global variables in GVMap with a use of the corresponding // copies in GVMap. If necessary, promote constants to instructions. for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { if (I->isDeclaration()) { continue; } IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg()); for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE; ++BBI) { for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE; ++II) { for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) { Value *Operand = II->getOperand(i); if (isa<Constant>(Operand)) { II->setOperand( i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder)); } } } } ConstantToValueMap.clear(); } // Copy GVMap over to a standard value map. ValueToValueMapTy VM; for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I) VM[I->first] = I->second; // Walk through the metadata section and update the debug information // associated with the global variables in the default address space. for (NamedMDNode &I : M.named_metadata()) { remapNamedMDNode(VM, &I); } // Walk through the global variable initializers, and replace any use of // original global variables in GVMap with a use of the corresponding copies // in GVMap. The copies need to be bitcast to the original global variable // types, as we cannot use cvta in global variable initializers. for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) { GlobalVariable *GV = I->first; GlobalVariable *NewGV = I->second; // Remove GV from the map so that it can be RAUWed. Note that // DenseMap::erase() won't invalidate any iterators but this one. auto Next = std::next(I); GVMap.erase(I); I = Next; Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType()); // At this point, the remaining uses of GV should be found only in global // variable initializers, as other uses have been already been removed // while walking through the instructions in function definitions. GV->replaceAllUsesWith(BitCastNewGV); std::string Name = GV->getName(); GV->eraseFromParent(); NewGV->setName(Name); } assert(GVMap.empty() && "Expected it to be empty by now"); return true; }
// This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. bool AddressSanitizer::insertGlobalRedzones(Module &M) { SmallVector<GlobalVariable *, 16> GlobalsToChange; for (Module::GlobalListType::iterator G = M.global_begin(), E = M.global_end(); G != E; ++G) { if (ShouldInstrumentGlobal(G)) GlobalsToChange.push_back(G); } size_t n = GlobalsToChange.size(); if (n == 0) return false; // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // size_t has_dynamic_init; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, NULL); SmallVector<Constant *, 16> Initializers(n), DynamicInit; IRBuilder<> IRB(CtorInsertBefore); if (ClInitializers) FindDynamicInitializers(M); // The addresses of the first and last dynamically initialized globals in // this TU. Used in initialization order checking. Value *FirstDynamic = 0, *LastDynamic = 0; for (size_t i = 0; i < n; i++) { GlobalVariable *G = GlobalsToChange[i]; PointerType *PtrTy = cast<PointerType>(G->getType()); Type *Ty = PtrTy->getElementType(); uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); uint64_t RightRedzoneSize = RedzoneSize + (RedzoneSize - (SizeInBytes % RedzoneSize)); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); // Determine whether this global should be poisoned in initialization. bool GlobalHasDynamicInitializer = HasDynamicInitializer(G); // Don't check initialization order if this global is blacklisted. GlobalHasDynamicInitializer &= !BL->isInInit(*G); StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy), NULL); SmallString<2048> DescriptionOfGlobal = G->getName(); DescriptionOfGlobal += " ("; DescriptionOfGlobal += M.getModuleIdentifier(); DescriptionOfGlobal += ")"; GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal); // Create a new global variable with enough space for a redzone. GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), G->getLinkage(), NewInitializer, "", G, G->getThreadLocalMode()); NewGlobal->copyAttributesFrom(G); NewGlobal->setAlignment(RedzoneSize); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); Initializers[i] = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer), NULL); // Populate the first and last globals declared in this TU. if (ClInitializers && GlobalHasDynamicInitializer) { LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy); if (FirstDynamic == 0) FirstDynamic = LastDynamic; } DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal); } ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); GlobalVariable *AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage, ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); // Create calls for poisoning before initializers run and unpoisoning after. if (ClInitializers && FirstDynamic && LastDynamic) createInitializerPoisonCalls(M, FirstDynamic, LastDynamic); Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); IRB.CreateCall2(AsanRegisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); // We also need to unregister globals at the end, e.g. when a shared library // gets closed. Function *AsanDtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); Function *AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); IRB_Dtor.CreateCall2(AsanUnregisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); DEBUG(dbgs() << M); return true; }
// This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. bool AddressSanitizer::insertGlobalRedzones(Module &M) { SmallVector<GlobalVariable *, 16> GlobalsToChange; for (Module::GlobalListType::iterator G = M.getGlobalList().begin(), E = M.getGlobalList().end(); G != E; ++G) { Type *Ty = cast<PointerType>(G->getType())->getElementType(); DEBUG(dbgs() << "GLOBAL: " << *G); if (!Ty->isSized()) continue; if (!G->hasInitializer()) continue; // Touch only those globals that will not be defined in other modules. // Don't handle ODR type linkages since other modules may be built w/o asan. if (G->getLinkage() != GlobalVariable::ExternalLinkage && G->getLinkage() != GlobalVariable::PrivateLinkage && G->getLinkage() != GlobalVariable::InternalLinkage) continue; // Two problems with thread-locals: // - The address of the main thread's copy can't be computed at link-time. // - Need to poison all copies, not just the main thread's one. if (G->isThreadLocal()) continue; // For now, just ignore this Alloca if the alignment is large. if (G->getAlignment() > RedzoneSize) continue; // Ignore all the globals with the names starting with "\01L_OBJC_". // Many of those are put into the .cstring section. The linker compresses // that section by removing the spare \0s after the string terminator, so // our redzones get broken. if ((G->getName().find("\01L_OBJC_") == 0) || (G->getName().find("\01l_OBJC_") == 0)) { DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); continue; } if (G->hasSection()) { StringRef Section(G->getSection()); // Ignore the globals from the __OBJC section. The ObjC runtime assumes // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to // them. if ((Section.find("__OBJC,") == 0) || (Section.find("__DATA, __objc_") == 0)) { DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); continue; } // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 // Constant CFString instances are compiled in the following way: // -- the string buffer is emitted into // __TEXT,__cstring,cstring_literals // -- the constant NSConstantString structure referencing that buffer // is placed into __DATA,__cfstring // Therefore there's no point in placing redzones into __DATA,__cfstring. // Moreover, it causes the linker to crash on OS X 10.7 if (Section.find("__DATA,__cfstring") == 0) { DEBUG(dbgs() << "Ignoring CFString: " << *G); continue; } } GlobalsToChange.push_back(G); } size_t n = GlobalsToChange.size(); if (n == 0) return false; // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, NULL); SmallVector<Constant *, 16> Initializers(n); IRBuilder<> IRB(CtorInsertBefore); for (size_t i = 0; i < n; i++) { GlobalVariable *G = GlobalsToChange[i]; PointerType *PtrTy = cast<PointerType>(G->getType()); Type *Ty = PtrTy->getElementType(); uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8; uint64_t RightRedzoneSize = RedzoneSize + (RedzoneSize - (SizeInBytes % RedzoneSize)); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy), NULL); SmallString<2048> DescriptionOfGlobal = G->getName(); DescriptionOfGlobal += " ("; DescriptionOfGlobal += M.getModuleIdentifier(); DescriptionOfGlobal += ")"; GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal); // Create a new global variable with enough space for a redzone. GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), G->getLinkage(), NewInitializer, "", G, G->isThreadLocal()); NewGlobal->copyAttributesFrom(G); NewGlobal->setAlignment(RedzoneSize); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); Initializers[i] = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), NULL); DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal); } ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); GlobalVariable *AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage, ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); Function *AsanRegisterGlobals = cast<Function>(M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); IRB.CreateCall2(AsanRegisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); // We also need to unregister globals at the end, e.g. when a shared library // gets closed. Function *AsanDtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); Function *AsanUnregisterGlobals = cast<Function>(M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); IRB_Dtor.CreateCall2(AsanUnregisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); DEBUG(dbgs() << M); return true; }
/// emit_global_to_llvm - Emit the specified VAR_DECL or aggregate CONST_DECL to /// LLVM as a global variable. This function implements the end of /// assemble_variable. void emit_global_to_llvm(tree decl) { if (errorcount || sorrycount) return; // FIXME: Support alignment on globals: DECL_ALIGN. // FIXME: DECL_PRESERVE_P indicates the var is marked with attribute 'used'. // Global register variables don't turn into LLVM GlobalVariables. if (TREE_CODE(decl) == VAR_DECL && DECL_REGISTER(decl)) return; timevar_push(TV_LLVM_GLOBALS); // Get or create the global variable now. GlobalVariable *GV = cast<GlobalVariable>(DECL_LLVM(decl)); // Convert the initializer over. Constant *Init; if (DECL_INITIAL(decl) == 0 || DECL_INITIAL(decl) == error_mark_node) { // This global should be zero initialized. Reconvert the type in case the // forward def of the global and the real def differ in type (e.g. declared // as 'int A[]', and defined as 'int A[100]'). Init = Constant::getNullValue(ConvertType(TREE_TYPE(decl))); } else { assert((TREE_CONSTANT(DECL_INITIAL(decl)) || TREE_CODE(DECL_INITIAL(decl)) == STRING_CST) && "Global initializer should be constant!"); // Temporarily set an initializer for the global, so we don't infinitely // recurse. If we don't do this, we can hit cases where we see "oh a global // with an initializer hasn't been initialized yet, call emit_global_to_llvm // on it". When constructing the initializer it might refer to itself. // this can happen for things like void *G = &G; // GV->setInitializer(UndefValue::get(GV->getType()->getElementType())); Init = TreeConstantToLLVM::Convert(DECL_INITIAL(decl)); } // If we had a forward definition that has a type that disagrees with our // initializer, insert a cast now. This sort of thing occurs when we have a // global union, and the LLVM type followed a union initializer that is // different from the union element used for the type. if (GV->getType()->getElementType() != Init->getType()) { GV->removeFromParent(); GlobalVariable *NGV = new GlobalVariable(Init->getType(), GV->isConstant(), GlobalValue::ExternalLinkage, 0, GV->getName(), TheModule); GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType())); delete GV; SET_DECL_LLVM(decl, NGV); GV = NGV; } // Set the initializer. GV->setInitializer(Init); // Set thread local (TLS) if (TREE_CODE(decl) == VAR_DECL && DECL_THREAD_LOCAL(decl)) GV->setThreadLocal(true); // Set the linkage. if (!TREE_PUBLIC(decl)) { GV->setLinkage(GlobalValue::InternalLinkage); } else if (DECL_WEAK(decl) || DECL_ONE_ONLY(decl) || (DECL_COMMON(decl) && // DECL_COMMON is only meaningful if no init (!DECL_INITIAL(decl) || DECL_INITIAL(decl) == error_mark_node))) { // llvm-gcc also includes DECL_VIRTUAL_P here. GV->setLinkage(GlobalValue::WeakLinkage); } else if (DECL_COMDAT(decl)) { GV->setLinkage(GlobalValue::LinkOnceLinkage); } #ifdef TARGET_ADJUST_LLVM_LINKAGE TARGET_ADJUST_LLVM_LINKAGE(GV,decl); #endif /* TARGET_ADJUST_LLVM_LINKAGE */ // Handle visibility style if (TREE_PUBLIC(decl)) { if (DECL_VISIBILITY(decl) == VISIBILITY_HIDDEN) GV->setVisibility(GlobalValue::HiddenVisibility); else if (DECL_VISIBILITY(decl) == VISIBILITY_PROTECTED) GV->setVisibility(GlobalValue::ProtectedVisibility); } // Set the section for the global. if (TREE_CODE(decl) == VAR_DECL || TREE_CODE(decl) == CONST_DECL) { if (DECL_SECTION_NAME(decl)) { GV->setSection(TREE_STRING_POINTER(DECL_SECTION_NAME(decl))); #ifdef LLVM_IMPLICIT_TARGET_GLOBAL_VAR_SECTION } else if (const char *Section = LLVM_IMPLICIT_TARGET_GLOBAL_VAR_SECTION(decl)) { GV->setSection(Section); #endif } // Set the alignment for the global if one of the following condition is met // 1) DECL_ALIGN_UNIT does not match alignment as per ABI specification // 2) DECL_ALIGN is set by user. if (DECL_ALIGN_UNIT(decl)) { unsigned TargetAlign = getTargetData().getABITypeAlignment(GV->getType()->getElementType()); if (DECL_USER_ALIGN(decl) || TargetAlign != DECL_ALIGN_UNIT(decl)) GV->setAlignment(DECL_ALIGN_UNIT(decl)); } // Handle used decls if (DECL_PRESERVE_P (decl)) { const Type *SBP= PointerType::get(Type::Int8Ty); AttributeUsedGlobals.push_back(ConstantExpr::getBitCast(GV, SBP)); } // Add annotate attributes for globals if (DECL_ATTRIBUTES(decl)) AddAnnotateAttrsToGlobal(GV, decl); } if (TheDebugInfo) TheDebugInfo->EmitGlobalVariable(GV, decl); timevar_pop(TV_LLVM_GLOBALS); }