void kruskalCluster(Graph & G) { std::vector<Cluster> clusters; for (SnapNode NI = G->BegNI(); NI < G->EndNI(); NI++) { Cluster c; c.empty = false; c.clusterElements.push_back(NI.GetDat()); clusters.push_back(c); } std::vector <SnapEdge> result; std::deque <SnapEdge> Q; for (SnapEdge NI = G->BegEI(); NI < G->EndEI(); NI++) { Q.push_back(NI); } while(!Q.empty()) { std::sort(Q.begin(), Q.end(), sortClusters); SnapEdge edge = Q.front(); Q.pop_front(); if(!compareCluster((int)edge.GetSrcNDat(), (int)edge.GetDstNDat(), clusters)) { result.push_back(edge); } } for(int i = 0; i<result.size(); i++) { std::cout << "(" << result[i].GetSrcNDat() << ", " << result[i].GetDstNDat() << ", " << result[i].GetDat() << ")" << std::endl; } }
int getLargestNode(Graph & G) { int largest = G->BegNI().GetDat(); for (SnapNode NI = G->BegNI(); NI != G->EndNI(); NI++) { if(NI.GetDat() > largest) largest = NI.GetDat(); } return largest; }
void printDetail(Graph & G) { for (SnapNode NI = G->BegNI(); NI != G->EndNI(); NI++) { std::cout << "Id: " << NI.GetId() << " Out Degree: " << NI.GetOutDeg() << " In Degree: " << NI.GetInDeg() << std::endl; } for (SnapEdge NI = G->BegEI(); NI < G->EndEI(); NI++) { std::cout << "Edge from " << (int)NI.GetSrcNDat() << " --> " << (int)NI.GetDstNDat() << " with weight " << (int)NI.GetDstNDat() << std::endl; } }
void dijkstra(Graph & G, int v, bool bench) { int size = G->GetNodes(); std::vector<float> distances (size,inf); std::vector<int> parents (size,-1); std::priority_queue<std::pair<float, Graph::TObj::TNodeI> > queue; distances[v-1] = 0; parents[v-1] = -1; for(SnapNode NI = G->BegNI(); NI != G->EndNI(); NI++) { queue.push(std::make_pair(distances[NI.GetDat()-1], NI)); } while(!queue.empty()) { SnapNode u = queue.top().second; float dist = queue.top().first; queue.pop(); int sourceNode = u.GetDat(); for (int ed = 0; ed < u.GetOutDeg(); ed++)//For each adjacent vertex to node NI { int destNode = u.GetOutNDat(ed); SnapEdge e = G->GetEI(sourceNode,destNode); float alt = dist + e.GetDat(); if(alt < distances[destNode-1])//relax { distances[destNode-1] = alt; parents[destNode-1] = sourceNode; queue.push(std::make_pair(alt, G->GetNI(destNode))); } } } if(!bench) { int node = 1; for (int i = 0 ; i< parents.size(); i++) { if(parents[node-1] == -1) std::cout << "start -> " << node << " distance: " << distances[node-1] << std::endl; else std::cout << parents[node-1] << " -> " << node << " distance: " << distances[node-1] << std::endl; node++; } } }
void kruskal(Graph & G, bool bench) { int largestNode = getLargestNode(G); std::vector<disjointTreeNode*> disjointNodes(largestNode); std::vector<SnapEdge> result; std::deque<SnapEdge> Q; for(SnapNode NI = G->BegNI(); NI < G->EndNI(); NI++) { disjointTreeNode* x = new disjointTreeNode(); x->id = NI.GetDat(); makeSet(x); disjointNodes[x->id-1] = x; } for (SnapEdge NI = G->BegEI(); NI < G->EndEI(); NI++) { Q.push_back(NI); } while (! Q.empty()) { std::sort(Q.begin(), Q.end(), sortClusters); SnapEdge e = Q.front(); Q.pop_front(); disjointTreeNode* u = Find(disjointNodes[e.GetSrcNDat()-1]); disjointTreeNode* v = Find(disjointNodes[e.GetDstNDat()()-1]); if ( u != v ) { result.push_back(e); Union(disjointNodes[e.GetSrcNDat()-1], disjointNodes[e.GetDstNDat()-1]); } } if(!bench) { for(int i = 0; i<result.size(); i++) { std::cout << result[i].GetSrcNDat() << " --> " << result[i].GetDstNDat() << " peso: " << result[i].GetDat() << std::endl; } } }