GrowableArray<MonitorValue*>* ScopeDesc::decode_monitor_values(int decode_offset) {
  if (decode_offset == DebugInformationRecorder::serialized_null) return NULL;
  DebugInfoReadStream* stream  = stream_at(decode_offset);
  int length = stream->read_int();
  GrowableArray<MonitorValue*>* result = new GrowableArray<MonitorValue*> (length);
  for (int index = 0; index < length; index++) {
    result->push(new MonitorValue(stream));
  }
  return result;
}
예제 #2
0
void LoopFinder::gather_loop_blocks(LoopList* loops) {
  int lng = loops->length();
  BitMap blocks_in_loop(max_blocks());
  for (int i = 0; i < lng; i++) {
    // for each loop do the following
    blocks_in_loop.clear();
    Loop* loop = loops->at(i);
    BlockList* ends = loop->ends();
    if (!loop->is_end(loop->start())) {
      GrowableArray<BlockBegin*>* stack = new GrowableArray<BlockBegin*>();
      blocks_in_loop.at_put(loop->start()->block_id(), true);
      
      // insert all the ends into the list
      for (int i = 0; i < ends->length(); i++) {
        blocks_in_loop.at_put(ends->at(i)->block_id()  , true);
        stack->push(ends->at(i));
      }
      
      while (!stack->is_empty()) {
        BlockBegin* bb = stack->pop();
        BlockLoopInfo* bli = get_block_info(bb);
        // push all predecessors that are not yet in loop
        int npreds = bli->nof_preds();
        for (int m = 0; m < npreds; m++) {
          BlockBegin* pred = bli->pred_no(m);
          if (!blocks_in_loop.at(pred->block_id())) {
            blocks_in_loop.at_put(pred->block_id(), true);
            loop->append_node(pred);
            stack->push(pred);
          }
        }
      }
      loop->append_node(loop->start());
    }
    // insert all the ends into the loop
    for (int i = 0; i < ends->length(); i++) {
      loop->append_node(ends->at(i));
    }
  }
}
예제 #3
0
void compiledVFrame::update_local(BasicType type, int index, jvalue value) {

#ifdef ASSERT

  assert(fr().is_deoptimized_frame(), "frame must be scheduled for deoptimization");
#endif /* ASSERT */
  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = thread()->deferred_locals();
  if (deferred != NULL ) {
    // See if this vframe has already had locals with deferred writes
    int f;
    for ( f = 0 ; f < deferred->length() ; f++ ) {
      if (deferred->at(f)->matches(this)) {
        // Matching, vframe now see if the local already had deferred write
        GrowableArray<jvmtiDeferredLocalVariable*>* locals = deferred->at(f)->locals();
        int l;
        for (l = 0 ; l < locals->length() ; l++ ) {
          if (locals->at(l)->index() == index) {
            locals->at(l)->set_value(value);
            return;
          }
        }
        // No matching local already present. Push a new value onto the deferred collection
        locals->push(new jvmtiDeferredLocalVariable(index, type, value));
        return;
      }
    }
    // No matching vframe must push a new vframe
  } else {
    // No deferred updates pending for this thread.
    // allocate in C heap
    deferred =  new(ResourceObj::C_HEAP, mtCompiler) GrowableArray<jvmtiDeferredLocalVariableSet*> (1, true);
    thread()->set_deferred_locals(deferred);
  }
  deferred->push(new jvmtiDeferredLocalVariableSet(method(), bci(), fr().id()));
  assert(deferred->top()->id() == fr().id(), "Huh? Must match");
  deferred->top()->set_local_at(index, type, value);
}
void vframe::update_local(JavaThread* thread, BasicType type, int index, jvalue value) {
  frame fr = this->get_frame();

  // AZUL - We use extra slots to accomodate tags for longs and doubles
  // in the compiler as well.
if(type==T_LONG||type==T_DOUBLE){
index=index+1;
  }

#ifdef ASSERT
  Unimplemented();
  //CodeBlob* b = CodeCache::find_blob(fr.pc());
  //assert(b->is_patched_for_deopt(), "frame must be scheduled for deoptimization");
#endif /* ASSERT */
GrowableArray<jvmtiDeferredLocalVariableSet*>*deferred=thread->deferred_locals();
  if (deferred != NULL ) {
    // See if this vframe has already had locals with deferred writes
    int f;
    for ( f = 0 ; f < deferred->length() ; f++ ) {
      if (deferred->at(f)->matches(this)) {
	// Matching, vframe now see if the local already had deferred write
	GrowableArray<jvmtiDeferredLocalVariable*>* locals = deferred->at(f)->locals();
	int l;
	for (l = 0 ; l < locals->length() ; l++ ) {
	  if (locals->at(l)->index() == index) {
	    locals->at(l)->set_value(value);
	    return;
	  }
	}
	// No matching local already present. Push a new value onto the deferred collection
	locals->push(new jvmtiDeferredLocalVariable(index, type, value));
	return;
      }
    }
    // No matching vframe must push a new vframe
  } else {
    // No deferred updates pending for this thread.
    // allocate in C heap
    deferred =  new(ResourceObj::C_HEAP) GrowableArray<jvmtiDeferredLocalVariableSet*> (1, true);
    thread->set_deferred_locals(deferred);
  }
  // Because the frame is patched for deopt and we will push in
  // registers in uncommon_trap, we will use the sender's sp to compare
  deferred->push(new jvmtiDeferredLocalVariableSet(method(), bci(), fr.pd_sender().sp()));
  assert(deferred->top()->id() == fr.pd_sender().sp(), "Huh? Must match");
  deferred->top()->set_local_at(index, type, value);
}
GrowableArray<ClassLoaderData*>* ClassLoaderDataGraph::new_clds() {
  assert(_head == NULL || _saved_head != NULL, "remember_new_clds(true) not called?");

  GrowableArray<ClassLoaderData*>* array = new GrowableArray<ClassLoaderData*>();

  // The CLDs in [_head, _saved_head] were all added during last call to remember_new_clds(true);
  ClassLoaderData* curr = _head;
  while (curr != _saved_head) {
    if (!curr->claimed()) {
      array->push(curr);

      if (TraceClassLoaderData) {
        tty->print("[ClassLoaderData] found new CLD: ");
        curr->print_value_on(tty);
        tty->cr();
      }
    }

    curr = curr->_next;
  }

  return array;
}
void BCEscapeAnalyzer::iterate_one_block(ciBlock *blk, StateInfo &state, GrowableArray<ciBlock *> &successors) {

  blk->set_processed();
  ciBytecodeStream s(method());
  int limit_bci = blk->limit_bci();
  bool fall_through = false;
  ArgumentMap allocated_obj;
  allocated_obj.add_allocated();
  ArgumentMap unknown_obj;
  unknown_obj.add_unknown();
  ArgumentMap empty_map;

  s.reset_to_bci(blk->start_bci());
  while (s.next() != ciBytecodeStream::EOBC() && s.cur_bci() < limit_bci) {
    fall_through = true;
    switch (s.cur_bc()) {
      case Bytecodes::_nop:
        break;
      case Bytecodes::_aconst_null:
        state.apush(empty_map);
        break;
      case Bytecodes::_iconst_m1:
      case Bytecodes::_iconst_0:
      case Bytecodes::_iconst_1:
      case Bytecodes::_iconst_2:
      case Bytecodes::_iconst_3:
      case Bytecodes::_iconst_4:
      case Bytecodes::_iconst_5:
      case Bytecodes::_fconst_0:
      case Bytecodes::_fconst_1:
      case Bytecodes::_fconst_2:
      case Bytecodes::_bipush:
      case Bytecodes::_sipush:
        state.spush();
        break;
      case Bytecodes::_lconst_0:
      case Bytecodes::_lconst_1:
      case Bytecodes::_dconst_0:
      case Bytecodes::_dconst_1:
        state.lpush();
        break;
      case Bytecodes::_ldc:
      case Bytecodes::_ldc_w:
      case Bytecodes::_ldc2_w:
        if (type2size[s.get_constant().basic_type()] == 1) {
          state.spush();
        } else {
          state.lpush();
        }
        break;
      case Bytecodes::_aload:
        state.apush(state._vars[s.get_index()]);
        break;
      case Bytecodes::_iload:
      case Bytecodes::_fload:
      case Bytecodes::_iload_0:
      case Bytecodes::_iload_1:
      case Bytecodes::_iload_2:
      case Bytecodes::_iload_3:
      case Bytecodes::_fload_0:
      case Bytecodes::_fload_1:
      case Bytecodes::_fload_2:
      case Bytecodes::_fload_3:
        state.spush();
        break;
      case Bytecodes::_lload:
      case Bytecodes::_dload:
      case Bytecodes::_lload_0:
      case Bytecodes::_lload_1:
      case Bytecodes::_lload_2:
      case Bytecodes::_lload_3:
      case Bytecodes::_dload_0:
      case Bytecodes::_dload_1:
      case Bytecodes::_dload_2:
      case Bytecodes::_dload_3:
        state.lpush();
        break;
      case Bytecodes::_aload_0:
        state.apush(state._vars[0]);
        break;
      case Bytecodes::_aload_1:
        state.apush(state._vars[1]);
        break;
      case Bytecodes::_aload_2:
        state.apush(state._vars[2]);
        break;
      case Bytecodes::_aload_3:
        state.apush(state._vars[3]);
        break;
      case Bytecodes::_iaload:
      case Bytecodes::_faload:
      case Bytecodes::_baload:
      case Bytecodes::_caload:
      case Bytecodes::_saload:
        state.spop();
        set_method_escape(state.apop());
        state.spush();
        break;
      case Bytecodes::_laload:
      case Bytecodes::_daload:
        state.spop();
        set_method_escape(state.apop());
        state.lpush();
        break;
      case Bytecodes::_aaload:
        { state.spop();
          ArgumentMap array = state.apop();
          set_method_escape(array);
          state.apush(unknown_obj);
          set_dirty(array);
        }
        break;
      case Bytecodes::_istore:
      case Bytecodes::_fstore:
      case Bytecodes::_istore_0:
      case Bytecodes::_istore_1:
      case Bytecodes::_istore_2:
      case Bytecodes::_istore_3:
      case Bytecodes::_fstore_0:
      case Bytecodes::_fstore_1:
      case Bytecodes::_fstore_2:
      case Bytecodes::_fstore_3:
        state.spop();
        break;
      case Bytecodes::_lstore:
      case Bytecodes::_dstore:
      case Bytecodes::_lstore_0:
      case Bytecodes::_lstore_1:
      case Bytecodes::_lstore_2:
      case Bytecodes::_lstore_3:
      case Bytecodes::_dstore_0:
      case Bytecodes::_dstore_1:
      case Bytecodes::_dstore_2:
      case Bytecodes::_dstore_3:
        state.lpop();
        break;
      case Bytecodes::_astore:
        state._vars[s.get_index()] = state.apop();
        break;
      case Bytecodes::_astore_0:
        state._vars[0] = state.apop();
        break;
      case Bytecodes::_astore_1:
        state._vars[1] = state.apop();
        break;
      case Bytecodes::_astore_2:
        state._vars[2] = state.apop();
        break;
      case Bytecodes::_astore_3:
        state._vars[3] = state.apop();
        break;
      case Bytecodes::_iastore:
      case Bytecodes::_fastore:
      case Bytecodes::_bastore:
      case Bytecodes::_castore:
      case Bytecodes::_sastore:
      {
        state.spop();
        state.spop();
        ArgumentMap arr = state.apop();
        set_method_escape(arr);
        break;
      }
      case Bytecodes::_lastore:
      case Bytecodes::_dastore:
      {
        state.lpop();
        state.spop();
        ArgumentMap arr = state.apop();
        set_method_escape(arr);
        break;
      }
      case Bytecodes::_aastore:
      {
        set_global_escape(state.apop());
        state.spop();
        ArgumentMap arr = state.apop();
        break;
      }
      case Bytecodes::_pop:
        state.raw_pop();
        break;
      case Bytecodes::_pop2:
        state.raw_pop();
        state.raw_pop();
        break;
      case Bytecodes::_dup:
        { ArgumentMap w1 = state.raw_pop();
          state.raw_push(w1);
          state.raw_push(w1);
        }
        break;
      case Bytecodes::_dup_x1:
        { ArgumentMap w1 = state.raw_pop();
          ArgumentMap w2 = state.raw_pop();
          state.raw_push(w1);
          state.raw_push(w2);
          state.raw_push(w1);
        }
        break;
      case Bytecodes::_dup_x2:
        { ArgumentMap w1 = state.raw_pop();
          ArgumentMap w2 = state.raw_pop();
          ArgumentMap w3 = state.raw_pop();
          state.raw_push(w1);
          state.raw_push(w3);
          state.raw_push(w2);
          state.raw_push(w1);
        }
        break;
      case Bytecodes::_dup2:
        { ArgumentMap w1 = state.raw_pop();
          ArgumentMap w2 = state.raw_pop();
          state.raw_push(w2);
          state.raw_push(w1);
          state.raw_push(w2);
          state.raw_push(w1);
        }
        break;
      case Bytecodes::_dup2_x1:
        { ArgumentMap w1 = state.raw_pop();
          ArgumentMap w2 = state.raw_pop();
          ArgumentMap w3 = state.raw_pop();
          state.raw_push(w2);
          state.raw_push(w1);
          state.raw_push(w3);
          state.raw_push(w2);
          state.raw_push(w1);
        }
        break;
      case Bytecodes::_dup2_x2:
        { ArgumentMap w1 = state.raw_pop();
          ArgumentMap w2 = state.raw_pop();
          ArgumentMap w3 = state.raw_pop();
          ArgumentMap w4 = state.raw_pop();
          state.raw_push(w2);
          state.raw_push(w1);
          state.raw_push(w4);
          state.raw_push(w3);
          state.raw_push(w2);
          state.raw_push(w1);
        }
        break;
      case Bytecodes::_swap:
        { ArgumentMap w1 = state.raw_pop();
          ArgumentMap w2 = state.raw_pop();
          state.raw_push(w1);
          state.raw_push(w2);
        }
        break;
      case Bytecodes::_iadd:
      case Bytecodes::_fadd:
      case Bytecodes::_isub:
      case Bytecodes::_fsub:
      case Bytecodes::_imul:
      case Bytecodes::_fmul:
      case Bytecodes::_idiv:
      case Bytecodes::_fdiv:
      case Bytecodes::_irem:
      case Bytecodes::_frem:
      case Bytecodes::_iand:
      case Bytecodes::_ior:
      case Bytecodes::_ixor:
        state.spop();
        state.spop();
        state.spush();
        break;
      case Bytecodes::_ladd:
      case Bytecodes::_dadd:
      case Bytecodes::_lsub:
      case Bytecodes::_dsub:
      case Bytecodes::_lmul:
      case Bytecodes::_dmul:
      case Bytecodes::_ldiv:
      case Bytecodes::_ddiv:
      case Bytecodes::_lrem:
      case Bytecodes::_drem:
      case Bytecodes::_land:
      case Bytecodes::_lor:
      case Bytecodes::_lxor:
        state.lpop();
        state.lpop();
        state.lpush();
        break;
      case Bytecodes::_ishl:
      case Bytecodes::_ishr:
      case Bytecodes::_iushr:
        state.spop();
        state.spop();
        state.spush();
        break;
      case Bytecodes::_lshl:
      case Bytecodes::_lshr:
      case Bytecodes::_lushr:
        state.spop();
        state.lpop();
        state.lpush();
        break;
      case Bytecodes::_ineg:
      case Bytecodes::_fneg:
        state.spop();
        state.spush();
        break;
      case Bytecodes::_lneg:
      case Bytecodes::_dneg:
        state.lpop();
        state.lpush();
        break;
      case Bytecodes::_iinc:
        break;
      case Bytecodes::_i2l:
      case Bytecodes::_i2d:
      case Bytecodes::_f2l:
      case Bytecodes::_f2d:
        state.spop();
        state.lpush();
        break;
      case Bytecodes::_i2f:
      case Bytecodes::_f2i:
        state.spop();
        state.spush();
        break;
      case Bytecodes::_l2i:
      case Bytecodes::_l2f:
      case Bytecodes::_d2i:
      case Bytecodes::_d2f:
        state.lpop();
        state.spush();
        break;
      case Bytecodes::_l2d:
      case Bytecodes::_d2l:
        state.lpop();
        state.lpush();
        break;
      case Bytecodes::_i2b:
      case Bytecodes::_i2c:
      case Bytecodes::_i2s:
        state.spop();
        state.spush();
        break;
      case Bytecodes::_lcmp:
      case Bytecodes::_dcmpl:
      case Bytecodes::_dcmpg:
        state.lpop();
        state.lpop();
        state.spush();
        break;
      case Bytecodes::_fcmpl:
      case Bytecodes::_fcmpg:
        state.spop();
        state.spop();
        state.spush();
        break;
      case Bytecodes::_ifeq:
      case Bytecodes::_ifne:
      case Bytecodes::_iflt:
      case Bytecodes::_ifge:
      case Bytecodes::_ifgt:
      case Bytecodes::_ifle:
      {
        state.spop();
        int dest_bci = s.get_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        successors.push(_methodBlocks->block_containing(dest_bci));
        break;
      }
      case Bytecodes::_if_icmpeq:
      case Bytecodes::_if_icmpne:
      case Bytecodes::_if_icmplt:
      case Bytecodes::_if_icmpge:
      case Bytecodes::_if_icmpgt:
      case Bytecodes::_if_icmple:
      {
        state.spop();
        state.spop();
        int dest_bci = s.get_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        successors.push(_methodBlocks->block_containing(dest_bci));
        break;
      }
      case Bytecodes::_if_acmpeq:
      case Bytecodes::_if_acmpne:
      {
        set_method_escape(state.apop());
        set_method_escape(state.apop());
        int dest_bci = s.get_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        successors.push(_methodBlocks->block_containing(dest_bci));
        break;
      }
      case Bytecodes::_goto:
      {
        int dest_bci = s.get_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        successors.push(_methodBlocks->block_containing(dest_bci));
        fall_through = false;
        break;
      }
      case Bytecodes::_jsr:
      {
        int dest_bci = s.get_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        state.apush(empty_map);
        successors.push(_methodBlocks->block_containing(dest_bci));
        fall_through = false;
        break;
      }
      case Bytecodes::_ret:
        // we don't track  the destination of a "ret" instruction
        assert(s.next_bci() == limit_bci, "branch must end block");
        fall_through = false;
        break;
      case Bytecodes::_return:
        assert(s.next_bci() == limit_bci, "return must end block");
        fall_through = false;
        break;
      case Bytecodes::_tableswitch:
        {
          state.spop();
          Bytecode_tableswitch* switch_ = Bytecode_tableswitch_at(s.cur_bcp());
          int len = switch_->length();
          int dest_bci;
          for (int i = 0; i < len; i++) {
            dest_bci = s.cur_bci() + switch_->dest_offset_at(i);
            assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
            successors.push(_methodBlocks->block_containing(dest_bci));
          }
          dest_bci = s.cur_bci() + switch_->default_offset();
          assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
          successors.push(_methodBlocks->block_containing(dest_bci));
          assert(s.next_bci() == limit_bci, "branch must end block");
          fall_through = false;
          break;
        }
      case Bytecodes::_lookupswitch:
        {
          state.spop();
          Bytecode_lookupswitch* switch_ = Bytecode_lookupswitch_at(s.cur_bcp());
          int len = switch_->number_of_pairs();
          int dest_bci;
          for (int i = 0; i < len; i++) {
            dest_bci = s.cur_bci() + switch_->pair_at(i)->offset();
            assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
            successors.push(_methodBlocks->block_containing(dest_bci));
          }
          dest_bci = s.cur_bci() + switch_->default_offset();
          assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
          successors.push(_methodBlocks->block_containing(dest_bci));
          fall_through = false;
          break;
        }
      case Bytecodes::_ireturn:
      case Bytecodes::_freturn:
        state.spop();
        fall_through = false;
        break;
      case Bytecodes::_lreturn:
      case Bytecodes::_dreturn:
        state.lpop();
        fall_through = false;
        break;
      case Bytecodes::_areturn:
        set_returned(state.apop());
        fall_through = false;
        break;
      case Bytecodes::_getstatic:
      case Bytecodes::_getfield:
        { bool will_link;
          ciField* field = s.get_field(will_link);
          BasicType field_type = field->type()->basic_type();
          if (s.cur_bc() != Bytecodes::_getstatic) {
            set_method_escape(state.apop());
          }
          if (field_type == T_OBJECT || field_type == T_ARRAY) {
            state.apush(unknown_obj);
          } else if (type2size[field_type] == 1) {
            state.spush();
          } else {
            state.lpush();
          }
        }
        break;
      case Bytecodes::_putstatic:
      case Bytecodes::_putfield:
        { bool will_link;
          ciField* field = s.get_field(will_link);
          BasicType field_type = field->type()->basic_type();
          if (field_type == T_OBJECT || field_type == T_ARRAY) {
            set_global_escape(state.apop());
          } else if (type2size[field_type] == 1) {
            state.spop();
          } else {
            state.lpop();
          }
          if (s.cur_bc() != Bytecodes::_putstatic) {
            ArgumentMap p = state.apop();
            set_method_escape(p);
          }
        }
        break;
      case Bytecodes::_invokevirtual:
      case Bytecodes::_invokespecial:
      case Bytecodes::_invokestatic:
      case Bytecodes::_invokeinterface:
        { bool will_link;
          ciMethod* target = s.get_method(will_link);
          ciKlass* holder = s.get_declared_method_holder();
          invoke(state, s.cur_bc(), target, holder);
          ciType* return_type = target->return_type();
          if (!return_type->is_primitive_type()) {
            state.apush(unknown_obj);
          } else if (return_type->is_one_word()) {
            state.spush();
          } else if (return_type->is_two_word()) {
            state.lpush();
          }
        }
        break;
      case Bytecodes::_xxxunusedxxx:
        ShouldNotReachHere();
        break;
      case Bytecodes::_new:
        state.apush(allocated_obj);
        break;
      case Bytecodes::_newarray:
      case Bytecodes::_anewarray:
        state.spop();
        state.apush(allocated_obj);
        break;
      case Bytecodes::_multianewarray:
        { int i = s.cur_bcp()[3];
          while (i-- > 0) state.spop();
          state.apush(allocated_obj);
        }
        break;
      case Bytecodes::_arraylength:
        set_method_escape(state.apop());
        state.spush();
        break;
      case Bytecodes::_athrow:
        set_global_escape(state.apop());
        fall_through = false;
        break;
      case Bytecodes::_checkcast:
        { ArgumentMap obj = state.apop();
          set_method_escape(obj);
          state.apush(obj);
        }
        break;
      case Bytecodes::_instanceof:
        set_method_escape(state.apop());
        state.spush();
        break;
      case Bytecodes::_monitorenter:
      case Bytecodes::_monitorexit:
        state.apop();
        break;
      case Bytecodes::_wide:
        ShouldNotReachHere();
        break;
      case Bytecodes::_ifnull:
      case Bytecodes::_ifnonnull:
      {
        set_method_escape(state.apop());
        int dest_bci = s.get_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        successors.push(_methodBlocks->block_containing(dest_bci));
        break;
      }
      case Bytecodes::_goto_w:
      {
        int dest_bci = s.get_far_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        successors.push(_methodBlocks->block_containing(dest_bci));
        fall_through = false;
        break;
      }
      case Bytecodes::_jsr_w:
      {
        int dest_bci = s.get_far_dest();
        assert(_methodBlocks->is_block_start(dest_bci), "branch destination must start a block");
        assert(s.next_bci() == limit_bci, "branch must end block");
        state.apush(empty_map);
        successors.push(_methodBlocks->block_containing(dest_bci));
        fall_through = false;
        break;
      }
      case Bytecodes::_breakpoint:
        break;
      default:
        ShouldNotReachHere();
        break;
    }

  }
  if (fall_through) {
    int fall_through_bci = s.cur_bci();
    if (fall_through_bci < _method->code_size()) {
      assert(_methodBlocks->is_block_start(fall_through_bci), "must fall through to block start.");
      successors.push(_methodBlocks->block_containing(fall_through_bci));
    }
  }
}
예제 #7
0
void Klass::initialize_supers(Klass* k, TRAPS) {
  if (FastSuperclassLimit == 0) {
    // None of the other machinery matters.
    set_super(k);
    return;
  }
  if (k == NULL) {
    set_super(NULL);
    _primary_supers[0] = this;
    assert(super_depth() == 0, "Object must already be initialized properly");
  } else if (k != super() || k == SystemDictionary::Object_klass()) {
    assert(super() == NULL || super() == SystemDictionary::Object_klass(),
           "initialize this only once to a non-trivial value");
    set_super(k);
    Klass* sup = k;
    int sup_depth = sup->super_depth();
    juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
    if (!can_be_primary_super_slow())
      my_depth = primary_super_limit();
    for (juint i = 0; i < my_depth; i++) {
      _primary_supers[i] = sup->_primary_supers[i];
    }
    Klass* *super_check_cell;
    if (my_depth < primary_super_limit()) {
      _primary_supers[my_depth] = this;
      super_check_cell = &_primary_supers[my_depth];
    } else {
      // Overflow of the primary_supers array forces me to be secondary.
      super_check_cell = &_secondary_super_cache;
    }
    set_super_check_offset((address)super_check_cell - (address) this);

#ifdef ASSERT
    {
      juint j = super_depth();
      assert(j == my_depth, "computed accessor gets right answer");
      Klass* t = this;
      while (!t->can_be_primary_super()) {
        t = t->super();
        j = t->super_depth();
      }
      for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
        assert(primary_super_of_depth(j1) == NULL, "super list padding");
      }
      while (t != NULL) {
        assert(primary_super_of_depth(j) == t, "super list initialization");
        t = t->super();
        --j;
      }
      assert(j == (juint)-1, "correct depth count");
    }
#endif
  }

  if (secondary_supers() == NULL) {
    KlassHandle this_kh (THREAD, this);

    // Now compute the list of secondary supertypes.
    // Secondaries can occasionally be on the super chain,
    // if the inline "_primary_supers" array overflows.
    int extras = 0;
    Klass* p;
    for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
      ++extras;
    }

    ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below

    // Compute the "real" non-extra secondaries.
    GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
    if (secondaries == NULL) {
      // secondary_supers set by compute_secondary_supers
      return;
    }

    GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);

    for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
      int i;                    // Scan for overflow primaries being duplicates of 2nd'arys

      // This happens frequently for very deeply nested arrays: the
      // primary superclass chain overflows into the secondary.  The
      // secondary list contains the element_klass's secondaries with
      // an extra array dimension added.  If the element_klass's
      // secondary list already contains some primary overflows, they
      // (with the extra level of array-ness) will collide with the
      // normal primary superclass overflows.
      for( i = 0; i < secondaries->length(); i++ ) {
        if( secondaries->at(i) == p )
          break;
      }
      if( i < secondaries->length() )
        continue;               // It's a dup, don't put it in
      primaries->push(p);
    }
    // Combine the two arrays into a metadata object to pack the array.
    // The primaries are added in the reverse order, then the secondaries.
    int new_length = primaries->length() + secondaries->length();
    Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
                                       class_loader_data(), new_length, CHECK);
    int fill_p = primaries->length();
    for (int j = 0; j < fill_p; j++) {
      s2->at_put(j, primaries->pop());  // add primaries in reverse order.
    }
    for( int j = 0; j < secondaries->length(); j++ ) {
      s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
    }

  #ifdef ASSERT
      // We must not copy any NULL placeholders left over from bootstrap.
    for (int j = 0; j < s2->length(); j++) {
      assert(s2->at(j) != NULL, "correct bootstrapping order");
    }
  #endif

    this_kh->set_secondary_supers(s2);
  }
}
예제 #8
0
bool scan_key(char* line, LookupKey* key) {
  int len = strlen(line);
  if (len > 1 && line[len-1] == '\n') 
    line[len-1] = '\0';

  bool is_super;
  bool is_block;

  char* sub = find_type(line, &is_super, &is_block);
  if (sub == NULL)
    return false;

  *sub = '\0';

  char* class_name = line;
  char* method_id  = sub + 2;
  
  bool class_side = false;
  char* class_start = strstr(class_name, " class");
  if (class_start != NULL) {
    *class_start = '\0';
    class_side = true;
  }

  klassOop rec = klassOop(Universe::find_global(class_name, true));
  if (rec == NULL || !rec->is_klass()) return false;
  if (class_side) rec = rec->klass();


  GrowableArray<int>* bcis = new GrowableArray<int>(10);

  char* bcis_string = strstr(method_id, " ");

  if (bcis_string) {
    *bcis_string++ = '\0';
    while (*bcis_string != '\0') {
      int index;
      int bci;
      if (sscanf(bcis_string, "%d%n", &bci, &index) != 1) return 0;
      bcis->push(bci);
      bcis_string += index;
      if (*bcis_string == ' ') 
        bcis_string++;
    }
  }
  symbolOop selector = oopFactory::new_symbol(method_id);
 
  if (is_block) {
    methodOop met = rec->klass_part()->lookup(selector);
    if (met == NULL) return false;
    for (int index = 0; index < bcis->length(); index++) {
      int bci = bcis->at(index);
      met = met->block_method_at(bci);
      if (met == NULL) return false;
    }
    key->initialize(rec, met);
  } else {
    key->initialize(rec, selector);
  }
  return true;
}
예제 #9
0
// Returns whether the key was succesfully scanned
bool scan_key(RScope* sender, char* line, klassOop* receiver_klass, methodOop* method) {
  bool is_super;
  bool is_block;

  char* sub = find_type(line, &is_super, &is_block);
  if (sub == NULL)
    return false;

  *sub = '\0';

  char* class_name = line;
  char* method_id  = sub + 2;
  
  bool class_side = false;
  char* class_start = strstr(class_name, " class");
  if (class_start != NULL) {
    *class_start = '\0';
    class_side = true;
  }

  klassOop rec = klassOop(Universe::find_global(class_name, true));
  if (rec == NULL || !rec->is_klass()) return false;
  if (class_side) rec = rec->klass();
  *receiver_klass = rec;
 
  GrowableArray<int>* bcis = new GrowableArray<int>(10);

  char* bcis_string = strstr(method_id, " ");

  if (bcis_string) {
    *bcis_string++ = '\0';
    while (*bcis_string != '\0') {
      int index;
      int bci;
      if (sscanf(bcis_string, "%d%n", &bci, &index) != 1) return 0;
      bcis->push(bci);
      bcis_string += index;
      if (*bcis_string == ' ') 
        bcis_string++;
    }
  }
  symbolOop selector = oopFactory::new_symbol(method_id);


  if (is_super) {
    assert(sender, "sender must be present");
    klassOop method_holder = sender->receiverKlass()->klass_part()->lookup_method_holder_for(sender->method());
    
    if (method_holder) {
      methodOop met = method_holder->klass_part()->superKlass()->klass_part()->lookup(selector);
      if (met) {
        *method = met;
	return true;
      }
    }
    return false;
  }

  methodOop met = rec->klass_part()->lookup(selector);
  if (met == NULL) return false;

  for (int index = 0; index < bcis->length(); index++) {
    int bci = bcis->at(index);
    met = met->block_method_at(bci);
    if (met == NULL) return false;
  }

  *method = met;
  return true;
}
예제 #10
0
// Create default_methods list for the current class.
// With the VM only processing erased signatures, the VM only
// creates an overpass in a conflict case or a case with no candidates.
// This allows virtual methods to override the overpass, but ensures
// that a local method search will find the exception rather than an abstract
// or default method that is not a valid candidate.
static void create_defaults_and_exceptions(
    GrowableArray<EmptyVtableSlot*>* slots,
    InstanceKlass* klass, TRAPS) {

  GrowableArray<Method*> overpasses;
  GrowableArray<Method*> defaults;
  BytecodeConstantPool bpool(klass->constants());

  for (int i = 0; i < slots->length(); ++i) {
    EmptyVtableSlot* slot = slots->at(i);

    if (slot->is_bound()) {
      MethodFamily* method = slot->get_binding();
      BytecodeBuffer buffer;

#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print("for slot: ");
        slot->print_on(tty);
        tty->cr();
        if (method->has_target()) {
          method->print_selected(tty, 1);
        } else if (method->throws_exception()) {
          method->print_exception(tty, 1);
        }
      }
#endif // ndef PRODUCT

      if (method->has_target()) {
        Method* selected = method->get_selected_target();
        if (selected->method_holder()->is_interface()) {
          defaults.push(selected);
        }
      } else if (method->throws_exception()) {
        int max_stack = assemble_method_error(&bpool, &buffer,
           method->get_exception_name(), method->get_exception_message(), CHECK);
        AccessFlags flags = accessFlags_from(
          JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
         Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
          flags, max_stack, slot->size_of_parameters(),
          ConstMethod::OVERPASS, CHECK);
        // We push to the methods list:
        // overpass methods which are exception throwing methods
        if (m != NULL) {
          overpasses.push(m);
        }
      }
    }
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Created %d overpass methods", overpasses.length());
    tty->print_cr("Created %d default  methods", defaults.length());
  }
#endif // ndef PRODUCT

  if (overpasses.length() > 0) {
    switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
    merge_in_new_methods(klass, &overpasses, CHECK);
  }
  if (defaults.length() > 0) {
    create_default_methods(klass, &defaults, CHECK);
  }
}
예제 #11
0
 // Register a class as 'in-use' by the thread.  It's fine to register a class
 // multiple times (though perhaps inefficient)
 void register_class(InstanceKlass* ik) {
   ConstantPool* cp = ik->constants();
   _keep_alive.push(cp);
   _thread->metadata_handles()->push(cp);
 }
예제 #12
0
 void push(InstanceKlass* cls, void* data) {
   assert(cls != NULL, "Requires a valid instance class");
   Node* node = new Node(cls, data, has_super(cls));
   _path.push(node);
 }
예제 #13
0
 void add(StackValue *val) const   { _values->push(val); }
예제 #14
0
 void add(astNode* element) {
   elements->push(element);
 }
예제 #15
0
CHAResult* CHA::analyze_call(KlassHandle calling_klass, KlassHandle static_receiver, KlassHandle actual_receiver, 
                             symbolHandle name, symbolHandle signature) {
  assert(static_receiver->oop_is_instance(), "must be instance klass");
  
  methodHandle m;
  // Only do exact lookup if receiver klass has been linked.  Otherwise,
  // the vtables has not been setup, and the LinkResolver will fail.
  if (instanceKlass::cast(static_receiver())->is_linked() && instanceKlass::cast(actual_receiver())->is_linked()) {    
    if (static_receiver->is_interface()) {
      // no point trying to resolve unless actual receiver is a klass
      if (!actual_receiver->is_interface()) {
        m = LinkResolver::resolve_interface_call_or_null(actual_receiver, static_receiver, name, signature, calling_klass);
      }
    } else {
      m = LinkResolver::resolve_virtual_call_or_null(actual_receiver, static_receiver, name, signature, calling_klass);
    }

    if (m.is_null()) {
      // didn't find method (e.g., could be abstract method)
      return new CHAResult(actual_receiver, name, signature, NULL, NULL, m, false);
    } 
    if( Klass::can_be_statically_bound(m()) ||
        m()->is_private() || 
        actual_receiver->subklass() == NULL ) {
      // always optimize final methods, private methods or methods with no
      // subclasses.
      return new CHAResult(actual_receiver, name, signature, NULL, NULL, m);
    } 
    if (!UseCHA) {
      // don't optimize this call
      return new CHAResult(actual_receiver, name, signature, NULL, NULL, m, false);
    }
  }

  // If the method is abstract then each non-abstract subclass must implement 
  // the method and inlining is not possible.  If there is exactly 1 subclass
  // then there can be only 1 implementation and we are OK.  
  if( !m.is_null() && m()->is_abstract() ) {// Method is abstract?
    Klass *sr = Klass::cast(static_receiver());
    if( sr == sr->up_cast_abstract() )
      return new CHAResult(actual_receiver, name, signature, NULL, NULL, m, false);
    // Fall into the next code; it will find the one implementation
    // and that implementation is correct.
  }

  _used = true;
  GrowableArray<methodHandle>* methods  = new GrowableArray<methodHandle>(CHA::max_result());
  GrowableArray<KlassHandle>* receivers = new GrowableArray<KlassHandle>(CHA::max_result());

  // Since 'm' is visible from the actual receiver we can call it if the
  // runtime receiver class does not override 'm'.  
  if( !m.is_null() && m()->method_holder() != actual_receiver() &&
      !m->is_abstract() ) {
    receivers->push(actual_receiver);
    methods->push(m);
  }
  if (static_receiver->is_interface()) {
    instanceKlassHandle sr = static_receiver();
    process_interface(sr, receivers, methods, name, signature);
  } else {
    process_class(static_receiver, receivers, methods, name, signature);
  }

  methodHandle dummy;
  CHAResult* res = new CHAResult(actual_receiver, name, signature, receivers, methods, dummy);

  //res->print();
  return res;
}