// main int main(int argc, char** argv) { // load Plaza1 data list<TimedOdometry> odometry = readOdometry(); // size_t M = odometry.size(); vector<RangeTriple> triples = readTriples(); size_t K = triples.size(); // parameters size_t start = 220, end=3000; size_t minK = 100; // first batch of smart factors size_t incK = 50; // minimum number of range measurements to process after bool robust = true; bool smart = true; // Set Noise parameters Vector priorSigmas = Vector3(1, 1, M_PI); Vector odoSigmas = Vector3(0.05, 0.01, 0.2); double sigmaR = 100; // range standard deviation const NM::Base::shared_ptr // all same type priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust rangeNoise = robust ? tukey : gaussian; // Initialize iSAM ISAM2 isam; // Add prior on first pose Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, M_PI - 2.02108900000000); NonlinearFactorGraph newFactors; newFactors.push_back(PriorFactor<Pose2>(0, pose0, priorNoise)); ofstream os2( "/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultLM.txt"); ofstream os3( "/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResultSR.txt"); // initialize points (Gaussian) Values initial; if (!smart) { initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778)); initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278)); initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678)); initial.insert(symbol('L', 5), Point2(1.7095, -5.8122)); } Values landmarkEstimates = initial; // copy landmarks initial.insert(0, pose0); // initialize smart range factors size_t ids[] = { 1, 6, 0, 5 }; typedef boost::shared_ptr<SmartRangeFactor> SmartPtr; map<size_t, SmartPtr> smartFactors; if (smart) { for(size_t jj: ids) { smartFactors[jj] = SmartPtr(new SmartRangeFactor(sigmaR)); newFactors.push_back(smartFactors[jj]); } } // set some loop variables size_t i = 1; // step counter size_t k = 0; // range measurement counter Pose2 lastPose = pose0; size_t countK = 0, totalCount=0; // Loop over odometry gttic_(iSAM); for(const TimedOdometry& timedOdometry: odometry) { //--------------------------------- odometry loop ----------------------------------------- double t; Pose2 odometry; boost::tie(t, odometry) = timedOdometry; // add odometry factor newFactors.push_back( BetweenFactor<Pose2>(i - 1, i, odometry, NM::Diagonal::Sigmas(odoSigmas))); // predict pose and add as initial estimate Pose2 predictedPose = lastPose.compose(odometry); lastPose = predictedPose; initial.insert(i, predictedPose); landmarkEstimates.insert(i, predictedPose); // Check if there are range factors to be added while (k < K && t >= boost::get<0>(triples[k])) { size_t j = boost::get<1>(triples[k]); double range = boost::get<2>(triples[k]); if (i > start) { if (smart && totalCount < minK) { smartFactors[j]->addRange(i, range); printf("adding range %g for %d on %d",range,(int)j,(int)i);cout << endl; } else { RangeFactor<Pose2, Point2> factor(i, symbol('L', j), range, rangeNoise); // Throw out obvious outliers based on current landmark estimates Vector error = factor.unwhitenedError(landmarkEstimates); if (k <= 200 || fabs(error[0]) < 5) newFactors.push_back(factor); } totalCount += 1; } k = k + 1; countK = countK + 1; } // Check whether to update iSAM 2 if (k >= minK && countK >= incK) { gttic_(update); isam.update(newFactors, initial); gttoc_(update); gttic_(calculateEstimate); Values result = isam.calculateEstimate(); gttoc_(calculateEstimate); lastPose = result.at<Pose2>(i); bool hasLandmarks = result.exists(symbol('L', ids[0])); if (hasLandmarks) { // update landmark estimates landmarkEstimates = Values(); for(size_t jj: ids) landmarkEstimates.insert(symbol('L', jj), result.at(symbol('L', jj))); } newFactors = NonlinearFactorGraph(); initial = Values(); if (smart && !hasLandmarks) { cout << "initialize from smart landmarks" << endl; for(size_t jj: ids) { Point2 landmark = smartFactors[jj]->triangulate(result); initial.insert(symbol('L', jj), landmark); landmarkEstimates.insert(symbol('L', jj), landmark); } } countK = 0; for(const Values::ConstFiltered<Point2>::KeyValuePair& it: result.filter<Point2>()) os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1" << endl; if (smart) { for(size_t jj: ids) { Point2 landmark = smartFactors[jj]->triangulate(result); os3 << jj << "\t" << landmark.x() << "\t" << landmark.y() << "\t1" << endl; } } } i += 1; if (i>end) break; //--------------------------------- odometry loop ----------------------------------------- } // end for gttoc_(iSAM); // Print timings tictoc_print_(); // Write result to file Values result = isam.calculateEstimate(); ofstream os( "/Users/dellaert/borg/gtsam/gtsam_unstable/examples/rangeResult.txt"); for(const Values::ConstFiltered<Pose2>::KeyValuePair& it: result.filter<Pose2>()) os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t" << it.value.theta() << endl; exit(0); }
// main int main (int argc, char** argv) { // load Plaza2 data list<TimedOdometry> odometry = readOdometry(); // size_t M = odometry.size(); vector<RangeTriple> triples = readTriples(); size_t K = triples.size(); // parameters size_t minK = 150; // minimum number of range measurements to process initially size_t incK = 25; // minimum number of range measurements to process after bool groundTruth = false; bool robust = true; // Set Noise parameters Vector priorSigmas = Vector3(1,1,M_PI); Vector odoSigmas = Vector3(0.05, 0.01, 0.2); double sigmaR = 100; // range standard deviation const NM::Base::shared_ptr // all same type priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust rangeNoise = robust ? tukey : gaussian; // Initialize iSAM ISAM2 isam; // Add prior on first pose Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, M_PI - 2.02108900000000); NonlinearFactorGraph newFactors; newFactors.push_back(PriorFactor<Pose2>(0, pose0, priorNoise)); Values initial; initial.insert(0, pose0); // initialize points if (groundTruth) { // from TL file initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778)); initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278)); initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678)); initial.insert(symbol('L', 5), Point2(1.7095, -5.8122)); } else { // drawn from sigma=1 Gaussian in matlab version initial.insert(symbol('L', 1), Point2(3.5784, 2.76944)); initial.insert(symbol('L', 6), Point2(-1.34989, 3.03492)); initial.insert(symbol('L', 0), Point2(0.725404, -0.0630549)); initial.insert(symbol('L', 5), Point2(0.714743, -0.204966)); } // set some loop variables size_t i = 1; // step counter size_t k = 0; // range measurement counter bool initialized = false; Pose2 lastPose = pose0; size_t countK = 0; // Loop over odometry gttic_(iSAM); BOOST_FOREACH(const TimedOdometry& timedOdometry, odometry) { //--------------------------------- odometry loop ----------------------------------------- double t; Pose2 odometry; boost::tie(t, odometry) = timedOdometry; // add odometry factor newFactors.push_back(BetweenFactor<Pose2>(i-1, i, odometry,NM::Diagonal::Sigmas(odoSigmas))); // predict pose and add as initial estimate Pose2 predictedPose = lastPose.compose(odometry); lastPose = predictedPose; initial.insert(i, predictedPose); // Check if there are range factors to be added while (k < K && t >= boost::get<0>(triples[k])) { size_t j = boost::get<1>(triples[k]); double range = boost::get<2>(triples[k]); newFactors.push_back(RangeFactor<Pose2, Point2>(i, symbol('L', j), range,rangeNoise)); k = k + 1; countK = countK + 1; } // Check whether to update iSAM 2 if ((k > minK) && (countK > incK)) { if (!initialized) { // Do a full optimize for first minK ranges gttic_(batchInitialization); LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial); initial = batchOptimizer.optimize(); gttoc_(batchInitialization); initialized = true; } gttic_(update); isam.update(newFactors, initial); gttoc_(update); gttic_(calculateEstimate); Values result = isam.calculateEstimate(); gttoc_(calculateEstimate); lastPose = result.at<Pose2>(i); newFactors = NonlinearFactorGraph(); initial = Values(); countK = 0; } i += 1; //--------------------------------- odometry loop ----------------------------------------- } // BOOST_FOREACH