bool PartialInlinerImpl::shouldPartialInline( CallSite CS, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, OptimizationRemarkEmitter &ORE) { using namespace ore; if (SkipCostAnalysis) return true; Instruction *Call = CS.getInstruction(); Function *Callee = CS.getCalledFunction(); assert(Callee == Cloner.ClonedFunc); Function *Caller = CS.getCaller(); auto &CalleeTTI = (*GetTTI)(*Callee); InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI, *GetAssumptionCache, GetBFI, PSI, &ORE); if (IC.isAlways()) { ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) << NV("Callee", Cloner.OrigFunc) << " should always be fully inlined, not partially"); return false; } if (IC.isNever()) { ORE.emit(OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " << NV("Caller", Caller) << " because it should never be inlined (cost=never)"); return false; } if (!IC) { ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call) << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " << NV("Caller", Caller) << " because too costly to inline (cost=" << NV("Cost", IC.getCost()) << ", threshold=" << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); return false; } const DataLayout &DL = Caller->getParent()->getDataLayout(); // The savings of eliminating the call: int NonWeightedSavings = getCallsiteCost(CS, DL); BlockFrequency NormWeightedSavings(NonWeightedSavings); // Weighted saving is smaller than weighted cost, return false if (NormWeightedSavings < WeightedOutliningRcost) { ORE.emit( OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", Call) << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " << NV("Caller", Caller) << " runtime overhead (overhead=" << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency()) << ", savings=" << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) << ")" << " of making the outlined call is too high"); return false; } ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call) << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into " << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) << " (threshold=" << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); return true; }
/// Return true if the inliner should attempt to inline at the given CallSite. bool Inliner::shouldInline(CallSite CS) { InlineCost IC = getInlineCost(CS); if (IC.isAlways()) { DEBUG(dbgs() << " Inlining: cost=always" << ", Call: " << *CS.getInstruction() << "\n"); emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + " should always be inlined (cost=always)"); return true; } if (IC.isNever()) { DEBUG(dbgs() << " NOT Inlining: cost=never" << ", Call: " << *CS.getInstruction() << "\n"); emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + " should never be inlined (cost=never)")); return false; } Function *Caller = CS.getCaller(); if (!IC) { DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() << ", thres=" << (IC.getCostDelta() + IC.getCost()) << ", Call: " << *CS.getInstruction() << "\n"); emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + " too costly to inline (cost=") + Twine(IC.getCost()) + ", threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); return false; } // Try to detect the case where the current inlining candidate caller (call // it B) is a static or linkonce-ODR function and is an inlining candidate // elsewhere, and the current candidate callee (call it C) is large enough // that inlining it into B would make B too big to inline later. In these // circumstances it may be best not to inline C into B, but to inline B into // its callers. // // This only applies to static and linkonce-ODR functions because those are // expected to be available for inlining in the translation units where they // are used. Thus we will always have the opportunity to make local inlining // decisions. Importantly the linkonce-ODR linkage covers inline functions // and templates in C++. // // FIXME: All of this logic should be sunk into getInlineCost. It relies on // the internal implementation of the inline cost metrics rather than // treating them as truly abstract units etc. if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { int TotalSecondaryCost = 0; // The candidate cost to be imposed upon the current function. int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); // This bool tracks what happens if we do NOT inline C into B. bool callerWillBeRemoved = Caller->hasLocalLinkage(); // This bool tracks what happens if we DO inline C into B. bool inliningPreventsSomeOuterInline = false; for (User *U : Caller->users()) { CallSite CS2(U); // If this isn't a call to Caller (it could be some other sort // of reference) skip it. Such references will prevent the caller // from being removed. if (!CS2 || CS2.getCalledFunction() != Caller) { callerWillBeRemoved = false; continue; } InlineCost IC2 = getInlineCost(CS2); ++NumCallerCallersAnalyzed; if (!IC2) { callerWillBeRemoved = false; continue; } if (IC2.isAlways()) continue; // See if inlining or original callsite would erase the cost delta of // this callsite. We subtract off the penalty for the call instruction, // which we would be deleting. if (IC2.getCostDelta() <= CandidateCost) { inliningPreventsSomeOuterInline = true; TotalSecondaryCost += IC2.getCost(); } } // If all outer calls to Caller would get inlined, the cost for the last // one is set very low by getInlineCost, in anticipation that Caller will // be removed entirely. We did not account for this above unless there // is only one caller of Caller. if (callerWillBeRemoved && !Caller->use_empty()) TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << " Cost = " << IC.getCost() << ", outer Cost = " << TotalSecondaryCost << '\n'); emitAnalysis( CS, Twine("Not inlining. Cost of inlining " + CS.getCalledFunction()->getName() + " increases the cost of inlining " + CS.getCaller()->getName() + " in other contexts")); return false; } } DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() << ", thres=" << (IC.getCostDelta() + IC.getCost()) << ", Call: " << *CS.getInstruction() << '\n'); emitAnalysis( CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); return true; }
/// Return true if the inliner should attempt to inline at the given CallSite. static bool shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost, OptimizationRemarkEmitter &ORE) { using namespace ore; InlineCost IC = GetInlineCost(CS); Instruction *Call = CS.getInstruction(); Function *Callee = CS.getCalledFunction(); if (IC.isAlways()) { DEBUG(dbgs() << " Inlining: cost=always" << ", Call: " << *CS.getInstruction() << "\n"); ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) << NV("Callee", Callee) << " should always be inlined (cost=always)"); return true; } if (IC.isNever()) { DEBUG(dbgs() << " NOT Inlining: cost=never" << ", Call: " << *CS.getInstruction() << "\n"); ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "NeverInline", Call) << NV("Callee", Callee) << " should never be inlined (cost=never)"); return false; } Function *Caller = CS.getCaller(); if (!IC) { DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() << ", thres=" << (IC.getCostDelta() + IC.getCost()) << ", Call: " << *CS.getInstruction() << "\n"); ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call) << NV("Callee", Callee) << " too costly to inline (cost=" << NV("Cost", IC.getCost()) << ", threshold=" << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); return false; } int TotalSecondaryCost = 0; if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << " Cost = " << IC.getCost() << ", outer Cost = " << TotalSecondaryCost << '\n'); ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "IncreaseCostInOtherContexts", Call) << "Not inlining. Cost of inlining " << NV("Callee", Callee) << " increases the cost of inlining " << NV("Caller", Caller) << " in other contexts"); return false; } DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() << ", thres=" << (IC.getCostDelta() + IC.getCost()) << ", Call: " << *CS.getInstruction() << '\n'); ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBeInlined", Call) << NV("Callee", Callee) << " can be inlined into " << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) << " (threshold=" << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"); return true; }