예제 #1
0
 double Score(const Kernel &kernel,
   const typename Kernel::Model &model,
   const std::vector<T> &samples,
   std::vector<T> *inliers) const
 {
   double cost = 0.0;
   for (size_t j = 0; j < samples.size(); ++j) {
     double error = kernel.Error(samples[j], model);
     if (error < threshold_) {
       cost += error;
       inliers->push_back(samples[j]);
     } else {
       cost += threshold_;
     }
   }
   return cost;
 }
  double LeastMedianOfSquares(const Kernel &kernel,
	  typename Kernel::Model * model = NULL,
    double* outlierThreshold = NULL,
    double outlierRatio=0.5,
	  double minProba=0.99)
{
  const size_t min_samples = Kernel::MINIMUM_SAMPLES;
  const size_t total_samples = kernel.NumSamples();

	std::vector<double> residuals(total_samples); // Array for storing residuals
  std::vector<size_t> vec_sample(min_samples);

	double dBestMedian = std::numeric_limits<double>::max();

	// Required number of iterations is evaluated from outliers ratio
	const size_t N = (min_samples<total_samples)?
		getNumSamples(minProba, outlierRatio, min_samples): 0;

	for (size_t i=0; i < N; i++) {

    // Get Samples indexes
    UniformSample(min_samples, total_samples, &vec_sample);

    // Estimate parameters: the solutions are stored in a vector
    std::vector<typename Kernel::Model> models;
    kernel.Fit(vec_sample, &models);

		// Now test the solutions on the whole data
		for (size_t k = 0; k < models.size(); ++k) {
      //Compute Residuals :
      for (size_t l = 0; l < total_samples; ++l) {
        double error = kernel.Error(l, models[k]);
        residuals[l] = error;
      }

			// Compute median
			std::vector<double>::iterator itMedian = residuals.begin() +
				std::size_t( total_samples*(1.-outlierRatio) );
			std::nth_element(residuals.begin(), itMedian, residuals.end());
			double median = *itMedian;

			// Store best solution
			if(median < dBestMedian) {
				dBestMedian = median;
				if (model) (*model) = models[k];
			}
		}
	}

	// This array of precomputed values corresponds to the inverse
	//  cumulative function for a normal distribution. For more information
	//  consult the litterature (Robust Regression for Outlier Detection,
	//  rouseeuw-leroy). The values are computed for each 5%
	static const double ICDF[21] = {
		1.4e16, 15.94723940, 7.957896558, 5.287692054,
		3.947153876, 3.138344200, 2.595242369, 2.203797543,
		1.906939402, 1.672911853, 1.482602218, 1.323775627,
		1.188182950, 1.069988721, 0.9648473415, 0.8693011162,
		0.7803041458, 0.6946704675, 0.6079568319,0.5102134568,
		0.3236002672
	};

	// Evaluate the outlier threshold
	if(outlierThreshold) {
		double sigma = ICDF[int((1.-outlierRatio)*20.)] *
			(1. + 5. / double(total_samples - min_samples));
		*outlierThreshold = (double)(sigma * sigma * dBestMedian * 4.);
    if (N==0) *outlierThreshold = std::numeric_limits<double>::max();
	}

	return dBestMedian;
}