void KisBContrastBenchmark::initTestCase() { m_colorSpace = KoColorSpaceRegistry::instance()->rgb8(); m_device = new KisPaintDevice(m_colorSpace); m_color = KoColor(m_colorSpace); srand(31524744); int r,g,b; KisRectIteratorSP it = m_device->createRectIteratorNG(0, 0, GMP_IMAGE_WIDTH, GMP_IMAGE_HEIGHT); do { r = rand() % 255; g = rand() % 255; b = rand() % 255; m_color.fromQColor(QColor(r,g,b)); memcpy(it->rawData(), m_color.data(), m_colorSpace->pixelSize()); } while (it->nextPixel()); }
void KisOilPaintFilter::MostFrequentColor(KisPaintDeviceSP src, quint8* dst, const QRect& bounds, int X, int Y, int Radius, int Intensity) const { uint I; double Scale = Intensity / 255.0; // Alloc some arrays to be used uchar *IntensityCount = new uchar[(Intensity + 1) * sizeof(uchar)]; const KoColorSpace* cs = src->colorSpace(); QVector<float> channel(cs->channelCount()); QVector<float>* AverageChannels = new QVector<float>[(Intensity + 1)]; // Erase the array memset(IntensityCount, 0, (Intensity + 1) * sizeof(uchar)); int startx = qMax(X - Radius, bounds.left()); int starty = qMax(Y - Radius, bounds.top()); int width = (2 * Radius) + 1; if ((startx + width - 1) > bounds.right()) width = bounds.right() - startx + 1; Q_ASSERT((startx + width - 1) <= bounds.right()); int height = (2 * Radius) + 1; if ((starty + height) > bounds.bottom()) height = bounds.bottom() - starty + 1; Q_ASSERT((starty + height - 1) <= bounds.bottom()); KisRectIteratorSP it = src->createRectIteratorNG(startx, starty, width, height); do { cs->normalisedChannelsValue(it->rawData(), channel); I = (uint)(cs->intensity8(it->rawData()) * Scale); IntensityCount[I]++; if (IntensityCount[I] == 1) { AverageChannels[I] = channel; } else { for (int i = 0; i < channel.size(); i++) { AverageChannels[I][i] += channel[i]; } } } while (it->nextPixel()); I = 0; int MaxInstance = 0; for (int i = 0 ; i <= Intensity ; ++i) { if (IntensityCount[i] > MaxInstance) { I = i; MaxInstance = IntensityCount[i]; } } if (MaxInstance != 0) { channel = AverageChannels[I]; for (int i = 0; i < channel.size(); i++) { channel[i] /= MaxInstance; } cs->fromNormalisedChannelsValue(dst, channel); } else { memset(dst, 0, cs->pixelSize()); cs->setOpacity(dst, OPACITY_OPAQUE_U8, 1); } delete [] IntensityCount; // free all the arrays delete [] AverageChannels; }
void KisPixelizeFilter::process(KisPaintDeviceSP device, const QRect& applyRect, const KisFilterConfiguration* configuration, KoUpdater* progressUpdater ) const { QPoint srcTopLeft = applyRect.topLeft(); Q_ASSERT(device); Q_ASSERT(configuration); qint32 width = applyRect.width(); qint32 height = applyRect.height(); //read the filter configuration values from the KisFilterConfiguration object quint32 pixelWidth = configuration->getInt("pixelWidth", 10); quint32 pixelHeight = configuration->getInt("pixelHeight", 10); if (pixelWidth == 0) pixelWidth = 1; if (pixelHeight == 0) pixelHeight = 1; qint32 pixelSize = device->pixelSize(); QVector<qint32> average(pixelSize); qint32 count; if (progressUpdater) { progressUpdater->setRange(0, applyRect.width() * applyRect.height()); } qint32 numberOfPixelsProcessed = 0; for (qint32 y = 0; y < height; y += pixelHeight - (y % pixelHeight)) { qint32 h = pixelHeight; h = qMin(h, height - y); for (qint32 x = 0; x < width; x += pixelWidth - (x % pixelWidth)) { qint32 w = pixelWidth; w = qMin(w, width - x); for (qint32 i = 0; i < pixelSize; i++) { average[i] = 0; } count = 0; //read KisRectConstIteratorSP srcIt = device->createRectConstIteratorNG(srcTopLeft.x() + x, srcTopLeft.y() + y, w, h); do { for (qint32 i = 0; i < pixelSize; i++) { average[i] += srcIt->oldRawData()[i]; } count++; } while (srcIt->nextPixel()); //average if (count > 0) { for (qint32 i = 0; i < pixelSize; i++) average[i] /= count; } //write KisRectIteratorSP dstIt = device->createRectIteratorNG(srcTopLeft.x() + x, srcTopLeft.y() + y, w, h); do { for (int i = 0; i < pixelSize; i++) { dstIt->rawData()[i] = average[i]; } } while (dstIt->nextPixel()); if (progressUpdater) progressUpdater->setValue(++numberOfPixelsProcessed); } } }
KisSpacingInformation KisDuplicateOp::paintAt(const KisPaintInformation& info) { if (!painter()->device()) return 1.0; KisBrushSP brush = m_brush; if (!brush) return 1.0; if (!brush->canPaintFor(info)) return 1.0; if (!m_duplicateStartIsSet) { m_duplicateStartIsSet = true; m_duplicateStart = info.pos(); } KisPaintDeviceSP realSourceDevice = settings->node()->paintDevice(); qreal scale = m_sizeOption.apply(info); if (checkSizeTooSmall(scale)) return KisSpacingInformation(); QPointF hotSpot = brush->hotSpot(scale, scale, 0, info); QPointF pt = info.pos() - hotSpot; setCurrentScale(scale); // Split the coordinates into integer plus fractional parts. The integer // is where the dab will be positioned and the fractional part determines // the sub-pixel positioning. qint32 x, y; qreal xFraction, yFraction; // will not be used splitCoordinate(pt.x(), &x, &xFraction); splitCoordinate(pt.y(), &y, &yFraction); QPoint srcPoint; if(m_moveSourcePoint) { srcPoint = QPoint(x - static_cast<qint32>(settings->offset().x()), y - static_cast<qint32>(settings->offset().y())); } else { srcPoint = QPoint(static_cast<qint32>(settings->position().x() - hotSpot.x()), static_cast<qint32>(settings->position().y() - hotSpot.y())); } qint32 sw = brush->maskWidth(scale, 0.0, xFraction, yFraction, info); qint32 sh = brush->maskHeight(scale, 0.0, xFraction, yFraction, info); if (srcPoint.x() < 0) srcPoint.setX(0); if (srcPoint.y() < 0) srcPoint.setY(0); // Perspective correction ? KisImageWSP image = settings->m_image; if (m_perspectiveCorrection && image && image->perspectiveGrid()->countSubGrids() == 1) { Matrix3qreal startM = Matrix3qreal::Identity(); Matrix3qreal endM = Matrix3qreal::Identity(); // First look for the grid corresponding to the start point KisSubPerspectiveGrid* subGridStart = *image->perspectiveGrid()->begin(); QRect r = QRect(0, 0, image->width(), image->height()); #if 1 if (subGridStart) { startM = KisPerspectiveMath::computeMatrixTransfoFromPerspective(r, *subGridStart->topLeft(), *subGridStart->topRight(), *subGridStart->bottomLeft(), *subGridStart->bottomRight()); } #endif #if 1 // Second look for the grid corresponding to the end point KisSubPerspectiveGrid* subGridEnd = *image->perspectiveGrid()->begin(); if (subGridEnd) { endM = KisPerspectiveMath::computeMatrixTransfoToPerspective(*subGridEnd->topLeft(), *subGridEnd->topRight(), *subGridEnd->bottomLeft(), *subGridEnd->bottomRight(), r); } #endif // Compute the translation in the perspective transformation space: QPointF positionStartPaintingT = KisPerspectiveMath::matProd(endM, QPointF(m_duplicateStart)); QPointF duplicateStartPositionT = KisPerspectiveMath::matProd(endM, QPointF(m_duplicateStart) - QPointF(settings->offset())); QPointF translat = duplicateStartPositionT - positionStartPaintingT; KisRectIteratorSP dstIt = m_srcdev->createRectIteratorNG(0, 0, sw, sh); KisRandomSubAccessorSP srcAcc = realSourceDevice->createRandomSubAccessor(); //Action do { QPointF p = KisPerspectiveMath::matProd(startM, KisPerspectiveMath::matProd(endM, QPointF(dstIt->x() + x, dstIt->y() + y)) + translat); srcAcc->moveTo(p); srcAcc->sampledOldRawData(dstIt->rawData()); } while (dstIt->nextPixel()); } else { KisPainter copyPainter(m_srcdev); copyPainter.setCompositeOp(COMPOSITE_COPY); copyPainter.bitBltOldData(0, 0, realSourceDevice, srcPoint.x(), srcPoint.y(), sw, sh); copyPainter.end(); } // heal ? if (m_healing) { quint16 srcData[4]; quint16 tmpData[4]; qreal* matrix = new qreal[ 3 * sw * sh ]; // First divide const KoColorSpace* srcCs = realSourceDevice->colorSpace(); const KoColorSpace* tmpCs = m_srcdev->colorSpace(); KisHLineConstIteratorSP srcIt = realSourceDevice->createHLineConstIteratorNG(x, y, sw); KisHLineIteratorSP tmpIt = m_srcdev->createHLineIteratorNG(0, 0, sw); qreal* matrixIt = &matrix[0]; for (int j = 0; j < sh; j++) { for (int i = 0; i < sw; i++) { srcCs->toLabA16(srcIt->oldRawData(), (quint8*)srcData, 1); tmpCs->toLabA16(tmpIt->rawData(), (quint8*)tmpData, 1); // Division for (int k = 0; k < 3; k++) { matrixIt[k] = srcData[k] / (qreal)qMax((int)tmpData [k], 1); } srcIt->nextPixel(); tmpIt->nextPixel(); matrixIt += 3; } srcIt->nextRow(); tmpIt->nextRow(); } // Minimize energy { int iter = 0; qreal err; qreal* solution = new qreal [ 3 * sw * sh ]; do { err = minimizeEnergy(&matrix[0], &solution[0], sw, sh); // swap pointers qreal *tmp = matrix; matrix = solution; solution = tmp; iter++; } while (err > 0.00001 && iter < 100); delete [] solution; } // Finaly multiply KisHLineIteratorSP srcIt2 = realSourceDevice->createHLineIteratorNG(x, y, sw); KisHLineIteratorSP tmpIt2 = m_srcdev->createHLineIteratorNG(0, 0, sw); matrixIt = &matrix[0]; for (int j = 0; j < sh; j++) { for (int i = 0; i < sw; i++) { srcCs->toLabA16(srcIt2->rawData(), (quint8*)srcData, 1); tmpCs->toLabA16(tmpIt2->rawData(), (quint8*)tmpData, 1); // Multiplication for (int k = 0; k < 3; k++) { tmpData[k] = (int)CLAMP(matrixIt[k] * qMax((int) tmpData[k], 1), 0, 65535); } tmpCs->fromLabA16((quint8*)tmpData, tmpIt2->rawData(), 1); srcIt2->nextPixel(); tmpIt2->nextPixel(); matrixIt += 3; } srcIt2->nextRow(); tmpIt2->nextRow(); } delete [] matrix; } static const KoColorSpace *cs = KoColorSpaceRegistry::instance()->alpha8(); static KoColor color(Qt::black, cs); KisFixedPaintDeviceSP dab = m_dabCache->fetchDab(cs, color, scale, scale, 0.0, info); QRect dstRect = QRect(x, y, dab->bounds().width(), dab->bounds().height()); if (dstRect.isEmpty()) return 1.0; painter()->bitBltWithFixedSelection(dstRect.x(), dstRect.y(), m_srcdev, dab, dstRect.width(), dstRect.height()); painter()->renderMirrorMaskSafe(dstRect, m_srcdev, 0, 0, dab, !m_dabCache->needSeparateOriginal()); return effectiveSpacing(dstRect.width(), dstRect.height()); }