std::pair<LegalizerInfo::LegalizeAction, LLT> LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const { assert(Aspect.Type.isVector()); // First legalize the vector element size, then legalize the number of // lanes in the vector. if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp) return {NotFound, Aspect.Type}; const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; const unsigned TypeIdx = Aspect.Idx; if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size()) return {NotFound, Aspect.Type}; const SizeAndActionsVec &ElemSizeVec = ScalarInVectorActions[OpcodeIdx][TypeIdx]; LLT IntermediateType; auto ElementSizeAndAction = findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits()); IntermediateType = LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first); if (ElementSizeAndAction.second != Legal) return {ElementSizeAndAction.second, IntermediateType}; auto i = NumElements2Actions[OpcodeIdx].find( IntermediateType.getScalarSizeInBits()); if (i == NumElements2Actions[OpcodeIdx].end()) { return {NotFound, IntermediateType}; } const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx]; auto NumElementsAndAction = findAction(NumElementsVec, IntermediateType.getNumElements()); return {NumElementsAndAction.second, LLT::vector(NumElementsAndAction.first, IntermediateType.getScalarSizeInBits())}; }
// Make sure the returned mutation makes sense for the match type. static bool mutationIsSane(const LegalizeRule &Rule, const LegalityQuery &Q, std::pair<unsigned, LLT> Mutation) { const unsigned TypeIdx = Mutation.first; const LLT OldTy = Q.Types[TypeIdx]; const LLT NewTy = Mutation.second; switch (Rule.getAction()) { case FewerElements: case MoreElements: { if (!OldTy.isVector()) return false; if (NewTy.isVector()) { if (Rule.getAction() == FewerElements) { // Make sure the element count really decreased. if (NewTy.getNumElements() >= OldTy.getNumElements()) return false; } else { // Make sure the element count really increased. if (NewTy.getNumElements() <= OldTy.getNumElements()) return false; } } // Make sure the element type didn't change. return NewTy.getScalarType() == OldTy.getElementType(); } case NarrowScalar: case WidenScalar: { if (OldTy.isVector()) { // Number of elements should not change. if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements()) return false; } else { // Both types must be vectors if (NewTy.isVector()) return false; } if (Rule.getAction() == NarrowScalar) { // Make sure the size really decreased. if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits()) return false; } else { // Make sure the size really increased. if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits()) return false; } return true; } default: return true; } }
LegalizeMutation LegalizeMutations::widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; unsigned NewEltSizeInBits = std::max(1u << Log2_32_Ceil(Ty.getScalarSizeInBits()), Min); return std::make_pair(TypeIdx, Ty.changeElementSize(NewEltSizeInBits)); }; }
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM) { using namespace TargetOpcode; auto GetAddrSpacePtr = [&TM](unsigned AS) { return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); }; const LLT S1 = LLT::scalar(1); const LLT S8 = LLT::scalar(8); const LLT S16 = LLT::scalar(16); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); const LLT S128 = LLT::scalar(128); const LLT S256 = LLT::scalar(256); const LLT S512 = LLT::scalar(512); const LLT V2S16 = LLT::vector(2, 16); const LLT V4S16 = LLT::vector(4, 16); const LLT V8S16 = LLT::vector(8, 16); const LLT V2S32 = LLT::vector(2, 32); const LLT V3S32 = LLT::vector(3, 32); const LLT V4S32 = LLT::vector(4, 32); const LLT V5S32 = LLT::vector(5, 32); const LLT V6S32 = LLT::vector(6, 32); const LLT V7S32 = LLT::vector(7, 32); const LLT V8S32 = LLT::vector(8, 32); const LLT V9S32 = LLT::vector(9, 32); const LLT V10S32 = LLT::vector(10, 32); const LLT V11S32 = LLT::vector(11, 32); const LLT V12S32 = LLT::vector(12, 32); const LLT V13S32 = LLT::vector(13, 32); const LLT V14S32 = LLT::vector(14, 32); const LLT V15S32 = LLT::vector(15, 32); const LLT V16S32 = LLT::vector(16, 32); const LLT V2S64 = LLT::vector(2, 64); const LLT V3S64 = LLT::vector(3, 64); const LLT V4S64 = LLT::vector(4, 64); const LLT V5S64 = LLT::vector(5, 64); const LLT V6S64 = LLT::vector(6, 64); const LLT V7S64 = LLT::vector(7, 64); const LLT V8S64 = LLT::vector(8, 64); std::initializer_list<LLT> AllS32Vectors = {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32}; std::initializer_list<LLT> AllS64Vectors = {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64}; const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); const LLT CodePtr = FlatPtr; const std::initializer_list<LLT> AddrSpaces64 = { GlobalPtr, ConstantPtr, FlatPtr }; const std::initializer_list<LLT> AddrSpaces32 = { LocalPtr, PrivatePtr }; setAction({G_BRCOND, S1}, Legal); // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more // elements for v3s16 getActionDefinitionsBuilder(G_PHI) .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) .legalFor(AllS32Vectors) .legalFor(AllS64Vectors) .legalFor(AddrSpaces64) .legalFor(AddrSpaces32) .clampScalar(0, S32, S256) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .legalIf(isPointer(0)); getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_UMULH, G_SMULH}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); // Report legal for any types we can handle anywhere. For the cases only legal // on the SALU, RegBankSelect will be able to re-legalize. getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) .legalFor({S32, S1, S64, V2S32, V2S16, V4S16}) .clampScalar(0, S32, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(vectorWiderThan(0, 32), fewerEltsToSize64Vector(0)) .widenScalarToNextPow2(0) .scalarize(0); getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) .legalFor({{S32, S1}}) .clampScalar(0, S32, S32); getActionDefinitionsBuilder(G_BITCAST) .legalForCartesianProduct({S32, V2S16}) .legalForCartesianProduct({S64, V2S32, V4S16}) .legalForCartesianProduct({V2S64, V4S32}) // Don't worry about the size constraint. .legalIf(all(isPointer(0), isPointer(1))); if (ST.has16BitInsts()) { getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64, S16}) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64}) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_IMPLICIT_DEF) .legalFor({S1, S32, S64, V2S32, V4S32, V2S16, V4S16, GlobalPtr, ConstantPtr, LocalPtr, FlatPtr, PrivatePtr}) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampScalarOrElt(0, S32, S512) .legalIf(isMultiple32(0)) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16); // FIXME: i1 operands to intrinsics should always be legal, but other i1 // values may not be legal. We need to figure out how to distinguish // between these two scenarios. getActionDefinitionsBuilder(G_CONSTANT) .legalFor({S1, S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) .clampScalar(0, S32, S64) .widenScalarToNextPow2(0) .legalIf(isPointer(0)); setAction({G_FRAME_INDEX, PrivatePtr}, Legal); auto &FPOpActions = getActionDefinitionsBuilder( { G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA, G_FCANONICALIZE}) .legalFor({S32, S64}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) FPOpActions.legalFor({S16, V2S16}); else FPOpActions.legalFor({S16}); } if (ST.hasVOP3PInsts()) FPOpActions.clampMaxNumElements(0, S16, 2); FPOpActions .scalarize(0) .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); if (ST.has16BitInsts()) { getActionDefinitionsBuilder(G_FSQRT) .legalFor({S32, S64, S16}) .scalarize(0) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder(G_FSQRT) .legalFor({S32, S64}) .scalarize(0) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_FPTRUNC) .legalFor({{S32, S64}, {S16, S32}}) .scalarize(0); getActionDefinitionsBuilder(G_FPEXT) .legalFor({{S64, S32}, {S32, S16}}) .lowerFor({{S64, S16}}) // FIXME: Implement .scalarize(0); getActionDefinitionsBuilder(G_FCOPYSIGN) .legalForCartesianProduct({S16, S32, S64}, {S16, S32, S64}) .scalarize(0); getActionDefinitionsBuilder(G_FSUB) // Use actual fsub instruction .legalFor({S32}) // Must use fadd + fneg .lowerFor({S64, S16, V2S16}) .scalarize(0) .clampScalar(0, S32, S64); getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, {S32, S1}, {S64, S1}, {S16, S1}, // FIXME: Hack {S64, LLT::scalar(33)}, {S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}}) .scalarize(0); getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) .legalFor({{S32, S32}, {S64, S32}}) .lowerFor({{S32, S64}}) .customFor({{S64, S64}}) .scalarize(0); getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) .legalFor({{S32, S32}, {S32, S64}}) .scalarize(0); getActionDefinitionsBuilder(G_INTRINSIC_ROUND) .legalFor({S32, S64}) .scalarize(0); if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32, S64}) .clampScalar(0, S32, S64) .scalarize(0); } else { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32}) .customFor({S64}) .clampScalar(0, S32, S64) .scalarize(0); } getActionDefinitionsBuilder(G_GEP) .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0); setAction({G_BLOCK_ADDR, CodePtr}, Legal); getActionDefinitionsBuilder(G_ICMP) .legalForCartesianProduct( {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) .legalFor({{S1, S32}, {S1, S64}}) .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0) .legalIf(all(typeIs(0, S1), isPointer(1))); getActionDefinitionsBuilder(G_FCMP) .legalFor({{S1, S32}, {S1, S64}}) .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0); // FIXME: fexp, flog2, flog10 needs to be custom lowered. getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2, G_FLOG, G_FLOG2, G_FLOG10}) .legalFor({S32}) .scalarize(0); // The 64-bit versions produce 32-bit results, but only on the SALU. getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF, G_CTTZ, G_CTTZ_ZERO_UNDEF, G_CTPOP}) .legalFor({{S32, S32}, {S32, S64}}) .clampScalar(0, S32, S32) .clampScalar(1, S32, S64) .scalarize(0) .widenScalarToNextPow2(0, 32) .widenScalarToNextPow2(1, 32); // TODO: Expand for > s32 getActionDefinitionsBuilder(G_BSWAP) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() < Query.Types[TypeIdx1].getSizeInBits(); }; }; auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() > Query.Types[TypeIdx1].getSizeInBits(); }; }; getActionDefinitionsBuilder(G_INTTOPTR) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }) .narrowScalarIf(greaterThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }); getActionDefinitionsBuilder(G_PTRTOINT) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }) .narrowScalarIf( greaterThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }); if (ST.hasFlatAddressSpace()) { getActionDefinitionsBuilder(G_ADDRSPACE_CAST) .scalarize(0) .custom(); } getActionDefinitionsBuilder({G_LOAD, G_STORE}) .narrowScalarIf([](const LegalityQuery &Query) { unsigned Size = Query.Types[0].getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; return (Size > 32 && MemSize < Size); }, [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(32)); }) .fewerElementsIf([=, &ST](const LegalityQuery &Query) { unsigned MemSize = Query.MMODescrs[0].SizeInBits; return (MemSize == 96) && Query.Types[0].isVector() && ST.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS; }, [=](const LegalityQuery &Query) { return std::make_pair(0, V2S32); }) .legalIf([=, &ST](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; unsigned Size = Ty0.getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; if (Size < 32 || (Size > 32 && MemSize < Size)) return false; if (Ty0.isVector() && Size != MemSize) return false; // TODO: Decompose private loads into 4-byte components. // TODO: Illegal flat loads on SI switch (MemSize) { case 8: case 16: return Size == 32; case 32: case 64: case 128: return true; case 96: // XXX hasLoadX3 return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS); case 256: case 512: // TODO: constant loads default: return false; } }) .clampScalar(0, S32, S64); // FIXME: Handle alignment requirements. auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) .legalForTypesWithMemDesc({ {S32, GlobalPtr, 8, 8}, {S32, GlobalPtr, 16, 8}, {S32, LocalPtr, 8, 8}, {S32, LocalPtr, 16, 8}, {S32, PrivatePtr, 8, 8}, {S32, PrivatePtr, 16, 8}}); if (ST.hasFlatAddressSpace()) { ExtLoads.legalForTypesWithMemDesc({{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 8}}); } ExtLoads.clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .unsupportedIfMemSizeNotPow2() .lower(); auto &Atomics = getActionDefinitionsBuilder( {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG}) .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, {S64, GlobalPtr}, {S64, LocalPtr}}); if (ST.hasFlatAddressSpace()) { Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); } // TODO: Pointer types, any 32-bit or 64-bit vector getActionDefinitionsBuilder(G_SELECT) .legalForCartesianProduct({S32, S64, V2S32, V2S16, V4S16, GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1}) .clampScalar(0, S32, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(numElementsNotEven(0), scalarize(0)) .scalarize(1) .clampMaxNumElements(0, S32, 2) .clampMaxNumElements(0, LocalPtr, 2) .clampMaxNumElements(0, PrivatePtr, 2) .scalarize(0) .widenScalarToNextPow2(0) .legalIf(all(isPointer(0), typeIs(1, S1))); // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can // be more flexible with the shift amount type. auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) .legalFor({{S32, S32}, {S64, S32}}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) { Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}}) .clampMaxNumElements(0, S16, 2); } else Shifts.legalFor({{S16, S32}, {S16, S16}}); Shifts.clampScalar(1, S16, S32); Shifts.clampScalar(0, S16, S64); Shifts.widenScalarToNextPow2(0, 16); } else { // Make sure we legalize the shift amount type first, as the general // expansion for the shifted type will produce much worse code if it hasn't // been truncated already. Shifts.clampScalar(1, S32, S32); Shifts.clampScalar(0, S32, S64); Shifts.widenScalarToNextPow2(0, 32); } Shifts.scalarize(0); for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; unsigned IdxTypeIdx = 2; getActionDefinitionsBuilder(Op) .legalIf([=](const LegalityQuery &Query) { const LLT &VecTy = Query.Types[VecTypeIdx]; const LLT &IdxTy = Query.Types[IdxTypeIdx]; return VecTy.getSizeInBits() % 32 == 0 && VecTy.getSizeInBits() <= 512 && IdxTy.getSizeInBits() == 32; }) .clampScalar(EltTypeIdx, S32, S64) .clampScalar(VecTypeIdx, S32, S64) .clampScalar(IdxTypeIdx, S32, S32); } getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) .unsupportedIf([=](const LegalityQuery &Query) { const LLT &EltTy = Query.Types[1].getElementType(); return Query.Types[0] != EltTy; }); for (unsigned Op : {G_EXTRACT, G_INSERT}) { unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; // FIXME: Doesn't handle extract of illegal sizes. getActionDefinitionsBuilder(Op) .legalIf([=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; const LLT LitTy = Query.Types[LitTyIdx]; return (BigTy.getSizeInBits() % 32 == 0) && (LitTy.getSizeInBits() % 16 == 0); }) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; return (BigTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT LitTy = Query.Types[LitTyIdx]; return (LitTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) .widenScalarToNextPow2(BigTyIdx, 32); } // TODO: vectors of pointers getActionDefinitionsBuilder(G_BUILD_VECTOR) .legalForCartesianProduct(AllS32Vectors, {S32}) .legalForCartesianProduct(AllS64Vectors, {S64}) .clampNumElements(0, V16S32, V16S32) .clampNumElements(0, V2S64, V8S64) .minScalarSameAs(1, 0) // FIXME: Sort of a hack to make progress on other legalizations. .legalIf([=](const LegalityQuery &Query) { return Query.Types[0].getScalarSizeInBits() <= 32 || Query.Types[0].getScalarSizeInBits() == 64; }); // TODO: Support any combination of v2s32 getActionDefinitionsBuilder(G_CONCAT_VECTORS) .legalFor({{V4S32, V2S32}, {V8S32, V2S32}, {V8S32, V4S32}, {V4S64, V2S64}, {V4S16, V2S16}, {V8S16, V2S16}, {V8S16, V4S16}, {LLT::vector(4, LocalPtr), LLT::vector(2, LocalPtr)}, {LLT::vector(4, PrivatePtr), LLT::vector(2, PrivatePtr)}}); // Merge/Unmerge for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const LLT &EltTy = Ty.getElementType(); if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) return true; if (!isPowerOf2_32(EltTy.getSizeInBits())) return true; } return false; }; getActionDefinitionsBuilder(Op) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) // Clamp the little scalar to s8-s256 and make it a power of 2. It's not // worth considering the multiples of 64 since 2*192 and 2*384 are not // valid. .clampScalar(LitTyIdx, S16, S256) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) // Break up vectors with weird elements into scalars .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, scalarize(0)) .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, scalarize(1)) .clampScalar(BigTyIdx, S32, S512) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT &Ty = Query.Types[BigTyIdx]; return !isPowerOf2_32(Ty.getSizeInBits()) && Ty.getSizeInBits() % 16 != 0; }, [=](const LegalityQuery &Query) { // Pick the next power of 2, or a multiple of 64 over 128. // Whichever is smaller. const LLT &Ty = Query.Types[BigTyIdx]; unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); if (NewSizeInBits >= 256) { unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); if (RoundedTo < NewSizeInBits) NewSizeInBits = RoundedTo; } return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); }) .legalIf([=](const LegalityQuery &Query) { const LLT &BigTy = Query.Types[BigTyIdx]; const LLT &LitTy = Query.Types[LitTyIdx]; if (BigTy.isVector() && BigTy.getSizeInBits() < 32) return false; if (LitTy.isVector() && LitTy.getSizeInBits() < 32) return false; return BigTy.getSizeInBits() % 16 == 0 && LitTy.getSizeInBits() % 16 == 0 && BigTy.getSizeInBits() <= 512; }) // Any vectors left are the wrong size. Scalarize them. .scalarize(0) .scalarize(1); } computeTables(); verify(*ST.getInstrInfo()); }