bool LabelledClassificationData::merge(LabelledClassificationData &labelledData){ if( labelledData.getNumDimensions() != numDimensions ){ errorLog << "merge(LabelledClassificationData &labelledData) - The number of dimensions in the labelledData (" << labelledData.getNumDimensions() << ") does not match the number of dimensions of this dataset (" << numDimensions << ")" << endl; return false; } //The dataset has changed so flag that any previous cross validation setup will now not work crossValidationSetup = false; crossValidationIndexs.clear(); //Add the data from the labelledData to this instance for(UINT i=0; i<labelledData.getNumSamples(); i++){ addSample(labelledData[i].getClassLabel(), labelledData[i].getSample()); } //Set the class names from the dataset vector< ClassTracker > classTracker = labelledData.getClassTracker(); for(UINT i=0; i<classTracker.size(); i++){ setClassNameForCorrespondingClassLabel(classTracker[i].className, classTracker[i].classLabel); } sortClassLabels(); return true; }
bool ANBC::setWeights(LabelledClassificationData weightsData) { if( weightsData.getNumSamples() > 0 ) { weightsDataSet = true; this->weightsData = weightsData; return true; } return false; }
bool RandomForests::train(LabelledClassificationData trainingData){ //Clear any previous model clear(); const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumDimensions(); const unsigned int K = trainingData.getNumClasses(); if( M == 0 ){ errorLog << "train(LabelledClassificationData labelledTrainingData) - Training data has zero samples!" << endl; return false; } numInputDimensions = N; numClasses = K; classLabels = trainingData.getClassLabels(); ranges = trainingData.getRanges(); //Scale the training data if needed if( useScaling ){ //Scale the training data between 0 and 1 trainingData.scale(0, 1); } //Train the random forest forestSize = 10; Random random; DecisionTree tree; tree.enableScaling( false ); //We have already scaled the training data so we do not need to scale it again tree.setTrainingMode( DecisionTree::BEST_RANDOM_SPLIT ); tree.setNumSplittingSteps( numRandomSplits ); tree.setMinNumSamplesPerNode( minNumSamplesPerNode ); tree.setMaxDepth( maxDepth ); for(UINT i=0; i<forestSize; i++){ LabelledClassificationData data = trainingData.getBootstrappedDataset(); if( !tree.train( data ) ){ errorLog << "train(LabelledClassificationData labelledTrainingData) - Failed to train tree at forest index: " << i << endl; return false; } //Deep copy the tree into the forest forest.push_back( tree.deepCopyTree() ); } //Flag that the algorithm has been trained trained = true; return trained; }
bool BAG::train(LabelledClassificationData trainingData){ const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumDimensions(); const unsigned int K = trainingData.getNumClasses(); trained = false; classLabels.clear(); if( M == 0 ){ errorLog << "train(LabelledClassificationData trainingData) - Training data has zero samples!" << endl; return false; } numFeatures = N; numClasses = K; classLabels.resize(K); ranges = trainingData.getRanges(); UINT ensembleSize = (UINT)ensemble.size(); if( ensembleSize == 0 ){ errorLog << "train(LabelledClassificationData trainingData) - The ensemble size is zero! You need to add some classifiers to the ensemble first." << endl; return false; } for(UINT i=0; i<ensembleSize; i++){ if( ensemble[i] == NULL ){ errorLog << "train(LabelledClassificationData trainingData) - The classifier at ensemble index " << i << " has not been set!" << endl; return false; } } //Train the ensemble for(UINT i=0; i<ensembleSize; i++){ LabelledClassificationData boostedDataset = trainingData.getBootstrappedDataset(); //Train the classifier with the bootstrapped dataset if( !ensemble[i]->train( boostedDataset ) ){ errorLog << "train(LabelledClassificationData trainingData) - The classifier at ensemble index " << i << " failed training!" << endl; return false; } } //Set the class labels classLabels = trainingData.getClassLabels(); //Flag that the algorithm has been trained trained = true; return trained; }
bool Softmax::train(LabelledClassificationData trainingData){ //Clear any previous model clear(); const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumDimensions(); const unsigned int K = trainingData.getNumClasses(); if( M == 0 ){ errorLog << "train(LabelledClassificationData labelledTrainingData) - Training data has zero samples!" << endl; return false; } numFeatures = N; numClasses = K; models.resize(K); classLabels.resize(K); ranges = trainingData.getRanges(); //Scale the training data if needed if( useScaling ){ //Scale the training data between 0 and 1 trainingData.scale(0, 1); } //Train a regression model for each class in the training data for(UINT k=0; k<numClasses; k++){ //Set the class label classLabels[k] = trainingData.getClassTracker()[k].classLabel; //Train the model if( !trainSoftmaxModel(classLabels[k],models[k],trainingData) ){ errorLog << "train(LabelledClassificationData labelledTrainingData) - Failed to train model for class: " << classLabels[k] << endl; return false; } } //Flag that the algorithm has been trained trained = true; return trained; }
int main (int argc, const char * argv[]) { //Create a new KNN classifier with a K value of 10 KNN knn(10); knn.setNullRejectionCoeff( 10 ); knn.enableScaling( true ); knn.enableNullRejection( true ); //Train the classifier with some training data LabelledClassificationData trainingData; if( !trainingData.loadDatasetFromFile("KNNTrainingData.txt") ){ cout << "Failed to load training data!\n"; return EXIT_FAILURE; } //Use 20% of the training dataset to create a test dataset LabelledClassificationData testData = trainingData.partition( 80 ); //Train the classifier bool trainSuccess = knn.train( trainingData ); if( !trainSuccess ){ cout << "Failed to train classifier!\n"; return EXIT_FAILURE; } //Save the knn model to a file bool saveSuccess = knn.saveModelToFile("KNNModel.txt"); if( !saveSuccess ){ cout << "Failed to save the classifier model!\n"; return EXIT_FAILURE; } //Load the knn model from a file bool loadSuccess = knn.loadModelFromFile("KNNModel.txt"); if( !loadSuccess ){ cout << "Failed to load the classifier model!\n"; return EXIT_FAILURE; } //Use the test dataset to test the KNN model double accuracy = 0; for(UINT i=0; i<testData.getNumSamples(); i++){ //Get the i'th test sample UINT classLabel = testData[i].getClassLabel(); vector< double > inputVector = testData[i].getSample(); //Perform a prediction using the classifier bool predictSuccess = knn.predict( inputVector ); if( !predictSuccess ){ cout << "Failed to perform prediction for test sampel: " << i <<"\n"; return EXIT_FAILURE; } //Get the predicted class label UINT predictedClassLabel = knn.getPredictedClassLabel(); vector< double > classLikelihoods = knn.getClassLikelihoods(); vector< double > classDistances = knn.getClassDistances(); //Update the accuracy if( classLabel == predictedClassLabel ) accuracy++; cout << "TestSample: " << i << " ClassLabel: " << classLabel << " PredictedClassLabel: " << predictedClassLabel << endl; } cout << "Test Accuracy: " << accuracy/double(testData.getNumSamples())*100.0 << "%" << endl; return EXIT_SUCCESS; }
bool KNN::train(LabelledClassificationData &trainingData){ if( !searchForBestKValue ){ return train_(trainingData,K); } UINT index = 0; double bestAccuracy = 0; vector< IndexedDouble > trainingAccuracyLog; for(UINT k=minKSearchValue; k<=maxKSearchValue; k++){ //Randomly spilt the data and use 80% to train the algorithm and 20% to test it LabelledClassificationData trainingSet(trainingData); LabelledClassificationData testSet = trainingSet.partition(80,true); if( !train_(trainingSet, k) ){ errorLog << "Failed to train model for a k value of " << k << endl; }else{ //Compute the classification error double accuracy = 0; for(UINT i=0; i<testSet.getNumSamples(); i++){ vector< double > sample = testSet[i].getSample(); if( !predict( sample ) ){ errorLog << "Failed to predict label for test sample with a k value of " << k << endl; return false; } if( testSet[i].getClassLabel() == predictedClassLabel ){ accuracy++; } } accuracy = accuracy /double( testSet.getNumSamples() ) * 100.0; trainingAccuracyLog.push_back( IndexedDouble(k,accuracy) ); trainingLog << "K:\t" << k << "\tAccuracy:\t" << accuracy << endl; if( accuracy > bestAccuracy ){ bestAccuracy = accuracy; } index++; } } if( bestAccuracy > 0 ){ //Sort the training log by value std::sort(trainingAccuracyLog.begin(),trainingAccuracyLog.end(),IndexedDouble::sortIndexedDoubleByValueDescending); //Copy the top matching values into a temporary buffer vector< IndexedDouble > tempLog; //Add the first value tempLog.push_back( trainingAccuracyLog[0] ); //Keep adding values until the value changes for(UINT i=1; i<trainingAccuracyLog.size(); i++){ if( trainingAccuracyLog[i].value == tempLog[0].value ){ tempLog.push_back( trainingAccuracyLog[i] ); }else break; } //Sort the temp values by index (the index is the K value so we want to get the minimum K value with the maximum accuracy) std::sort(tempLog.begin(),tempLog.end(),IndexedDouble::sortIndexedDoubleByIndexAscending); trainingLog << "Best K Value: " << tempLog[0].index << "\tAccuracy:\t" << tempLog[0].value << endl; //Use the minimum index, this should give us the best accuracy with the minimum K value return train_(trainingData,tempLog[0].index); } return false; }
bool KNN::train_(LabelledClassificationData &trainingData,UINT K){ //Clear any previous models clear(); if( trainingData.getNumSamples() == 0 ){ errorLog << "train(LabelledClassificationData &trainingData) - Training data has zero samples!" << endl; return false; } //Set the dimensionality of the input data this->K = K; this->numFeatures = trainingData.getNumDimensions(); this->numClasses = trainingData.getNumClasses(); //TODO: In the future need to build a kdtree from the training data to allow better realtime prediction this->trainingData = trainingData; if( useScaling ){ ranges = this->trainingData.getRanges(); this->trainingData.scale(ranges, 0, 1); } //Set the class labels classLabels.resize(numClasses); for(UINT k=0; k<numClasses; k++){ classLabels[k] = trainingData.getClassTracker()[k].classLabel; } //Flag that the algorithm has been trained so we can compute the rejection thresholds trained = true; //If null rejection is enabled then compute the null rejection thresholds if( useNullRejection ){ //Set the null rejection to false so we can compute the values for it (this will be set back to its current value later) bool tempUseNullRejection = useNullRejection; useNullRejection = false; rejectionThresholds.clear(); //Compute the rejection thresholds for each of the K classes VectorDouble counter(numClasses,0); trainingMu.resize( numClasses, 0 ); trainingSigma.resize( numClasses, 0 ); rejectionThresholds.resize( numClasses, 0 ); //Compute Mu for each of the classes const unsigned int numTrainingExamples = trainingData.getNumSamples(); vector< IndexedDouble > predictionResults( numTrainingExamples ); for(UINT i=0; i<numTrainingExamples; i++){ predict( trainingData[i].getSample(), K); UINT classLabelIndex = 0; for(UINT k=0; k<numClasses; k++){ if( predictedClassLabel == classLabels[k] ){ classLabelIndex = k; break; } } predictionResults[ i ].index = classLabelIndex; predictionResults[ i ].value = classDistances[ classLabelIndex ]; trainingMu[ classLabelIndex ] += predictionResults[ i ].value; counter[ classLabelIndex ]++; } for(UINT j=0; j<numClasses; j++){ trainingMu[j] /= counter[j]; } //Compute Sigma for each of the classes for(UINT i=0; i<numTrainingExamples; i++){ trainingSigma[predictionResults[i].index] += SQR(predictionResults[i].value - trainingMu[predictionResults[i].index]); } for(UINT j=0; j<numClasses; j++){ double count = counter[j]; if( count > 1 ){ trainingSigma[ j ] = sqrt( trainingSigma[j] / (count-1) ); }else{ trainingSigma[ j ] = 1.0; } } //Check to see if any of the mu or sigma values are zero or NaN bool errorFound = false; for(UINT j=0; j<numClasses; j++){ if( trainingMu[j] == 0 ){ warningLog << "TrainingMu[ " << j << " ] is zero for a K value of " << K << endl; } if( trainingSigma[j] == 0 ){ warningLog << "TrainingSigma[ " << j << " ] is zero for a K value of " << K << endl; } if( isnan( trainingMu[j] ) ){ errorLog << "TrainingMu[ " << j << " ] is NAN for a K value of " << K << endl; errorFound = true; } if( isnan( trainingSigma[j] ) ){ errorLog << "TrainingSigma[ " << j << " ] is NAN for a K value of " << K << endl; errorFound = true; } } if( errorFound ){ trained = false; return false; } //Recompute the rejection thresholds recomputeNullRejectionThresholds(); //Restore the actual state of the null rejection useNullRejection = tempUseNullRejection; }else{ //Resize the rejection thresholds but set the values to 0 rejectionThresholds.clear(); rejectionThresholds.resize( numClasses, 0 ); } return true; }
bool DecisionStump::train(LabelledClassificationData &trainingData, VectorDouble &weights){ trained = false; numInputDimensions = trainingData.getNumDimensions(); //There should only be two classes in the dataset, the positive class (classLable==1) and the negative class (classLabel==2) if( trainingData.getNumClasses() != 2 ){ errorLog << "train(LabelledClassificationData &trainingData, VectorDouble &weights) - There should only be 2 classes in the training data, but there are : " << trainingData.getNumClasses() << endl; return false; } //There should be one weight for every training sample if( trainingData.getNumSamples() != weights.size() ){ errorLog << "train(LabelledClassificationData &trainingData, VectorDouble &weights) - There number of examples in the training data (" << trainingData.getNumSamples() << ") does not match the lenght of the weights vector (" << weights.size() << ")" << endl; return false; } //Pick the training sample to use as the stump feature const UINT M = trainingData.getNumSamples(); UINT bestFeatureIndex = 0; vector< MinMax > ranges = trainingData.getRanges(); double minError = numeric_limits<double>::max(); double minRange = 0; double maxRange = 0; double step = 0; double threshold = 0; double bestThreshold = 0; for(UINT n=0; n<numInputDimensions; n++){ minRange = ranges[n].minValue; maxRange = ranges[n].maxValue; step = (maxRange-minRange)/double(numSteps); threshold = minRange; while( threshold <= maxRange ){ //Compute the error using the current threshold on the current input dimension //We need to check both sides of the threshold double rhsError = 0; double lhsError = 0; for(UINT i=0; i<M; i++){ bool positiveClass = trainingData[ i ].getClassLabel() == WEAK_CLASSIFIER_POSITIVE_CLASS_LABEL; bool rhs = trainingData[ i ][ n ] >= threshold; bool lhs = trainingData[ i ][ n ] <= threshold; if( (rhs && !positiveClass) || (!rhs && positiveClass) ) rhsError += weights[ i ]; if( (lhs && !positiveClass) || (!lhs && positiveClass) ) lhsError += weights[ i ]; } //Check to see if either the rhsError or lhsError beats the minError, if so then store the results if( rhsError < minError ){ minError = rhsError; bestFeatureIndex = n; bestThreshold = threshold; direction = 1; //1 means rhs } if( lhsError < minError ){ minError = lhsError; bestFeatureIndex = n; bestThreshold = threshold; direction = 0; //0 means lhs } //Update the threshold threshold += step; } } decisionFeatureIndex = bestFeatureIndex; decisionValue = bestThreshold; trained = true; //cout << "Best Feature Index: " << decisionFeatureIndex << " Value: " << decisionValue << " Direction: " << direction << " Error: " << minError << endl; return true; }
bool ANBC::train(LabelledClassificationData &labelledTrainingData,double gamma) { const unsigned int M = labelledTrainingData.getNumSamples(); const unsigned int N = labelledTrainingData.getNumDimensions(); const unsigned int K = labelledTrainingData.getNumClasses(); trained = false; models.clear(); classLabels.clear(); if( M == 0 ) { errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - Training data has zero samples!" << endl; return false; } if( weightsDataSet ) { if( weightsData.getNumDimensions() != N ) { errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - The number of dimensions in the weights data (" << weightsData.getNumDimensions() << ") is not equal to the number of dimensions of the training data (" << N << ")" << endl; return false; } } numFeatures = N; numClasses = K; models.resize(K); classLabels.resize(K); ranges = labelledTrainingData.getRanges(); //Train each of the models for(UINT k=0; k<numClasses; k++) { //Get the class label for the kth class UINT classLabel = labelledTrainingData.getClassTracker()[k].classLabel; //Set the kth class label classLabels[k] = classLabel; //Get the weights for this class VectorDouble weights(numFeatures); if( weightsDataSet ) { bool weightsFound = false; for(UINT i=0; i<weightsData.getNumSamples(); i++) { if( weightsData[i].getClassLabel() == classLabel ) { weights = weightsData[i].getSample(); weightsFound = true; break; } } if( !weightsFound ) { errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - Failed to find the weights for class " << classLabel << endl; return false; } } else { //If the weights data has not been set then all the weights are 1 for(UINT j=0; j<numFeatures; j++) weights[j] = 1.0; } //Get all the training data for this class LabelledClassificationData classData = labelledTrainingData.getClassData(classLabel); MatrixDouble data(classData.getNumSamples(),N); //Copy the training data into a matrix, scaling the training data if needed for(UINT i=0; i<data.getNumRows(); i++) { for(UINT j=0; j<data.getNumCols(); j++) { if( useScaling ) { data[i][j] = scale(classData[i][j],ranges[j].minValue,ranges[j].maxValue,MIN_SCALE_VALUE,MAX_SCALE_VALUE); } else data[i][j] = classData[i][j]; } } //Train the model for this class models[k].gamma = gamma; if( !models[k].train(classLabel,data,weights) ) { errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - Failed to train model for class: " << classLabel << endl; //Try and work out why the training failed if( models[k].N == 0 ) { errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - N == 0!" << endl; models.clear(); return false; } for(UINT j=0; j<numFeatures; j++) { if( models[k].mu[j] == 0 ) { errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - The mean of column " << j+1 << " is zero! Check the training data" << endl; models.clear(); return false; } } models.clear(); return false; } } //Store the null rejection thresholds nullRejectionThresholds.resize(numClasses); for(UINT k=0; k<numClasses; k++) { nullRejectionThresholds[k] = models[k].threshold; } //Flag that the models have been trained trained = true; return trained; }
bool MinDist::train(LabelledClassificationData &labelledTrainingData,double gamma){ const unsigned int M = labelledTrainingData.getNumSamples(); const unsigned int N = labelledTrainingData.getNumDimensions(); const unsigned int K = labelledTrainingData.getNumClasses(); trained = false; models.clear(); classLabels.clear(); if( M == 0 ){ errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - Training data has zero samples!" << endl; return false; } if( M <= numClusters ){ errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - There are not enough training samples for the number of clusters. Either reduce the number of clusters or increase the number of training samples!" << endl; return false; } numFeatures = N; numClasses = K; models.resize(K); classLabels.resize(K); ranges = labelledTrainingData.getRanges(); //Train each of the models for(UINT k=0; k<numClasses; k++){ //Get the class label for the kth class UINT classLabel = labelledTrainingData.getClassTracker()[k].classLabel; //Set the kth class label classLabels[k] = classLabel; //Get all the training data for this class LabelledClassificationData classData = labelledTrainingData.getClassData(classLabel); MatrixDouble data(classData.getNumSamples(),N); //Copy the training data into a matrix, scaling the training data if needed for(UINT i=0; i<data.getNumRows(); i++){ for(UINT j=0; j<data.getNumCols(); j++){ if( useScaling ){ data[i][j] = scale(classData[i][j],ranges[j].minValue,ranges[j].maxValue,0,1); }else data[i][j] = classData[i][j]; } } //Train the model for this class models[k].setGamma( gamma ); if( !models[k].train(classLabel,data,numClusters) ){ errorLog << "train(LabelledClassificationData &labelledTrainingData,double gamma) - Failed to train model for class: " << classLabel; errorLog << ". This is might be because this class does not have enough training samples! You should reduce the number of clusters or increase the number of training samples for this class." << endl; models.clear(); return false; } } trained = true; return true; }
bool Softmax::trainSoftmaxModel(UINT classLabel,SoftmaxModel &model,LabelledClassificationData &data){ double error = 0; double errorSum = 0; double lastErrorSum = 0; double delta = 0; UINT N = data.getNumDimensions(); UINT M = data.getNumSamples(); UINT iter = 0; bool keepTraining = true; Random random; VectorDouble y(M); vector< UINT > randomTrainingOrder(M); //Init the model model.init( classLabel, N ); //Setup the target vector, the input data is relabelled as positive samples (with label 1.0) and negative samples (with label 0.0) for(UINT i=0; i<M; i++){ y[i] = data[i].getClassLabel()==classLabel ? 1.0 : 0; } //In most cases, the training data is grouped into classes (100 samples for class 1, followed by 100 samples for class 2, etc.) //This can cause a problem for stochastic gradient descent algorithm. To avoid this issue, we randomly shuffle the order of the //training samples. This random order is then used at each epoch. for(UINT i=0; i<M; i++){ randomTrainingOrder[i] = i; } std::random_shuffle(randomTrainingOrder.begin(), randomTrainingOrder.end()); //Run the main stochastic gradient descent training algorithm while( keepTraining ){ //Run one epoch of training using stochastic gradient descent errorSum = 0; for(UINT m=0; m<M; m++){ //Select the random sample UINT i = randomTrainingOrder[m]; //Compute the error, given the current weights error = y[i] - model.compute( data[i].getSample() ); errorSum += error; //Update the weights for(UINT j=0; j<N; j++){ model.w[j] += learningRate * error * data[i][j]; } model.w0 += learningRate * error; } //Compute the error delta = fabs( errorSum-lastErrorSum ); lastErrorSum = errorSum; //Check to see if we should stop if( delta <= minChange ){ keepTraining = false; } if( ++iter >= maxNumIterations ){ keepTraining = false; } trainingLog << "Epoch: " << iter << " TotalError: " << errorSum << " Delta: " << delta << endl; } return true; }
bool GMM::train(LabelledClassificationData trainingData){ //Clear any old models models.clear(); trained = false; numFeatures = 0; numClasses = 0; if( trainingData.getNumSamples() == 0 ){ errorLog << "train(LabelledClassificationData &trainingData) - Training data is empty!" << endl; return false; } //Set the number of features and number of classes and resize the models buffer numFeatures = trainingData.getNumDimensions(); numClasses = trainingData.getNumClasses(); models.resize(numClasses); if( numFeatures >= 6 ){ warningLog << "train(LabelledClassificationData &trainingData) - The number of features in your training data is high (" << numFeatures << "). The GMMClassifier does not work well with high dimensional data, you might get better results from one of the other classifiers." << endl; } //Get the ranges of the training data if the training data is going to be scaled if( useScaling ){ ranges = trainingData.getRanges(); } //Fit a Mixture Model to each class (independently) for(UINT k=0; k<numClasses; k++){ UINT classLabel = trainingData.getClassTracker()[k].classLabel; LabelledClassificationData classData = trainingData.getClassData( classLabel ); //Scale the training data if needed if( useScaling ){ if( !classData.scale(ranges,GMM_MIN_SCALE_VALUE, GMM_MAX_SCALE_VALUE) ){ errorLog << "train(LabelledClassificationData &trainingData) - Failed to scale training data!" << endl; return false; } } //Convert the labelled data to unlabelled data UnlabelledClassificationData unlabelledData = classData.reformatAsUnlabelledClassificationData(); //Train the Mixture Model for this class GaussianMixtureModels gaussianMixtureModel; gaussianMixtureModel.setMinChange( minChange ); gaussianMixtureModel.setMaxIter( maxIter ); if( !gaussianMixtureModel.train(unlabelledData, numMixtureModels) ){ errorLog << "train(LabelledClassificationData &trainingData) - Failed to train Mixture Model for class " << classLabel << endl; return false; } //Setup the model container models[k].resize( numMixtureModels ); models[k].setClassLabel( classLabel ); //Store the mixture model in the container for(UINT j=0; j<numMixtureModels; j++){ models[k][j].mu = gaussianMixtureModel.getMu().getRowVector(j); models[k][j].sigma = gaussianMixtureModel.getSigma()[j]; //Compute the determinant and invSigma for the realtime prediction LUDecomposition ludcmp(models[k][j].sigma); if( !ludcmp.inverse( models[k][j].invSigma ) ){ models.clear(); errorLog << "train(LabelledClassificationData &trainingData) - Failed to invert Matrix for class " << classLabel << "!" << endl; return false; } models[k][j].det = ludcmp.det(); } //Compute the normalize factor models[k].recomputeNormalizationFactor(); //Compute the rejection thresholds double mu = 0; double sigma = 0; VectorDouble predictionResults(classData.getNumSamples(),0); for(UINT i=0; i<classData.getNumSamples(); i++){ vector< double > sample = classData[i].getSample(); predictionResults[i] = models[k].computeMixtureLikelihood( sample ); mu += predictionResults[i]; } //Update mu mu /= double( classData.getNumSamples() ); //Calculate the standard deviation for(UINT i=0; i<classData.getNumSamples(); i++) sigma += SQR( (predictionResults[i]-mu) ); sigma = sqrt( sigma / (double(classData.getNumSamples())-1.0) ); sigma = 0.2; //Set the models training mu and sigma models[k].setTrainingMuAndSigma(mu,sigma); if( !models[k].recomputeNullRejectionThreshold(nullRejectionCoeff) && useNullRejection ){ warningLog << "train(LabelledClassificationData &trainingData) - Failed to recompute rejection threshold for class " << classLabel << " - the nullRjectionCoeff value is too high!" << endl; } //cout << "Training Mu: " << mu << " TrainingSigma: " << sigma << " RejectionThreshold: " << models[k].getNullRejectionThreshold() << endl; //models[k].printModelValues(); } //Reset the class labels classLabels.resize(numClasses); for(UINT k=0; k<numClasses; k++){ classLabels[k] = models[k].getClassLabel(); } //Resize the rejection thresholds nullRejectionThresholds.resize(numClasses); for(UINT k=0; k<numClasses; k++){ nullRejectionThresholds[k] = models[k].getNullRejectionThreshold(); } //Flag that the models have been trained trained = true; return true; }