void ws_profile_interval1( const char* wsfile = "ws-test1.root", const char* parName = "mu_susy_sig", double alpha = 0.10, double mu_susy_sig_val = 0., double xmax = -1. ) { TFile* wstf = new TFile( wsfile ) ; RooWorkspace* ws = dynamic_cast<RooWorkspace*>( wstf->Get("ws") ); ws->Print() ; //// ModelConfig* modelConfig = (ModelConfig*) ws->obj( "SbModel" ) ; //// printf("\n\n\n ===== SbModel ====================\n\n") ; //// modelConfig->Print() ; RooDataSet* rds = (RooDataSet*) ws->obj( "ra2b_observed_rds" ) ; printf("\n\n\n ===== RooDataSet ====================\n\n") ; rds->Print() ; rds->printMultiline(cout, 1, kTRUE, "") ; printf("\n\n\n ===== Grabbing %s rrv ====================\n\n", parName ) ; RooRealVar* rrv_par = ws->var( parName ) ; if ( rrv_par == 0x0 ) { printf("\n\n\n *** can't find %s in workspace. Quitting.\n\n\n", parName ) ; return ; } else { printf(" current value is : %8.3f\n", rrv_par->getVal() ) ; cout << flush ; } if ( xmax > 0 ) { rrv_par->setMax( xmax ) ; } printf("\n\n\n ===== Grabbing mu_susy_sig rrv ====================\n\n") ; RooRealVar* rrv_mu_susy_sig = ws->var("mu_susy_sig") ; if ( rrv_mu_susy_sig == 0x0 ) { printf("\n\n\n *** can't find mu_susy_sig in workspace. Quitting.\n\n\n") ; return ; } if ( strcmp( parName, "mu_susy_sig" ) != 0 ) { if ( mu_susy_sig_val >= 0. ) { printf(" current value is : %8.3f\n", rrv_mu_susy_sig->getVal() ) ; cout << flush ; printf(" fixing to %8.2f.\n", mu_susy_sig_val ) ; rrv_mu_susy_sig->setVal( mu_susy_sig_val ) ; rrv_mu_susy_sig->setConstant(kTRUE) ; } else { printf(" current value is : %8.3f\n", rrv_mu_susy_sig->getVal() ) ; cout << flush ; printf(" allowing mu_susy_sig to float.\n") ; rrv_mu_susy_sig->setConstant(kFALSE) ; } } else { printf("\n\n profile plot parameter is mu_susy_sig.\n") ; rrv_mu_susy_sig->setConstant(kFALSE) ; } printf("\n\n\n ===== Grabbing likelihood pdf ====================\n\n") ; RooAbsPdf* likelihood = ws->pdf("likelihood") ; if ( likelihood == 0x0 ) { printf("\n\n\n *** can't find likelihood pdf in workspace. Quitting.\n\n\n") ; return ; } else { printf("\n\n likelihood pdf: \n\n") ; likelihood->Print() ; } printf("\n\n\n ===== Doing a fit ====================\n\n") ; likelihood->fitTo( *rds ) ; double mlValue = rrv_par->getVal() ; printf(" Maximum likelihood value of %s : %8.3f +/- %8.3f\n", parName, rrv_par->getVal(), rrv_par->getError() ) ; printf("\n\n ========== Creating ProfileLikelihoodCalculator\n\n" ) ; cout << flush ; // ProfileLikelihoodCalculator plc( *rds, *modelConfig ) ; ProfileLikelihoodCalculator plc( *rds, *likelihood, RooArgSet( *rrv_par ) ) ; plc.SetTestSize( alpha ) ; ConfInterval* plinterval = plc.GetInterval() ; double low = ((LikelihoodInterval*) plinterval)->LowerLimit(*rrv_par) ; double high = ((LikelihoodInterval*) plinterval)->UpperLimit(*rrv_par) ; printf("\n\n Limits: %8.3f, %8.3f\n\n", low, high ) ; printf("\n\n ========= Making profile likelihood plot\n\n") ; cout << flush ; LikelihoodIntervalPlot* profPlot = new LikelihoodIntervalPlot((LikelihoodInterval*)plinterval) ; TCanvas* cplplot = new TCanvas("cplplot","cplplot", 500, 400) ; profPlot->Draw() ; gPad->SetGridy(1) ; char plotname[10000] ; sprintf( plotname, "plplot-%s.png", parName ) ; cplplot->SaveAs( plotname ) ; if ( alpha > 0.3 ) { printf("\n\n\n 1 standard-deviation errors for %s : %8.2f + %8.2f - %8.2f\n\n\n", parName, mlValue, high-mlValue, mlValue-low ) ; } }
// // calculation of the limit: assumes that wspace is set up and observations // contained in data // MyLimit computeLimit (RooWorkspace* wspace, RooDataSet* data, StatMethod method, bool draw) { // let's time this challenging example TStopwatch t; // // get nominal signal // RooRealVar exp_sig(*wspace->var("s")); double exp_sig_val = exp_sig.getVal(); std::cout << "exp_sig = " << exp_sig_val << std::endl; ///////////////////////////////////////////////////// // Now the statistical tests // model config std::cout << wspace->pdf("model") << " " << wspace->pdf("prior") << " " << wspace->set("poi") << " " << wspace->set("nuis") << std::endl; ModelConfig modelConfig("RA4abcd"); modelConfig.SetWorkspace(*wspace); modelConfig.SetPdf(*wspace->pdf("model")); modelConfig.SetPriorPdf(*wspace->pdf("prior")); modelConfig.SetParametersOfInterest(*wspace->set("poi")); modelConfig.SetNuisanceParameters(*wspace->set("nuis")); ////////////////////////////////////////////////// // If you want to see the covariance matrix uncomment // wspace->pdf("model")->fitTo(*data); // use ProfileLikelihood if ( method == ProfileLikelihoodMethod ) { ProfileLikelihoodCalculator plc(*data, modelConfig); plc.SetConfidenceLevel(0.95); RooFit::MsgLevel msglevel = RooMsgService::instance().globalKillBelow(); RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL); LikelihoodInterval* plInt = plc.GetInterval(); RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL); plInt->LowerLimit( *wspace->var("s") ); // get ugly print out of the way. Fix. // RooMsgService::instance().setGlobalKillBelow(RooFit::DEBUG); if ( draw ) { TCanvas* c = new TCanvas("ProfileLikelihood"); LikelihoodIntervalPlot* lrplot = new LikelihoodIntervalPlot(plInt); lrplot->Draw(); } // RooMsgService::instance().setGlobalKillBelow(msglevel); double lowLim = plInt->LowerLimit(*wspace->var("s")); double uppLim = plInt->UpperLimit(*wspace->var("s")); // double exp_sig_val = wspace->var("s")->getVal(); // double exp_sig_val = exp_sig.getVal(); cout << "Profile Likelihood interval on s = [" << lowLim << ", " << uppLim << "]" << " " << exp_sig_val << endl; // MyLimit result(plInt->IsInInterval(exp_sig), MyLimit result(exp_sig_val>lowLim&&exp_sig_val<uppLim,lowLim,uppLim); // std::cout << "isIn " << result << std::endl; delete plInt; // delete modelConfig; return result; } // use FeldmaCousins (takes ~20 min) if ( method == FeldmanCousinsMethod ) { FeldmanCousins fc(*data, modelConfig); fc.SetConfidenceLevel(0.95); //number counting: dataset always has 1 entry with N events observed fc.FluctuateNumDataEntries(false); fc.UseAdaptiveSampling(true); fc.SetNBins(100); PointSetInterval* fcInt = NULL; fcInt = (PointSetInterval*) fc.GetInterval(); // fix cast double lowLim = fcInt->LowerLimit(*wspace->var("s")); double uppLim = fcInt->UpperLimit(*wspace->var("s")); // double exp_sig_val = wspace->var("s")->getVal(); cout << "Feldman Cousins interval on s = [" << lowLim << " " << uppLim << endl; // std::cout << "isIn " << result << std::endl; MyLimit result(exp_sig_val>lowLim&&exp_sig_val<uppLim, fcInt->LowerLimit(*wspace->var("s")),fcInt->UpperLimit(*wspace->var("s"))); delete fcInt; return result; } // use BayesianCalculator (only 1-d parameter of interest, slow for this problem) if ( method == BayesianMethod ) { BayesianCalculator bc(*data, modelConfig); bc.SetConfidenceLevel(0.95); bc.SetLeftSideTailFraction(0.5); SimpleInterval* bInt = NULL; if( wspace->set("poi")->getSize() == 1) { bInt = bc.GetInterval(); if ( draw ) { TCanvas* c = new TCanvas("Bayesian"); // the plot takes a long time and print lots of error // using a scan it is better bc.SetScanOfPosterior(50); RooPlot* bplot = bc.GetPosteriorPlot(); bplot->Draw(); } cout << "Bayesian interval on s = [" << bInt->LowerLimit( ) << ", " << bInt->UpperLimit( ) << "]" << endl; // std::cout << "isIn " << result << std::endl; MyLimit result(bInt->IsInInterval(exp_sig), bInt->LowerLimit(),bInt->UpperLimit()); delete bInt; return result; } else { cout << "Bayesian Calc. only supports on parameter of interest" << endl; return MyLimit(); } } // use MCMCCalculator (takes about 1 min) // Want an efficient proposal function, so derive it from covariance // matrix of fit if ( method == MCMCMethod ) { RooFitResult* fit = wspace->pdf("model")->fitTo(*data,Save()); ProposalHelper ph; ph.SetVariables((RooArgSet&)fit->floatParsFinal()); ph.SetCovMatrix(fit->covarianceMatrix()); ph.SetUpdateProposalParameters(kTRUE); // auto-create mean vars and add mappings ph.SetCacheSize(100); ProposalFunction* pf = ph.GetProposalFunction(); MCMCCalculator mc(*data, modelConfig); mc.SetConfidenceLevel(0.95); mc.SetProposalFunction(*pf); mc.SetNumBurnInSteps(100); // first N steps to be ignored as burn-in mc.SetNumIters(100000); mc.SetLeftSideTailFraction(0.5); // make a central interval MCMCInterval* mcInt = NULL; mcInt = mc.GetInterval(); MCMCIntervalPlot mcPlot(*mcInt); mcPlot.Draw(); cout << "MCMC interval on s = [" << mcInt->LowerLimit(*wspace->var("s") ) << ", " << mcInt->UpperLimit(*wspace->var("s") ) << "]" << endl; // std::cout << "isIn " << result << std::endl; MyLimit result(mcInt->IsInInterval(exp_sig), mcInt->LowerLimit(*wspace->var("s")),mcInt->UpperLimit(*wspace->var("s"))); delete mcInt; return result; } t.Print(); // delete modelConfig; return MyLimit(); }
Int_t Tprime::RunPlr( std::string channel, // ejets, mujets, combined std::string mode, // observed, expected double peak, // resonance mass std::string suffix, // suffix for output file names Int_t ntoys, // number of pseudoexperiments for expected limit std::string inputdir ) { // input dir name // // Profile likelihood ratio calculation // //RooStats::ProfileLikelihoodTestStat::setReuseNLL(kTRUE) ; // activate use of setData() //RooStats::ToyMCSampler::setUseMultiGen(kTRUE) ;// activate use of prepareMultiGen() std::string legend = "[tprime::RunPlr()]: "; // print out inputs std::cout << legend << std::endl; std::cout << legend << "Input parameters specified. Some of them are not used and defaults are entered" << std::endl; std::cout << legend << "------------------------------" << std::endl; std::cout << legend << "channel: " << channel << std::endl; std::cout << legend << "mode: " << mode << std::endl; std::cout << legend << "input directory: " << inputdir << std::endl; std::cout << legend << "resonance peak mass: " << peak << std::endl; std::cout << legend << "suffix: ->" << suffix << "<-" << std::endl; std::cout << legend << "number of pseudo-experiments: "<< ntoys << std::endl; std::cout << legend << std::endl; // compose the workspace file name char buf[1024]; sprintf(buf, "%sresults_%04.0f/tprime_%s_tprimeCrossSection_model.root", inputdir.c_str(), peak, channel.c_str()); std::string _file = buf; std::cout << legend << "guessed name of the file with the workspace: >" << _file << "<" << std::endl; //load workspace LoadWorkspace(_file, channel); // fix POI range if needed std::cout << std::endl << legend << "fixing POI range to [0-10]" << std::endl; pWs->var("xsec")->setRange(0,10); // timer TStopwatch t; t.Start(); int pe_counter = 0; while (pe_counter < ntoys) { // set data if (mode.find("observed") != std::string::npos ) { std::cout << legend << std::endl; std::cout << legend << "calculating an observed limit..." << std::endl; std::cout << legend << std::endl; GetWorkspaceData("obsData"); ntoys = 1; //RooStats::ModelConfig * _mc = GetModaelConfig(); //_mc->GetPdf()->fitTo(*data, Save()); } else if (mode.find("expected") != std::string::npos ) { // expected interval std::cout << legend << std::endl; std::cout << legend << "this is pseudoexperiment " << pe_counter+1 << " of " << ntoys << std::endl; std::cout << legend << "for the expected limit estimate" << std::endl; std::cout << legend << std::endl; GetPseudoData(); //GetWorkspaceData("obsData"); } // end of expected interval GetPlrInterval(0.95); // query intervals RooFit::MsgLevel msglevel = RooMsgService::instance().globalKillBelow(); RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL); RooStats::ModelConfig * _mc = GetModelConfig(); RooRealVar * _poi = (RooRealVar *)_mc->GetParametersOfInterest()->first(); Double_t upper_limit = pPlrInt->UpperLimit( *_poi ); RooMsgService::instance().setGlobalKillBelow(msglevel); std::cout << legend << "Profile Likelihood upper limit = " << upper_limit << std::endl; std::string _outfile = "tprime_limit_plr_" + channel + "_" + mode + "_" + suffix + ".ascii"; std::vector<Double_t> results; results.push_back(peak); results.push_back(upper_limit); PrintToFile( _outfile, results, "# peak upper_limit" ); ++pe_counter; } // end of while toy loop // stop timer and print time used t.Stop(); t.Print(); // make plot TCanvas c1("c1"); LikelihoodIntervalPlot * pPlrPlot = new LikelihoodIntervalPlot(pPlrInt); pPlrPlot->Draw(); std::string plot_file_name = "tprime_limit_" + channel + "_" + mode + "_" + suffix + ".pdf"; c1.SaveAs(plot_file_name.c_str()); delete pPlrPlot; return 0; }