bool MAdd::updateForReplacement(MDefinition *ins_) { JS_ASSERT(ins_->isAdd()); MAdd *ins = ins_->toAdd(); if (isTruncated()) setTruncated(ins->isTruncated()); return true; }
MVar *ComparisonStageIR::compute_linear_index(MVar *left_idx, MVar *right_bound, MVar *right_idx, MBlock *block) const { MMul *mul = new MMul(left_idx, right_bound); mul->register_for_delete(); block->add_expr(mul); MAdd *add = new MAdd(mul->get_result(), right_idx); add->register_for_delete(); block->add_expr(add); return add->get_result(); }
// Fold AddIs with one variable and two or more constants into one AddI. static void AnalyzeAdd(TempAllocator& alloc, MAdd* add) { if (add->specialization() != MIRType::Int32 || add->isRecoveredOnBailout()) { return; } if (!add->hasUses()) { return; } JitSpew(JitSpew_FLAC, "analyze add: %s%u", add->opName(), add->id()); SimpleLinearSum sum = ExtractLinearSum(add); if (sum.constant == 0 || !sum.term) { return; } // Determine which operand is the constant. int idx = add->getOperand(0)->isConstant() ? 0 : 1; if (add->getOperand(idx)->isConstant()) { // Do not replace an add where the outcome is the same add instruction. MOZ_ASSERT(add->getOperand(idx)->toConstant()->type() == MIRType::Int32); if (sum.term == add->getOperand(1 - idx) || sum.constant == add->getOperand(idx)->toConstant()->toInt32()) { return; } } MInstruction* rhs = MConstant::New(alloc, Int32Value(sum.constant)); add->block()->insertBefore(add, rhs); MAdd* addNew = MAdd::New(alloc, sum.term, rhs, MIRType::Int32, add->truncateKind()); add->replaceAllLiveUsesWith(addNew); add->block()->insertBefore(add, addNew); JitSpew(JitSpew_FLAC, "replaced with: %s%u", addNew->opName(), addNew->id()); JitSpew(JitSpew_FLAC, "and constant: %s%u (%d)", rhs->opName(), rhs->id(), sum.constant); // Mark the stale nodes as RecoveredOnBailout since the Sink pass has // been run before this pass. DCE will then remove the unused nodes. markNodesAsRecoveredOnBailout(add); }
static void AnalyzeLsh(TempAllocator& alloc, MLsh* lsh) { if (lsh->specialization() != MIRType::Int32) return; if (lsh->isRecoveredOnBailout()) return; MDefinition* index = lsh->lhs(); MOZ_ASSERT(index->type() == MIRType::Int32); MConstant* shiftValue = lsh->rhs()->maybeConstantValue(); if (!shiftValue) return; if (shiftValue->type() != MIRType::Int32 || !IsShiftInScaleRange(shiftValue->toInt32())) return; Scale scale = ShiftToScale(shiftValue->toInt32()); int32_t displacement = 0; MInstruction* last = lsh; MDefinition* base = nullptr; while (true) { if (!last->hasOneUse()) break; MUseIterator use = last->usesBegin(); if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isAdd()) break; MAdd* add = use->consumer()->toDefinition()->toAdd(); if (add->specialization() != MIRType::Int32 || !add->isTruncated()) break; MDefinition* other = add->getOperand(1 - add->indexOf(*use)); if (MConstant* otherConst = other->maybeConstantValue()) { displacement += otherConst->toInt32(); } else { if (base) break; base = other; } last = add; if (last->isRecoveredOnBailout()) return; } if (!base) { uint32_t elemSize = 1 << ScaleToShift(scale); if (displacement % elemSize != 0) return; if (!last->hasOneUse()) return; MUseIterator use = last->usesBegin(); if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isBitAnd()) return; MBitAnd* bitAnd = use->consumer()->toDefinition()->toBitAnd(); if (bitAnd->isRecoveredOnBailout()) return; MDefinition* other = bitAnd->getOperand(1 - bitAnd->indexOf(*use)); MConstant* otherConst = other->maybeConstantValue(); if (!otherConst || otherConst->type() != MIRType::Int32) return; uint32_t bitsClearedByShift = elemSize - 1; uint32_t bitsClearedByMask = ~uint32_t(otherConst->toInt32()); if ((bitsClearedByShift & bitsClearedByMask) != bitsClearedByMask) return; bitAnd->replaceAllUsesWith(last); return; } if (base->isRecoveredOnBailout()) return; MEffectiveAddress* eaddr = MEffectiveAddress::New(alloc, base, index, scale, displacement); last->replaceAllUsesWith(eaddr); last->block()->insertAfter(last, eaddr); }
// Transform: // // [AddI] // addl $9, %esi // [LoadUnboxedScalar] // movsd 0x0(%rbx,%rsi,8), %xmm4 // // into: // // [LoadUnboxedScalar] // movsd 0x48(%rbx,%rsi,8), %xmm4 // // This is possible when the AddI is only used by the LoadUnboxedScalar opcode. static void AnalyzeLoadUnboxedScalar(TempAllocator& alloc, MLoadUnboxedScalar* load) { if (load->isRecoveredOnBailout()) return; if (!load->getOperand(1)->isAdd()) return; JitSpew(JitSpew_EAA, "analyze: %s%u", load->opName(), load->id()); MAdd* add = load->getOperand(1)->toAdd(); if (add->specialization() != MIRType::Int32 || !add->hasUses() || add->truncateKind() != MDefinition::TruncateKind::Truncate) { return; } MDefinition* lhs = add->lhs(); MDefinition* rhs = add->rhs(); MDefinition* constant = nullptr; MDefinition* node = nullptr; if (lhs->isConstant()) { constant = lhs; node = rhs; } else if (rhs->isConstant()) { constant = rhs; node = lhs; } else return; MOZ_ASSERT(constant->type() == MIRType::Int32); size_t storageSize = Scalar::byteSize(load->storageType()); int32_t c1 = load->offsetAdjustment(); int32_t c2 = 0; if (!SafeMul(constant->maybeConstantValue()->toInt32(), storageSize, &c2)) return; int32_t offset = 0; if (!SafeAdd(c1, c2, &offset)) return; JitSpew(JitSpew_EAA, "set offset: %d + %d = %d on: %s%u", c1, c2, offset, load->opName(), load->id()); load->setOffsetAdjustment(offset); load->replaceOperand(1, node); if (!add->hasLiveDefUses() && DeadIfUnused(add) && add->canRecoverOnBailout()) { JitSpew(JitSpew_EAA, "mark as recovered on bailout: %s%u", add->opName(), add->id()); add->setRecoveredOnBailoutUnchecked(); } }
static void AnalyzeLsh(MBasicBlock *block, MLsh *lsh) { if (lsh->specialization() != MIRType_Int32) return; MDefinition *index = lsh->lhs(); JS_ASSERT(index->type() == MIRType_Int32); MDefinition *shift = lsh->rhs(); if (!shift->isConstant()) return; Value shiftValue = shift->toConstant()->value(); if (!shiftValue.isInt32() || !IsShiftInScaleRange(shiftValue.toInt32())) return; Scale scale = ShiftToScale(shiftValue.toInt32()); int32_t displacement = 0; MInstruction *last = lsh; MDefinition *base = nullptr; while (true) { if (!last->hasOneUse()) break; MUseIterator use = last->usesBegin(); if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isAdd()) break; MAdd *add = use->consumer()->toDefinition()->toAdd(); if (add->specialization() != MIRType_Int32 || !add->isTruncated()) break; MDefinition *other = add->getOperand(1 - use->index()); if (other->isConstant()) { displacement += other->toConstant()->value().toInt32(); } else { if (base) break; base = other; } last = add; } if (!base) { uint32_t elemSize = 1 << ScaleToShift(scale); if (displacement % elemSize != 0) return; if (!last->hasOneUse()) return; MUseIterator use = last->usesBegin(); if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isBitAnd()) return; MBitAnd *bitAnd = use->consumer()->toDefinition()->toBitAnd(); MDefinition *other = bitAnd->getOperand(1 - use->index()); if (!other->isConstant() || !other->toConstant()->value().isInt32()) return; uint32_t bitsClearedByShift = elemSize - 1; uint32_t bitsClearedByMask = ~uint32_t(other->toConstant()->value().toInt32()); if ((bitsClearedByShift & bitsClearedByMask) != bitsClearedByMask) return; bitAnd->replaceAllUsesWith(last); return; } MEffectiveAddress *eaddr = MEffectiveAddress::New(base, index, scale, displacement); last->replaceAllUsesWith(eaddr); block->insertAfter(last, eaddr); }
void ComparisonStageIR::build_stage() { assert(!is_tiled() || (is_tiled() && !track_progress())); // timer is only allowed for serial loops (just use it to get avg iterations per second or something like that) assert(!time_loop() || (time_loop() && !is_parallelized())); set_stage_function(create_stage_function()); set_user_function(create_user_function()); // stuff before the loop // build the return idx MVar *loop_start = new MVar(MScalarType::get_long_type()); // don't make a constant b/c it should be updateable loop_start->register_for_delete(); MStatement *set_loop_start = new MStatement(loop_start, MVar::create_constant<long>(0)); set_loop_start->register_for_delete(); MStatement *set_result = new MStatement(get_return_idx(), loop_start); set_result->register_for_delete(); set_start_block(new MBlock("start")); get_start_block()->register_for_delete(); get_start_block()->add_expr(set_loop_start); get_start_block()->add_expr(set_result); // When we don't parallelize, then make the inner loop's index outside of both the loops rather than within // the outer loop. This is a hack for llvm because if we have an alloca call within each iteration of the outer loop, // we will be "leaking" stack space each time that is called, so moving it outside of the loop prevents that. // However, it makes it hard to work with when we then parallelize because the code sees that inner loop index as a // free variable that needs to be added to the closure. This is not fun because our index is now a pointer to an index // and then we would need to update the index by going through the pointer, etc. Basically, it would cause some hacks on the // LLVM side (and unless this becomes something that is needed in the future, I don't want to deal with it). // So instead, it is dealt with below. Without parallelization, the inner loop index is initialized outside of the // nested loop, and then updated to the correct start right before the inner loop begins execution. // When parallelization is turned on, the inner loop index is made INSIDE the outer loop. This is because the // parallelized outer loop calls a function every iteration which is the outer loop body, and then within that the // inner loop is created. alloca is scoped at the function level, so the inner loop index gets a single alloca // in this function call, and then the inner loop is created. // This may not be required of other possible back-end languages that we choose, but it will depend on their scoping rules. // // TL;DR LLVM has function scoping for allocainst, so if we create the inner loop index as so // val outer_index... // for outer_index... // val inner_index... // for inner_index... // every iteration of the outer loop adds space to the stack which isn't released until the function ends. So we want // val outer_index... // val inner_index... // for outer_index... // for inner_index... MVar *inner_start = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); MBlock *preallocation_block = create_preallocator(); get_start_block()->add_expr(preallocation_block); MTimer *timer = nullptr; timer = new MTimer(); timer->register_for_delete(); MFor *outer_loop_skeleton_1 = nullptr; MFor *inner_loop_skeleton_1 = nullptr; MFor *outer_loop_skeleton_2 = nullptr; MFor *inner_loop_skeleton_2 = nullptr; MBlock *inner_loop_body = nullptr; // think of all comparisons as being in an NxM matrix where N is the left input and M is the right input. // N is the outermost iteration tile_size_N = MVar::create_constant<long>(2); tile_size_M = MVar::create_constant<long>(2); MVar *final_loop_bound; if (!is_tiled() || !is_tileable()) { // No tiling // To make sure that the inner loop doesn't get replace with a different bound if parallelizing, copy // the bound to a different variable and use that MVar *bound_copy = new MVar(MScalarType::get_long_type()); bound_copy->register_for_delete(); MStatement *set_copy = new MStatement(bound_copy, get_stage_function()->/*get_args()*/get_loaded_args()[3]); set_copy->register_for_delete(); get_start_block()->add_expr(set_copy); // loop components MVar *outer_loop_start = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); outer_loop_skeleton_1 = create_stage_for_loop(outer_loop_start, MVar::create_constant<long>(1), get_stage_function()->/*get_args()*/get_loaded_args()[1], false, get_start_block()); if (is_parallelizable() && is_parallelized()) { outer_loop_skeleton_1->set_exec_type(PARALLEL); } MVar *_inner_start = nullptr; if ((left_input || right_input) && !_force_commutative) { _inner_start = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); } else { MAdd *add = new MAdd(outer_loop_skeleton_1->get_loop_index(), MVar::create_constant<long>(1)); outer_loop_skeleton_1->get_body_block()->add_expr(add); add->register_for_delete(); _inner_start = add->get_result(); } if (!time_loop()) { get_start_block()->add_expr(outer_loop_skeleton_1); } else { get_start_block()->add_expr(timer); timer->get_timer_block()->add_expr(outer_loop_skeleton_1); } MStatement *set_inner_start = new MStatement(inner_start, _inner_start); set_inner_start->register_for_delete(); outer_loop_skeleton_1->get_body_block()->add_expr(set_inner_start); MBlock *temp_block = new MBlock(); temp_block->register_for_delete(); inner_loop_skeleton_1 = create_stage_for_loop(inner_start, MVar::create_constant<long>(1), bound_copy, true, temp_block); // TODO hack, need to add the loop index initialization before the outer loop, but we have to add the outer loop before this since // the inner_start depends on the outer loop get_start_block()->insert_at(temp_block, get_start_block()->get_exprs().size() - 2); // insert right before the outer loop // stuff for calling the user function in the loop inner_loop_body = inner_loop_skeleton_1->get_body_block(); } else if (is_tiled() && is_tileable()) { // tiling // loop components MDiv *_outer_1_bound = new MDiv(get_stage_function()->/*get_args()*/get_loaded_args()[1], tile_size_N); _outer_1_bound->register_for_delete(); MDiv *_inner_1_bound = new MDiv(get_stage_function()->/*get_args()*/get_loaded_args()[3], tile_size_M); _inner_1_bound->register_for_delete(); // compensate for when the number of elements isn't a multiple of the tile size MAdd *outer_1_bound = new MAdd(_outer_1_bound->get_result(), MVar::create_constant<long>(1)); outer_1_bound->register_for_delete(); MAdd *inner_1_bound = new MAdd(_inner_1_bound->get_result(), MVar::create_constant<long>(1)); inner_1_bound->register_for_delete(); get_start_block()->add_expr(_outer_1_bound); get_start_block()->add_expr(_inner_1_bound); get_start_block()->add_expr(outer_1_bound); get_start_block()->add_expr(inner_1_bound); MVar *outer_loop_start_1 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); outer_loop_start_1->override_name("outer_loop_start_1"); MVar *inner_loop_start_1 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); inner_loop_start_1->override_name("inner_loop_start_1"); MVar *outer_loop_start_2 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); outer_loop_start_2->override_name("outer_loop_start_2"); MVar *inner_loop_start_2 = initialize<long>(MScalarType::get_long_type(), 0, get_start_block()); inner_loop_start_2->override_name("inner_loop_start_2"); // n = 0 to N/tile_size_N + 1 outer_loop_skeleton_1 = create_stage_for_loop(outer_loop_start_1, MVar::create_constant<long>(1), outer_1_bound->get_result(), true, get_start_block()); outer_loop_skeleton_1->override_name("outer_loop_skeleton1"); // // if (!time_loop()) { // get_start_block()->add_expr(outer_loop_skeleton_1); // } else { // get_start_block()->add_expr(timer); // timer->get_timer_block()->add_expr(outer_loop_skeleton_1); // } // m = 0 to M/tile_size_M + 1 inner_loop_skeleton_1 = create_stage_for_loop(inner_loop_start_1, MVar::create_constant<long>(1), inner_1_bound->get_result(), true, get_start_block()); inner_loop_skeleton_1->override_name("inner_loop_skeleton1"); // nn = 0 to tile_size_N outer_loop_skeleton_2 = create_stage_for_loop(outer_loop_start_2, MVar::create_constant<long>(1), tile_size_N, true, get_start_block()); outer_loop_skeleton_2->override_name("outer_loop_skeleton2"); // mm = 0 to tile_size_M inner_loop_skeleton_2 = create_stage_for_loop(inner_loop_start_2, MVar::create_constant<long>(1), tile_size_M, true, get_start_block()); inner_loop_skeleton_2->override_name("inner_loop_skeleton2"); if (!time_loop()) { get_start_block()->add_expr(outer_loop_skeleton_1); } else { get_start_block()->add_expr(timer); timer->get_timer_block()->add_expr(outer_loop_skeleton_1); } inner_loop_skeleton_1->get_body_block()->add_expr(outer_loop_skeleton_2); outer_loop_skeleton_2->get_body_block()->add_expr(inner_loop_skeleton_2); inner_loop_body = inner_loop_skeleton_2->get_body_block(); } MBlock *user_arg_block; std::vector<MVar *> args = create_user_function_inputs(&user_arg_block, outer_loop_skeleton_1, outer_loop_skeleton_2, inner_loop_skeleton_1, inner_loop_skeleton_2, nullptr, false, nullptr, nullptr, get_stage_function()->/*get_args()*/get_loaded_args()[1], get_stage_function()->/*get_args()*/get_loaded_args()[3]); if (!is_tiled() || !is_tileable()) { inner_loop_body->add_expr(user_arg_block); } // if tiled, this is already added in the create_user_function_inputs inner_loop_body = user_arg_block; int bucket_idx = inner_loop_body->get_exprs().size(); MFunctionCall *call = call_user_function(get_user_function(), args); inner_loop_body->add_expr(call); // handle the output of the user call MBlock *processed_call = process_user_function_call(call, NULL, false); inner_loop_body->add_expr(processed_call); // do any other postprocessing needed in the loop before the next iteration MBlock *extra = loop_extras(); inner_loop_body->add_expr(extra); if (track_progress() && !is_parallelized()) { // still return the original loop bound MBlock *temp = new MBlock(); temp->register_for_delete(); final_loop_bound = outer_loop_skeleton_1->get_loop_bound(); outer_loop_skeleton_1->get_body_block()->add_expr(inner_loop_skeleton_1); inner_loop_body->insert_at(apply_buckets(args[0], args[1], inner_loop_skeleton_2 ? inner_loop_skeleton_2 : inner_loop_skeleton_1), bucket_idx); std::pair<MFor *, MFor *> splits = ProgressTracker::create_progress_tracker(outer_loop_skeleton_1, inner_loop_skeleton_1, get_num_tracking_splits(), temp, true); // find the original outer_loop_skeleton_1 in the block and remove it. Then replace with the new one in splits.first int idx = 0; if (!time_loop()) { for (std::vector<MExpr *>::const_iterator iter = get_start_block()->get_exprs().cbegin(); iter != get_start_block()->get_exprs().cend(); iter++) { if (*iter == outer_loop_skeleton_1) { break; } idx++; } get_start_block()->remove_at(idx); } else { for (std::vector<MExpr *>::const_iterator iter = timer->get_timer_block()->get_exprs().cbegin(); iter != timer->get_timer_block()->get_exprs().cend(); iter++) { if (*iter == outer_loop_skeleton_1) { break; } idx++; } timer->get_timer_block()->remove_at(idx); } outer_loop_skeleton_1 = splits.first; // do the replacement // outer_loop_skeleton_1 added to temp block in the progress tracker function if (!time_loop()) { get_stage_function()->add_body_block(temp); } else { timer->get_timer_block()->insert_at(temp, idx); } } else { outer_loop_skeleton_1->get_body_block()->add_expr(inner_loop_skeleton_1); final_loop_bound = outer_loop_skeleton_1->get_loop_bound(); inner_loop_body->insert_at(apply_buckets(args[0], args[1], inner_loop_skeleton_2 ? inner_loop_skeleton_2 : inner_loop_skeleton_1), bucket_idx); } // modify this loop if it needs to be parallelized if (is_parallelizable() && is_parallelized()) { parallelize_main_loop(get_start_block(), outer_loop_skeleton_1, inner_loop_skeleton_1); } // // if (is_tiled() && is_tileable()) { // inner_loop_skeleton_1->get_body_block()->add_expr(outer_loop_skeleton_2); // outer_loop_skeleton_2->get_body_block()->add_expr(inner_loop_skeleton_2); // } // postprocessing after the outer loop is done (no postprocessing needed after the inner loop since it just goes back to the outer loop) MBlock *after_loop = time_loop() ? timer->get_after_timer_block() : outer_loop_skeleton_1->get_end_block(); MBlock *finished = finish_stage(nullptr, final_loop_bound); MBlock *deletion = delete_fields(); after_loop->add_expr(deletion); after_loop->add_expr(finished); get_stage_function()->insert_body_block_at(get_start_block(), 1); // insert before the temp block, which would have been added if doing tracking. Insert after the stage arg loading though. // the temp block has the loop now, so it can't come before everything else }
// TODO once I get the indexing right, I can fix preallocation so that only the correct number of outputs are preallocated, not just N^2 // TODO Can also fix the number output (does that need to be fixed?) std::vector<MVar *> ComparisonStageIR::create_user_function_inputs(MBlock **mblock, MFor *outer_loop, MFor *outer_tiled_inner, MFor *inner_loop, MFor *inner_tiled_inner, MVar *, bool, MVar *, MVar *, MVar *original_num_inputs_left, MVar *original_num_inputs_right) { // body of the outer MFor passed in is the inner MFor loop std::vector<MVar *> stage_args = get_stage_function()->get_loaded_args();//get_args(); std::vector<MVar *> args; // Think of the indices into the two input arrays as coordinates into a matrix. The outer coordinate is for N, i.e. the row number. // The inner coordinate is for M, i.e. the column number. MVar *final_outer_coordinate; MVar *final_inner_coordinate; // get the outer and inner input elements // if tiled, the computation for the indices is different if (is_tiled() && is_tileable()) { if ((left_input || right_input) && !_force_commutative) { // N x M assert(original_num_inputs_left && original_num_inputs_right); // sanity check MVar *n = outer_loop->get_loop_index(); MVar *m = inner_loop->get_loop_index(); MVar *nn = outer_tiled_inner->get_loop_index(); MVar *mm = inner_tiled_inner->get_loop_index(); // outer = n * tile_size_N + nn final_outer_coordinate = get_element(stage_args[0], n, tile_size_N, nn, outer_tiled_inner->get_body_block(), inner_loop, &args, original_num_inputs_left, nullptr); // inner = m * M + mm final_inner_coordinate = get_element(stage_args[2], m, tile_size_M, mm, inner_tiled_inner->get_body_block(), outer_tiled_inner, &args, original_num_inputs_right, mblock); } else { // (N^2-N)/2 assert(original_num_inputs_left && original_num_inputs_right); // sanity check MVar *n = outer_loop->get_loop_index(); MVar *m = inner_loop->get_loop_index(); MVar *nn = outer_tiled_inner->get_loop_index(); MVar *mm = inner_tiled_inner->get_loop_index(); // outer = n * tile_size_N + nn final_outer_coordinate = get_element(stage_args[0], n, tile_size_N, nn, outer_tiled_inner->get_body_block(), inner_loop, &args, original_num_inputs_left, nullptr); // the outer doesn't change with commutativity // this code could almost be handled by get_element, but the conditional is more complex, so I just leave it here for now rather than // trying to refactor it. // inner = m * M + mm int inner_insert_idx = 0; MBlock *linear_inner = new MBlock(); linear_inner->register_for_delete(); MVar *inner_idx = compute_linear_index(m, tile_size_M, mm, linear_inner); inner_tiled_inner->get_body_block()->insert_at(linear_inner, inner_insert_idx++); final_inner_coordinate = inner_idx; // check that the inner index is still in range (< M) and that it is less than the outer idx // TODO this assumes that the integral value of true is 1. In the future, create an MTrue and MFalse type // that allows arithmetic to be done on it. Then I can plug in the actual values when generating the back end code, such as LLVM. MSLT *is_inner_in_range = new MSLT(inner_idx, original_num_inputs_right); is_inner_in_range->register_for_delete(); inner_tiled_inner->get_body_block()->insert_at(is_inner_in_range, inner_insert_idx++); MSLT *is_less_than_outer = new MSLT(inner_idx, final_outer_coordinate); is_less_than_outer->register_for_delete(); is_less_than_outer->override_name("inner_less_than_outer"); inner_tiled_inner->get_body_block()->insert_at(is_less_than_outer, inner_insert_idx++); // since we don't have a compound conditional type (YET), we get the results of the two SLT calls here. // If they sum to 2, then both are true since we assume true == 1. This way, we only need a single if // statement checking the value of the addition. MCast *is_inner_in_range_long = new MCast(is_inner_in_range->get_result(), MScalarType::get_long_type()); is_inner_in_range_long->register_for_delete(); inner_tiled_inner->get_body_block()->insert_at(is_inner_in_range_long, inner_insert_idx++); MCast *is_less_than_outer_long = new MCast(is_less_than_outer->get_result(), MScalarType::get_long_type()); is_less_than_outer_long->register_for_delete(); inner_tiled_inner->get_body_block()->insert_at(is_less_than_outer_long, inner_insert_idx++); MAdd *sum_of_conditionals = new MAdd(is_inner_in_range_long->get_casted(), is_less_than_outer_long->get_casted()); sum_of_conditionals->register_for_delete(); inner_tiled_inner->get_body_block()->insert_at(sum_of_conditionals, inner_insert_idx++); MEq *is_in_range_and_less_than = new MEq(sum_of_conditionals->get_result(), MVar::create_constant<long>(2)); is_in_range_and_less_than->register_for_delete(); inner_tiled_inner->get_body_block()->insert_at(is_in_range_and_less_than, inner_insert_idx++); MBlock *inner_is_in_range_and_less_than = new MBlock(); inner_is_in_range_and_less_than->register_for_delete(); MBlock *inner_not_in_range_nor_less_than = new MBlock(); inner_not_in_range_nor_less_than->register_for_delete(); MBlock *dummy_inner = new MBlock(); dummy_inner->register_for_delete(); MIfThenElse *inner_ite = new MIfThenElse(is_in_range_and_less_than->get_result(), inner_is_in_range_and_less_than, inner_not_in_range_nor_less_than, dummy_inner, nullptr); inner_ite->register_for_delete(); inner_tiled_inner->get_body_block()->insert_at(inner_ite, inner_insert_idx++); inner_ite->override_name("inner_ite"); // If in range, get the inner element and then go to the innermost tiled loop. // Since the innermost loop is already in outer_tiled_inner's body, remove it from there (and any other stuff that should only // execute if the we are in range) and then add it to the outer_is_in_range block. MIndex *get_inner_input = new MIndex(stage_args[2], inner_idx, create_type<MElementType *>(), "inner_input_element"); get_inner_input->register_for_delete(); inner_is_in_range_and_less_than->add_expr(get_inner_input); args.push_back(get_inner_input->get_result()); inner_is_in_range_and_less_than->add_exprs(inner_tiled_inner->get_body_block()->remove_range(inner_insert_idx++, -1)); // If out of range, continue to the next iteration of the outer_tiled_inner_loop MContinue *to_nn_loop = new MContinue(outer_tiled_inner); to_nn_loop->register_for_delete(); inner_not_in_range_nor_less_than->add_expr(to_nn_loop); *mblock = inner_is_in_range_and_less_than; } } else { // the loop indices are already setup by this point depending on whether we are NxM or N^2 MVar *current_outer_idx = outer_loop->get_loop_index(); MVar *current_inner_idx = inner_loop->get_loop_index(); final_outer_coordinate = current_outer_idx; final_inner_coordinate = current_inner_idx; MIndex *outer_element = new MIndex(stage_args[0], current_outer_idx, create_type<MElementType *>(), "outer_input_element"); outer_element->register_for_delete(); MIndex *inner_element = new MIndex(stage_args[2], current_inner_idx, create_type<MElementType *>(), "inner_input_element"); inner_element->register_for_delete(); outer_loop->get_body_block()->add_expr(outer_element); inner_loop->get_body_block()->add_expr(inner_element); args.push_back(outer_element->get_result()); args.push_back(inner_element->get_result()); *mblock = new MBlock(); (*mblock)->register_for_delete(); } // if this has an output, make the output element // this doesn't care if we are tiled or not. The equations are the same since we appropriately set the coordinates // above based on tiling or not. MVar *final_index; if (compareVIO) { // First create "shell" for a new Element* to be passed to the user MVar *new_element = new MVar(create_type<MElementType*>(), "output_element"); new_element->register_for_delete(); // create the statement that will actually initialize the value // compute the current output index if ((left_input || right_input) && !_force_commutative) { // N x M // equation for linearizing the coordinates is: // final_outer_coordinate X original_num_inputs_right + final_inner_coordinate MMul *mul = new MMul(final_outer_coordinate, original_num_inputs_right); mul->register_for_delete(); (*mblock)->add_expr(mul); MAdd *add = new MAdd(mul->get_result(), final_inner_coordinate); add->register_for_delete(); (*mblock)->add_expr(add); final_index = add->get_result(); } else { // N^2 and/or commutative // equation for linearizing the coordinates is: // [final_outer_coordinate^2 - final_outer_coordinate]/2 + final_inner_coordinate // the division term in this equation tells you how many elements have come before you. Then the addition // adds on your position in the current row. // It's not straightforward like the NxM version because we are only doing comparisons between elements // in the lower triangular part of the matrix (excluding the diagonal), so the linear indices from // the NxM version would give non-consecutive indices. This basically takes those indices and compresses // them down from 0 to however many comparisons we do. MMul *squared = new MMul(final_outer_coordinate, final_outer_coordinate); squared->register_for_delete(); (*mblock)->add_expr(squared); MSub *sub = new MSub(squared->get_result(), final_outer_coordinate); sub->register_for_delete(); (*mblock)->add_expr(sub); MDiv *div = new MDiv(sub->get_result(), MVar::create_constant<long>(2)); div->register_for_delete(); (*mblock)->add_expr(div); MAdd *add = new MAdd(div->get_result(), final_inner_coordinate); add->register_for_delete(); (*mblock)->add_expr(add); final_index = add->get_result(); } MStatement *set_new_element = new MStatement(new_element, nullptr); // nullptr tells it to create a new value set_new_element->register_for_delete(); set_new_element->add_parameter(final_index); // this is the id of the Element to be created (*mblock)->add_expr(set_new_element); args.push_back(new_element); // now set the Element in the output array MStatementIdx *set = new MStatementIdx(stage_args[4], new_element, final_index); set->register_for_delete(); (*mblock)->add_expr(set); } return args; }