/** Execute the algorithm. */ void TransformMD::exec() { Mantid::API::IMDWorkspace_sptr inWS; Mantid::API::IMDWorkspace_sptr outWS; inWS = getProperty("InputWorkspace"); outWS = getProperty("OutputWorkspace"); std::string outName = getPropertyValue("OutputWorkspace"); if (boost::dynamic_pointer_cast<MatrixWorkspace>(inWS)) throw std::runtime_error("TransformMD can only transform a " "MDHistoWorkspace or a MDEventWorkspace."); if (outWS != inWS) { // NOT in-place. So first we clone inWS into outWS IAlgorithm_sptr clone = this->createChildAlgorithm("CloneMDWorkspace", 0.0, 0.5, true); clone->setProperty("InputWorkspace", inWS); clone->executeAsChildAlg(); outWS = clone->getProperty("OutputWorkspace"); } if (!outWS) throw std::runtime_error("Invalid output workspace."); size_t nd = outWS->getNumDims(); m_scaling = getProperty("Scaling"); m_offset = getProperty("Offset"); // Replicate single values if (m_scaling.size() == 1) m_scaling = std::vector<double>(nd, m_scaling[0]); if (m_offset.size() == 1) m_offset = std::vector<double>(nd, m_offset[0]); // Check the size if (m_scaling.size() != nd) throw std::invalid_argument("Scaling argument must be either length 1 or " "match the number of dimensions."); if (m_offset.size() != nd) throw std::invalid_argument("Offset argument must be either length 1 or " "match the number of dimensions."); // Transform the dimensions outWS->transformDimensions(m_scaling, m_offset); MDHistoWorkspace_sptr histo = boost::dynamic_pointer_cast<MDHistoWorkspace>(outWS); IMDEventWorkspace_sptr event = boost::dynamic_pointer_cast<IMDEventWorkspace>(outWS); if (histo) { // Recalculate all the values since the dimensions changed. histo->cacheValues(); // Expect first 3 dimensions to be -1 for changing conventions for (int i = 0; i < static_cast<int>(m_scaling.size()); i++) if (m_scaling[i] < 0) { std::vector<int> axes(m_scaling.size()); // vector with ints. std::iota(std::begin(axes), std::end(axes), 0); // Fill with 0, 1, ... axes[0] = i; axes[i] = 0; if (i > 0) histo = transposeMD(histo, axes); signal_t *signals = histo->getSignalArray(); signal_t *errorsSq = histo->getErrorSquaredArray(); signal_t *numEvents = histo->getNumEventsArray(); // Find the extents size_t nPoints = static_cast<size_t>(histo->getDimension(0)->getNBins()); size_t mPoints = 1; for (size_t k = 1; k < histo->getNumDims(); k++) { mPoints *= static_cast<size_t>(histo->getDimension(k)->getNBins()); } // other dimensions for (size_t j = 0; j < mPoints; j++) { this->reverse(signals + j * nPoints, nPoints); this->reverse(errorsSq + j * nPoints, nPoints); this->reverse(numEvents + j * nPoints, nPoints); } histo = transposeMD(histo, axes); } // Pass on the display normalization from the input workspace histo->setDisplayNormalization(inWS->displayNormalizationHisto()); this->setProperty("OutputWorkspace", histo); } else if (event) { // Call the method for this type of MDEventWorkspace. CALL_MDEVENT_FUNCTION(this->doTransform, outWS); Progress *prog2 = nullptr; ThreadScheduler *ts = new ThreadSchedulerFIFO(); ThreadPool tp(ts, 0, prog2); event->splitAllIfNeeded(ts); // prog2->resetNumSteps( ts->size(), 0.4, 0.6); tp.joinAll(); event->refreshCache(); // Set the special coordinate system. IMDEventWorkspace_sptr inEvent = boost::dynamic_pointer_cast<IMDEventWorkspace>(inWS); event->setCoordinateSystem(inEvent->getSpecialCoordinateSystem()); if (m_scaling[0] < 0) { // Only need these 2 algorithms for transforming with negative number std::vector<double> extents; std::vector<std::string> names, units; for (size_t d = 0; d < nd; d++) { Geometry::IMDDimension_const_sptr dim = event->getDimension(d); // Find the extents extents.push_back(dim->getMinimum()); extents.push_back(dim->getMaximum()); names.push_back(std::string(dim->getName())); units.push_back(dim->getUnits()); } Algorithm_sptr create_alg = createChildAlgorithm("CreateMDWorkspace"); create_alg->setProperty("Dimensions", static_cast<int>(nd)); create_alg->setProperty("EventType", event->getEventTypeName()); create_alg->setProperty("Extents", extents); create_alg->setProperty("Names", names); create_alg->setProperty("Units", units); create_alg->setPropertyValue("OutputWorkspace", "__none"); create_alg->executeAsChildAlg(); Workspace_sptr none = create_alg->getProperty("OutputWorkspace"); AnalysisDataService::Instance().addOrReplace(outName, event); AnalysisDataService::Instance().addOrReplace("__none", none); Mantid::API::BoxController_sptr boxController = event->getBoxController(); std::vector<int> splits; for (size_t d = 0; d < nd; d++) { splits.push_back(static_cast<int>(boxController->getSplitInto(d))); } Algorithm_sptr merge_alg = createChildAlgorithm("MergeMD"); merge_alg->setPropertyValue("InputWorkspaces", outName + ",__none"); merge_alg->setProperty("SplitInto", splits); merge_alg->setProperty( "SplitThreshold", static_cast<int>(boxController->getSplitThreshold())); merge_alg->setProperty("MaxRecursionDepth", 13); merge_alg->executeAsChildAlg(); event = merge_alg->getProperty("OutputWorkspace"); AnalysisDataService::Instance().remove("__none"); } this->setProperty("OutputWorkspace", event); } }
/** Perform loading for a MDHistoWorkspace. * The entry should be open already. */ void LoadMD::loadHisto() { // Create the initial MDHisto. MDHistoWorkspace_sptr ws; // If display normalization has been provided. Use that. if (m_visualNormalization) { ws = boost::make_shared<MDHistoWorkspace>(m_dims, m_visualNormalization.get()); } else { ws = boost::make_shared<MDHistoWorkspace>( m_dims); // Whatever MDHistoWorkspace defaults to. } // Now the ExperimentInfo MDBoxFlatTree::loadExperimentInfos(m_file.get(), m_filename, ws); // Coordinate system ws->setCoordinateSystem(m_coordSystem); // Load the WorkspaceHistory "process" if (this->getProperty("LoadHistory")) { ws->history().loadNexus(m_file.get()); } this->loadAffineMatricies(boost::dynamic_pointer_cast<IMDWorkspace>(ws)); if (m_saveMDVersion == 2) m_file->openGroup("data", "NXdata"); // Load each data slab this->loadSlab("signal", ws->getSignalArray(), ws, ::NeXus::FLOAT64); this->loadSlab("errors_squared", ws->getErrorSquaredArray(), ws, ::NeXus::FLOAT64); this->loadSlab("num_events", ws->getNumEventsArray(), ws, ::NeXus::FLOAT64); this->loadSlab("mask", ws->getMaskArray(), ws, ::NeXus::INT8); m_file->close(); // Check if a MDFrame adjustment is required checkForRequiredLegacyFixup(ws); if (m_requiresMDFrameCorrection) { setMDFrameOnWorkspaceFromLegacyFile(ws); } // Write out the Qconvention // ki-kf for Inelastic convention; kf-ki for Crystallography convention std::string pref_QConvention = Kernel::ConfigService::Instance().getString("Q.convention"); g_log.information() << "Convention for Q in Preferences is " << pref_QConvention << "; Convention of Q in NeXus file is " << m_QConvention << '\n'; if (pref_QConvention != m_QConvention) { std::vector<double> scaling(m_numDims); scaling = qDimensions(ws); g_log.information() << "Transforming Q\n"; Algorithm_sptr transform_alg = createChildAlgorithm("TransformMD"); transform_alg->setProperty("InputWorkspace", boost::dynamic_pointer_cast<IMDWorkspace>(ws)); transform_alg->setProperty("Scaling", scaling); transform_alg->executeAsChildAlg(); IMDWorkspace_sptr tmp = transform_alg->getProperty("OutputWorkspace"); ws = boost::dynamic_pointer_cast<MDHistoWorkspace>(tmp); } // Save to output setProperty("OutputWorkspace", boost::dynamic_pointer_cast<IMDWorkspace>(ws)); }