예제 #1
0
/** Method analyzes the state of UB matrix and goniometer attached to the
  *workspace and decides, which target
  * coordinate system these variables identify.
  *Crystal Frame decided in case if there is UB matrix is present and is not
  *unit matrix
  *Lab frame -- if goniometer is Unit and UB is unit matrix or not present
  *Sample frame -- otherwise
  */
CnvrtToMD::TargetFrame
MDWSTransform::findTargetFrame(MDWSDescription &TargWSDescription) const {

  bool hasGoniometer = TargWSDescription.hasGoniometer();
  bool hasLattice = TargWSDescription.hasLattice();

  if (!hasGoniometer) {
    return LabFrame;
  } else {
    if (hasLattice)
      return HKLFrame;
    else
      return SampleFrame;
  }
}
예제 #2
0
/** Method verifies if the information available on the source workspace is
 *sufficient to build appropriate frame
 *@param TargWSDescription -- the class which contains the information about the
 *target workspace
 *@param CoordFrameID     -- the ID of the target frame requested
 *
 * method throws invalid argument if the information on the workspace is
 *insufficient to define the frame requested
*/
void MDWSTransform::checkTargetFrame(
    const MDWSDescription &TargWSDescription,
    const CnvrtToMD::TargetFrame CoordFrameID) const {
  switch (CoordFrameID) {
  case (LabFrame): // nothing needed for lab frame
    return;
  case (SampleFrame):
    if (!TargWSDescription.hasGoniometer())
      throw std::invalid_argument(
          " Sample frame needs goniometer to be defined on the workspace ");
    return;
  case (HKLFrame): // ubMatrix has to be present
    if (!TargWSDescription.hasLattice())
      throw std::invalid_argument(
          " HKL frame needs UB matrix defined on the workspace ");
    if (!TargWSDescription.hasGoniometer())
      g_Log.warning() << "  HKL frame does not have goniometer defined on the "
                         "workspace. Assuming unit goniometer matrix\n";
    return;
  default:
    throw std::runtime_error(
        " Unexpected argument in MDWSTransform::checkTargetFrame");
  }
}
예제 #3
0
/** The matrix to convert neutron momentums into the target coordinate system */
std::vector<double>
MDWSTransform::getTransfMatrix(MDWSDescription &TargWSDescription,
                               CnvrtToMD::TargetFrame FrameID,
                               CoordScaling &ScaleID) const {

  Kernel::Matrix<double> mat(3, 3, true);

  bool powderMode = TargWSDescription.isPowder();

  bool has_lattice(true);
  if (!TargWSDescription.hasLattice())
    has_lattice = false;

  if (!(powderMode || has_lattice)) {
    std::string inWsName = TargWSDescription.getWSName();
    // notice about 3D case without lattice
    g_Log.notice()
        << "Can not obtain transformation matrix from the input workspace: "
        << inWsName << " as no oriented lattice has been defined. \n"
                       "Will use unit transformation matrix.\n";
  }
  // set the frame ID to the values, requested by properties
  CnvrtToMD::TargetFrame CoordFrameID(FrameID);
  if (FrameID == AutoSelect || powderMode) // if this value is auto-select, find
                                           // appropriate frame from workspace
                                           // properties
    CoordFrameID = findTargetFrame(TargWSDescription);
  else // if not, and specific target frame requested, verify if everything is
       // available on the workspace for this frame
    checkTargetFrame(
        TargWSDescription,
        CoordFrameID); // throw, if the information is not available

  switch (CoordFrameID) {
  case (CnvrtToMD::LabFrame): {
    ScaleID = NoScaling;
    TargWSDescription.m_Wtransf =
        buildQTrahsf(TargWSDescription, ScaleID, true);
    // ignore goniometer
    mat = TargWSDescription.m_Wtransf;
    break;
  }
  case (CnvrtToMD::SampleFrame): {
    ScaleID = NoScaling;
    TargWSDescription.m_Wtransf =
        buildQTrahsf(TargWSDescription, ScaleID, true);
    // Obtain the transformation matrix to Cartesian related to Crystal
    mat = TargWSDescription.getGoniometerMatr() * TargWSDescription.m_Wtransf;
    break;
  }
  case (CnvrtToMD::HKLFrame): {
    TargWSDescription.m_Wtransf =
        buildQTrahsf(TargWSDescription, ScaleID, false);
    // Obtain the transformation matrix to Cartesian related to Crystal
    if (TargWSDescription.hasGoniometer())
      mat = TargWSDescription.getGoniometerMatr() * TargWSDescription.m_Wtransf;
    else
      mat = TargWSDescription.m_Wtransf;

    break;
  }
  default:
    throw(std::invalid_argument(" Unknown or undefined Target Frame ID"));
  }
  //
  // and this is the transformation matrix to notional
  mat.Invert();

  std::vector<double> rotMat = mat.getVector();
  g_Log.debug()
      << " *********** Q-transformation matrix ***********************\n";
  g_Log.debug()
      << "***     *qx         !     *qy         !     *qz           !\n";
  g_Log.debug() << "q1= " << rotMat[0] << " ! " << rotMat[1] << " ! "
                << rotMat[2] << " !\n";
  g_Log.debug() << "q2= " << rotMat[3] << " ! " << rotMat[4] << " ! "
                << rotMat[5] << " !\n";
  g_Log.debug() << "q3= " << rotMat[6] << " ! " << rotMat[7] << " ! "
                << rotMat[8] << " !\n";
  g_Log.debug()
      << " *********** *********************** ***********************\n";
  return rotMat;
}