PView *elasticitySolver::buildErrorView(const std::string postFileName, simpleFunction<double> *f0, simpleFunction<double> *f1, simpleFunction<double> *f2) { std::cout << "build Error View" << std::endl; std::map<int, std::vector<double> > data; SolverField<SVector3> solField(pAssembler, LagSpace); for(std::size_t i = 0; i < elasticFields.size(); ++i) { for(groupOfElements::elementContainer::const_iterator it = elasticFields[i].g->begin(); it != elasticFields[i].g->end(); ++it) { MElement *e = *it; int npts; IntPt *GP; double jac[3][3]; int integrationOrder = 2 * (e->getPolynomialOrder() + 5); e->getIntegrationPoints(integrationOrder, &npts, &GP); double val = 0.0; for(int j = 0; j < npts; j++) { double u = GP[j].pt[0]; double v = GP[j].pt[1]; double w = GP[j].pt[2]; double weight = GP[j].weight; double detJ = fabs(e->getJacobian(u, v, w, jac)); SPoint3 p; e->pnt(u, v, w, p); SVector3 FEMVALUE; solField.f(e, u, v, w, FEMVALUE); SVector3 sol((*f0)(p.x(), p.y(), p.z()), (*f1)(p.x(), p.y(), p.z()), (*f2)(p.x(), p.y(), p.z())); double diff = normSq(sol - FEMVALUE); val += diff * detJ * weight; } std::vector<double> vec; vec.push_back(sqrt(val)); data[e->getNum()] = vec; } } PView *pv = new PView(postFileName, "ElementData", pModel, data, 0.0, 1); return pv; }
double thermicSolver::computeL2Norm(simpleFunction<double> *sol) { double val = 0.0; SolverField<double> solField(pAssembler, LagSpace); for(std::size_t i = 0; i < thermicFields.size(); ++i) { for(groupOfElements::elementContainer::const_iterator it = thermicFields[i].g->begin(); it != thermicFields[i].g->end(); ++it) { MElement *e = *it; // printf("element (%g,%g) (%g,%g) // (%g,%g)\n",e->getVertex(0)->x(),e->getVertex(0)->y(),e->getVertex(1)->x(),e->getVertex(1)->y(),e->getVertex(2)->x(),e->getVertex(2)->y()); int npts; IntPt *GP; double jac[3][3]; int integrationOrder = 2 * (e->getPolynomialOrder() + 5); e->getIntegrationPoints(integrationOrder, &npts, &GP); for(int j = 0; j < npts; j++) { double u = GP[j].pt[0]; double v = GP[j].pt[1]; double w = GP[j].pt[2]; double weight = GP[j].weight; double detJ = fabs(e->getJacobian(u, v, w, jac)); SPoint3 p; e->pnt(u, v, w, p); double FEMVALUE; solField.f(e, u, v, w, FEMVALUE); double diff = (*sol)(p.x(), p.y(), p.z()) - FEMVALUE; val += diff * diff * detJ * weight; // printf("(%g %g) : detJ=%g we=%g FV=%g sol=%g // diff=%g\n",p.x(),p.y(),detJ,weight,FEMVALUE,(*sol)(p.x(), p.y(), // p.z()),diff); } } } printf("L2Norm = %g\n", sqrt(val)); return sqrt(val); }
double elasticitySolver::computeL2Norm(simpleFunction<double> *f0, simpleFunction<double> *f1, simpleFunction<double> *f2) { double val = 0.0; SolverField<SVector3> solField(pAssembler, LagSpace); for(std::size_t i = 0; i < elasticFields.size(); ++i) { for(groupOfElements::elementContainer::const_iterator it = elasticFields[i].g->begin(); it != elasticFields[i].g->end(); ++it) { MElement *e = *it; int npts; IntPt *GP; double jac[3][3]; int integrationOrder = 2 * (e->getPolynomialOrder() + 5); e->getIntegrationPoints(integrationOrder, &npts, &GP); for(int j = 0; j < npts; j++) { double u = GP[j].pt[0]; double v = GP[j].pt[1]; double w = GP[j].pt[2]; double weight = GP[j].weight; double detJ = fabs(e->getJacobian(u, v, w, jac)); SPoint3 p; e->pnt(u, v, w, p); SVector3 FEMVALUE; solField.f(e, u, v, w, FEMVALUE); SVector3 sol((*f0)(p.x(), p.y(), p.z()), (*f1)(p.x(), p.y(), p.z()), (*f2)(p.x(), p.y(), p.z())); double diff = normSq(sol - FEMVALUE); val += diff * detJ * weight; } } } printf("L2Norm = %g\n", sqrt(val)); return sqrt(val); }
double GRegion::computeSolidProperties(std::vector<double> cg, std::vector<double> inertia) { std::list<GFace*>::iterator it = l_faces.begin(); std::list<int>::iterator itdir = l_dirs.begin(); double volumex = 0; double volumey = 0; double volumez = 0; double surface = 0; cg[0] = cg[1] = cg[2] = 0.0; for ( ; it != l_faces.end(); ++it,++itdir){ for (unsigned int i = 0; i < (*it)->triangles.size(); ++i){ MTriangle *e = (*it)->triangles[i]; int npt; IntPt *pts; e->getIntegrationPoints (2*(e->getPolynomialOrder()-1)+3, &npt, &pts); for (int j=0;j<npt;j++){ SPoint3 pt; // compute x,y,z of the integration point e->pnt(pts[j].pt[0], pts[j].pt[1], pts[j].pt[2], pt); double jac[3][3]; // compute normal double detJ = e->getJacobian(pts[j].pt[0], pts[j].pt[1], pts[j].pt[2], jac); SVector3 n(jac[2][0], jac[2][1], jac[2][2]); n.normalize(); n *= (double)*itdir; surface += detJ* pts[j].weight; volumex += detJ * n.x() * pt.x() * pts[j].weight; volumey += detJ * n.y() * pt.y() * pts[j].weight; volumez += detJ * n.z() * pt.z() * pts[j].weight; cg[0] += detJ * n.x() * (pt.x() * pt.x()) * pts[j].weight * 0.5; cg[1] += detJ * n.y() * (pt.y() * pt.y()) * pts[j].weight * 0.5; cg[2] += detJ * n.z() * (pt.z() * pt.z()) * pts[j].weight * 0.5; } } } printf("%g -- %g %g %g\n", surface, volumex, volumey, volumez); double volume = volumex; cg[0] /= volume; cg[1] /= volume; cg[2] /= volume; it = l_faces.begin(); itdir = l_dirs.begin(); inertia[0] = inertia[1] = inertia[2] = inertia[3] = inertia[4] = inertia[5] = 0.0; for ( ; it != l_faces.end(); ++it,++itdir){ for (unsigned int i = 0; i < (*it)->getNumMeshElements(); ++i){ MElement *e = (*it)->getMeshElement(i); int npt; IntPt *pts; e->getIntegrationPoints(2 * (e->getPolynomialOrder() - 1) + 3, &npt, &pts); for (int j = 0; j < npt; j++){ SPoint3 pt; // compute x,y,z of the integration point e->pnt(pts[j].pt[0], pts[j].pt[1], pts[j].pt[2], pt); double jac[3][3]; // compute normal double detJ = e->getJacobian(pts[j].pt[0], pts[j].pt[1], pts[j].pt[2], jac); SVector3 n(jac[2][0], jac[2][1], jac[2][2]); n *= (double)*itdir; inertia[0] += pts[j].weight * detJ * n.x() * (pt.x() - cg[0]) * (pt.x() - cg[0]) * (pt.x() - cg[0]) / 3.0; inertia[1] += pts[j].weight * detJ * n.y() * (pt.y() - cg[1]) * (pt.y() - cg[1]) * (pt.y() - cg[1]) / 3.0; inertia[2] += pts[j].weight * detJ * n.z() * (pt.z() - cg[2]) * (pt.z() - cg[2]) * (pt.z() - cg[2]) / 3.0; inertia[3] += pts[j].weight * detJ * n.x() * (pt.y() - cg[1]) * (pt.x() - cg[0]) * (pt.x() - cg[0]) / 3.0; inertia[4] += pts[j].weight * detJ * n.x() * (pt.z() - cg[2]) * (pt.x() - cg[0]) * (pt.x() - cg[0]) / 3.0; inertia[5] += pts[j].weight * detJ * n.y() * (pt.z() - cg[2]) * (pt.y() - cg[1]) * (pt.y() - cg[1]) / 3.0; } } } return volume; }