/// usePhysReg - Handle the direct use of a physical register. /// Check that the register is not used by a virtreg. /// Kill the physreg, marking it free. /// This may add implicit kills to MO->getParent() and invalidate MO. void RAFast::usePhysReg(MachineOperand &MO) { unsigned PhysReg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand"); markRegUsedInInstr(PhysReg); switch (PhysRegState[PhysReg]) { case regDisabled: break; case regReserved: PhysRegState[PhysReg] = regFree; // Fall through case regFree: MO.setIsKill(); return; default: // The physreg was allocated to a virtual register. That means the value we // wanted has been clobbered. llvm_unreachable("Instruction uses an allocated register"); } // Maybe a superregister is reserved? for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { unsigned Alias = *AI; switch (PhysRegState[Alias]) { case regDisabled: break; case regReserved: // Either PhysReg is a subregister of Alias and we mark the // whole register as free, or PhysReg is the superregister of // Alias and we mark all the aliases as disabled before freeing // PhysReg. // In the latter case, since PhysReg was disabled, this means that // its value is defined only by physical sub-registers. This check // is performed by the assert of the default case in this loop. // Note: The value of the superregister may only be partial // defined, that is why regDisabled is a valid state for aliases. assert((TRI->isSuperRegister(PhysReg, Alias) || TRI->isSuperRegister(Alias, PhysReg)) && "Instruction is not using a subregister of a reserved register"); // Fall through. case regFree: if (TRI->isSuperRegister(PhysReg, Alias)) { // Leave the superregister in the working set. PhysRegState[Alias] = regFree; MO.getParent()->addRegisterKilled(Alias, TRI, true); return; } // Some other alias was in the working set - clear it. PhysRegState[Alias] = regDisabled; break; default: llvm_unreachable("Instruction uses an alias of an allocated register"); } } // All aliases are disabled, bring register into working set. PhysRegState[PhysReg] = regFree; MO.setIsKill(); }
/// usePhysReg - Handle the direct use of a physical register. /// Check that the register is not used by a virtreg. /// Kill the physreg, marking it free. /// This may add implicit kills to MO->getParent() and invalidate MO. void RAFast::usePhysReg(MachineOperand &MO) { unsigned PhysReg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand"); switch (PhysRegState[PhysReg]) { case regDisabled: break; case regReserved: PhysRegState[PhysReg] = regFree; // Fall through case regFree: UsedInInstr.set(PhysReg); MO.setIsKill(); return; default: // The physreg was allocated to a virtual register. That means the value we // wanted has been clobbered. llvm_unreachable("Instruction uses an allocated register"); } // Maybe a superregister is reserved? for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { unsigned Alias = *AI; switch (PhysRegState[Alias]) { case regDisabled: break; case regReserved: assert(TRI->isSuperRegister(PhysReg, Alias) && "Instruction is not using a subregister of a reserved register"); // Leave the superregister in the working set. PhysRegState[Alias] = regFree; UsedInInstr.set(Alias); MO.getParent()->addRegisterKilled(Alias, TRI, true); return; case regFree: if (TRI->isSuperRegister(PhysReg, Alias)) { // Leave the superregister in the working set. UsedInInstr.set(Alias); MO.getParent()->addRegisterKilled(Alias, TRI, true); return; } // Some other alias was in the working set - clear it. PhysRegState[Alias] = regDisabled; break; default: llvm_unreachable("Instruction uses an alias of an allocated register"); } } // All aliases are disabled, bring register into working set. PhysRegState[PhysReg] = regFree; UsedInInstr.set(PhysReg); MO.setIsKill(); }
/// Wrap a machine instruction, MI, into a FAULTING machine instruction. /// The FAULTING instruction does the same load/store as MI /// (defining the same register), and branches to HandlerMBB if the mem access /// faults. The FAULTING instruction is inserted at the end of MBB. MachineInstr *ImplicitNullChecks::insertFaultingInstr( MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for // all targets. DebugLoc DL; unsigned NumDefs = MI->getDesc().getNumDefs(); assert(NumDefs <= 1 && "other cases unhandled!"); unsigned DefReg = NoRegister; if (NumDefs != 0) { DefReg = MI->defs().begin()->getReg(); assert(std::distance(MI->defs().begin(), MI->defs().end()) == 1 && "expected exactly one def!"); } FaultMaps::FaultKind FK; if (MI->mayLoad()) FK = MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; else FK = FaultMaps::FaultingStore; auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) .addImm(FK) .addMBB(HandlerMBB) .addImm(MI->getOpcode()); for (auto &MO : MI->uses()) { if (MO.isReg()) { MachineOperand NewMO = MO; if (MO.isUse()) { NewMO.setIsKill(false); } else { assert(MO.isDef() && "Expected def or use"); NewMO.setIsDead(false); } MIB.add(NewMO); } else { MIB.add(MO); } } MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); return MIB; }
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) { MRI = &MF.getRegInfo(); TII = MF.getTarget().getInstrInfo(); DT = &getAnalysis<MachineDominatorTree>(); LI = &getAnalysis<LiveIntervals>(); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->isPHI(); ++BBI) { unsigned DestReg = BBI->getOperand(0).getReg(); addReg(DestReg); PHISrcDefs[I].push_back(BBI); for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) { MachineOperand &SrcMO = BBI->getOperand(i); unsigned SrcReg = SrcMO.getReg(); addReg(SrcReg); unionRegs(DestReg, SrcReg); MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (DefMI) PHISrcDefs[DefMI->getParent()].push_back(DefMI); } } } // Perform a depth-first traversal of the dominator tree, splitting // interferences amongst PHI-congruence classes. DenseMap<unsigned, unsigned> CurrentDominatingParent; DenseMap<unsigned, unsigned> ImmediateDominatingParent; for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()), DE = df_end(DT->getRootNode()); DI != DE; ++DI) { SplitInterferencesForBasicBlock(*DI->getBlock(), CurrentDominatingParent, ImmediateDominatingParent); } // Insert copies for all PHI source and destination registers. for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->isPHI(); ++BBI) { InsertCopiesForPHI(BBI, I); } } // FIXME: Preserve the equivalence classes during copy insertion and use // the preversed equivalence classes instead of recomputing them. RegNodeMap.clear(); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->isPHI(); ++BBI) { unsigned DestReg = BBI->getOperand(0).getReg(); addReg(DestReg); for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) { unsigned SrcReg = BBI->getOperand(i).getReg(); addReg(SrcReg); unionRegs(DestReg, SrcReg); } } } DenseMap<unsigned, unsigned> RegRenamingMap; bool Changed = false; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end(); while (BBI != BBE && BBI->isPHI()) { MachineInstr *PHI = BBI; assert(PHI->getNumOperands() > 0); unsigned SrcReg = PHI->getOperand(1).getReg(); unsigned SrcColor = getRegColor(SrcReg); unsigned NewReg = RegRenamingMap[SrcColor]; if (!NewReg) { NewReg = SrcReg; RegRenamingMap[SrcColor] = SrcReg; } MergeLIsAndRename(SrcReg, NewReg); unsigned DestReg = PHI->getOperand(0).getReg(); if (!InsertedDestCopies.count(DestReg)) MergeLIsAndRename(DestReg, NewReg); for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) { unsigned SrcReg = PHI->getOperand(i).getReg(); MergeLIsAndRename(SrcReg, NewReg); } ++BBI; LI->RemoveMachineInstrFromMaps(PHI); PHI->eraseFromParent(); Changed = true; } } // Due to the insertion of copies to split live ranges, the live intervals are // guaranteed to not overlap, except in one case: an original PHI source and a // PHI destination copy. In this case, they have the same value and thus don't // truly intersect, so we merge them into the value live at that point. // FIXME: Is there some better way we can handle this? for (DestCopyMap::iterator I = InsertedDestCopies.begin(), E = InsertedDestCopies.end(); I != E; ++I) { unsigned DestReg = I->first; unsigned DestColor = getRegColor(DestReg); unsigned NewReg = RegRenamingMap[DestColor]; LiveInterval &DestLI = LI->getInterval(DestReg); LiveInterval &NewLI = LI->getInterval(NewReg); assert(DestLI.ranges.size() == 1 && "PHI destination copy's live interval should be a single live " "range from the beginning of the BB to the copy instruction."); LiveRange *DestLR = DestLI.begin(); VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start); if (!NewVNI) { NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator()); MachineInstr *CopyInstr = I->second; CopyInstr->getOperand(1).setIsKill(true); } LiveRange NewLR(DestLR->start, DestLR->end, NewVNI); NewLI.addRange(NewLR); LI->removeInterval(DestReg); MRI->replaceRegWith(DestReg, NewReg); } // Adjust the live intervals of all PHI source registers to handle the case // where the PHIs in successor blocks were the only later uses of the source // register. for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(), E = InsertedSrcCopySet.end(); I != E; ++I) { MachineBasicBlock *MBB = I->first; unsigned SrcReg = I->second; if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)]) SrcReg = RenamedRegister; LiveInterval &SrcLI = LI->getInterval(SrcReg); bool isLiveOut = false; for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) { isLiveOut = true; break; } } if (isLiveOut) continue; MachineOperand *LastUse = findLastUse(MBB, SrcReg); assert(LastUse); SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent()); SrcLI.removeRange(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB)); LastUse->setIsKill(true); } Allocator.Reset(); RegNodeMap.clear(); PHISrcDefs.clear(); InsertedSrcCopySet.clear(); InsertedSrcCopyMap.clear(); InsertedDestCopies.clear(); return Changed; }
/// Sink3AddrInstruction - A two-address instruction has been converted to a /// three-address instruction to avoid clobbering a register. Try to sink it /// past the instruction that would kill the above mentioned register to reduce /// register pressure. bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, unsigned SavedReg, MachineBasicBlock::iterator OldPos) { // Check if it's safe to move this instruction. bool SeenStore = true; // Be conservative. if (!MI->isSafeToMove(TII, SeenStore, AA)) return false; unsigned DefReg = 0; SmallSet<unsigned, 4> UseRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (MO.isUse() && MOReg != SavedReg) UseRegs.insert(MO.getReg()); if (!MO.isDef()) continue; if (MO.isImplicit()) // Don't try to move it if it implicitly defines a register. return false; if (DefReg) // For now, don't move any instructions that define multiple registers. return false; DefReg = MO.getReg(); } // Find the instruction that kills SavedReg. MachineInstr *KillMI = NULL; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg), UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); if (!UseMO.isKill()) continue; KillMI = UseMO.getParent(); break; } if (!KillMI || KillMI->getParent() != MBB || KillMI == MI) return false; // If any of the definitions are used by another instruction between the // position and the kill use, then it's not safe to sink it. // // FIXME: This can be sped up if there is an easy way to query whether an // instruction is before or after another instruction. Then we can use // MachineRegisterInfo def / use instead. MachineOperand *KillMO = NULL; MachineBasicBlock::iterator KillPos = KillMI; ++KillPos; unsigned NumVisited = 0; for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) { MachineInstr *OtherMI = I; if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. return false; ++NumVisited; for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OtherMI->getOperand(i); if (!MO.isReg()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (DefReg == MOReg) return false; if (MO.isKill()) { if (OtherMI == KillMI && MOReg == SavedReg) // Save the operand that kills the register. We want to unset the kill // marker if we can sink MI past it. KillMO = &MO; else if (UseRegs.count(MOReg)) // One of the uses is killed before the destination. return false; } } } // Update kill and LV information. KillMO->setIsKill(false); KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); KillMO->setIsKill(true); if (LV) LV->replaceKillInstruction(SavedReg, KillMI, MI); // Move instruction to its destination. MBB->remove(MI); MBB->insert(KillPos, MI); ++Num3AddrSunk; return true; }