double State::transition_row_partition_assignments(const MatrixD& data, vector<int> which_rows) { vector<int> global_column_indices = create_sequence(data.size2()); double score_delta = 0; // int num_rows = which_rows.size(); if (num_rows == 0) { num_rows = data.size1(); which_rows = create_sequence(num_rows); //FIXME: use own shuffle so seed control is in effect std::random_shuffle(which_rows.begin(), which_rows.end()); } set<View*>::iterator svp_it; for (svp_it = views.begin(); svp_it != views.end(); svp_it++) { // for each view View& v = **svp_it; vector<int> view_cols = get_indices_to_reorder(global_column_indices, v.global_to_local); const MatrixD data_subset = extract_columns(data, view_cols); map<int, vector<double> > row_data_map = construct_data_map(data_subset); vector<int>::iterator vi_it; for (vi_it = which_rows.begin(); vi_it != which_rows.end(); vi_it++) { // for each SPECIFIED row int row_idx = *vi_it; vector<double> vd = row_data_map[row_idx]; score_delta += v.transition_z(vd, row_idx); } } data_score += score_delta; return score_delta; }
map<int, vector<double> > construct_data_map(const MatrixD data) { unsigned int num_rows = data.size1(); map<int, vector<double> > data_map; for(unsigned int row_idx=0; row_idx<num_rows; row_idx++) { data_map[row_idx] = extract_row(data, row_idx); } return data_map; }
MatrixD extract_columns(const MatrixD fromM, vector<int> from_cols) { int num_rows = fromM.size1(); int num_cols = from_cols.size(); MatrixD toM(num_rows, num_cols); for(int to_col=0; to_col<num_cols; to_col++) { int from_col = from_cols[to_col]; copy_column(fromM, from_col, toM, to_col); } return toM; }
void State::construct_base_hyper_grids(const MatrixD& data, int N_GRID, vector<double> ROW_CRP_ALPHA_GRID, vector<double> COLUMN_CRP_ALPHA_GRID) { int num_rows = data.size1(); int num_cols = data.size2(); if (ROW_CRP_ALPHA_GRID.size() == 0) { ROW_CRP_ALPHA_GRID = create_crp_alpha_grid(num_rows, N_GRID); } if (COLUMN_CRP_ALPHA_GRID.size() == 0) { COLUMN_CRP_ALPHA_GRID = create_crp_alpha_grid(num_cols, N_GRID); } row_crp_alpha_grid = ROW_CRP_ALPHA_GRID; column_crp_alpha_grid = COLUMN_CRP_ALPHA_GRID; construct_cyclic_base_hyper_grids(N_GRID, num_rows, vm_b_grid); construct_continuous_base_hyper_grids(N_GRID, num_rows, r_grid, nu_grid); construct_multinomial_base_hyper_grids(N_GRID, num_rows, multinomial_alpha_grid); }
void copy_column(const MatrixD fromM, int from_col, MatrixD &toM, int to_col) { assert(fromM.size1()==toM.size1()); int num_rows = fromM.size1(); project(toM, boost::numeric::ublas::range(0, num_rows), boost::numeric::ublas::range(to_col, to_col+1)) = \ project(fromM, boost::numeric::ublas::range(0, num_rows), boost::numeric::ublas::range(from_col, from_col+1)); }