예제 #1
0
    void runTorchNet(const String& prefix, String outLayerName = "",
                     bool check2ndBlob = false, bool isBinary = false,
                     double l1 = 0.0, double lInf = 0.0)
    {
        String suffix = (isBinary) ? ".dat" : ".txt";

        Mat inp, outRef;
        ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
        ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );

        checkBackend(backend, target, &inp, &outRef);

        Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary);
        ASSERT_FALSE(net.empty());

        net.setPreferableBackend(backend);
        net.setPreferableTarget(target);

        if (outLayerName.empty())
            outLayerName = net.getLayerNames().back();

        net.setInput(inp);
        std::vector<Mat> outBlobs;
        net.forward(outBlobs, outLayerName);
        l1 = l1 ? l1 : default_l1;
        lInf = lInf ? lInf : default_lInf;
        normAssert(outRef, outBlobs[0], "", l1, lInf);

        if (check2ndBlob && backend != DNN_BACKEND_INFERENCE_ENGINE)
        {
            Mat out2 = outBlobs[1];
            Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
            normAssert(out2, ref2, "", l1, lInf);
        }
    }
예제 #2
0
static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String outLayerName = "",
                        bool check2ndBlob = false, bool isBinary = false)
{
    String suffix = (isBinary) ? ".dat" : ".txt";

    Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary);
    ASSERT_FALSE(net.empty());

    net.setPreferableBackend(DNN_BACKEND_DEFAULT);
    net.setPreferableTarget(targetId);

    Mat inp, outRef;
    ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
    ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );

    if (outLayerName.empty())
        outLayerName = net.getLayerNames().back();

    net.setInput(inp, "0");
    std::vector<Mat> outBlobs;
    net.forward(outBlobs, outLayerName);
    normAssert(outRef, outBlobs[0]);

    if (check2ndBlob)
    {
        Mat out2 = outBlobs[1];
        Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
        normAssert(out2, ref2);
    }
}
예제 #3
0
TEST(Torch_Importer, ENet_accuracy)
{
    Net net;
    {
        const string model = findDataFile("dnn/Enet-model-best.net", false);
        net = readNetFromTorch(model, true);
        ASSERT_FALSE(net.empty());
    }

    Mat sample = imread(_tf("street.png", false));
    Mat inputBlob = blobFromImage(sample, 1./255);

    net.setInput(inputBlob, "");
    Mat out = net.forward();
    Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
    // Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
    // thresholds for ENet must be changed. Accuracy of resuults was checked on
    // Cityscapes dataset and difference in mIOU with Torch is 10E-4%
    normAssert(ref, out, "", 0.00044, 0.44);

    const int N = 3;
    for (int i = 0; i < N; i++)
    {
        net.setInput(inputBlob, "");
        Mat out = net.forward();
        normAssert(ref, out, "", 0.00044, 0.44);
    }
}
TEST(Reproducibility_FCN, Accuracy)
{
    Net net;
    {
        const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt", false);
        const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false);
        net = readNetFromCaffe(proto, model);
        ASSERT_FALSE(net.empty());
    }

    Mat sample = imread(_tf("street.png"));
    ASSERT_TRUE(!sample.empty());

    std::vector<int> layerIds;
    std::vector<size_t> weights, blobs;
    net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs);

    net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data");
    Mat out = net.forward("score");

    Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH);
    int shape[] = {1, 21, 500, 500};
    Mat ref(4, shape, CV_32FC1, refData.data);

    normAssert(ref, out);
}
예제 #5
0
TEST(readNet, Regression)
{
    Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt", false),
                      findDataFile("dnn/squeezenet_v1.1.caffemodel", false));
    EXPECT_FALSE(net.empty());
    net = readNet(findDataFile("dnn/opencv_face_detector.caffemodel", false),
                  findDataFile("dnn/opencv_face_detector.prototxt", false));
    EXPECT_FALSE(net.empty());
    net = readNet(findDataFile("dnn/openface_nn4.small2.v1.t7", false));
    EXPECT_FALSE(net.empty());
    net = readNet(findDataFile("dnn/tiny-yolo-voc.cfg", false),
                  findDataFile("dnn/tiny-yolo-voc.weights", false));
    EXPECT_FALSE(net.empty());
    net = readNet(findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false),
                  findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false));
    EXPECT_FALSE(net.empty());
}
예제 #6
0
TEST(Reproducibility_YoloVoc, Accuracy)
{
    Net net;
    {
        const string cfg = findDataFile("dnn/yolo-voc.cfg", false);
        const string model = findDataFile("dnn/yolo-voc.weights", false);
        net = readNetFromDarknet(cfg, model);
        ASSERT_FALSE(net.empty());
    }

    // dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format
    Mat sample = imread(_tf("dog416.png"));
    ASSERT_TRUE(!sample.empty());

    Size inputSize(416, 416);

    if (sample.size() != inputSize)
        resize(sample, sample, inputSize);

    net.setInput(blobFromImage(sample, 1 / 255.F), "data");
    Mat out = net.forward("detection_out");

    Mat detection;
    const float confidenceThreshold = 0.24;

    for (int i = 0; i < out.rows; i++) {
        const int probability_index = 5;
        const int probability_size = out.cols - probability_index;
        float *prob_array_ptr = &out.at<float>(i, probability_index);
        size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr;
        float confidence = out.at<float>(i, (int)objectClass + probability_index);

        if (confidence > confidenceThreshold)
            detection.push_back(out.row(i));
    }

    // obtained by: ./darknet detector test ./cfg/voc.data  ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png
    // There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each:
    // { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] }
    float ref_array[] = {
        0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,

        0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,

        0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F
    };

    const int number_of_objects = 3;
    Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array);

    normAssert(ref, detection);
}
예제 #7
0
OCL_TEST(Reproducibility_TinyYoloVoc, Accuracy)
{
    Net net;
    {
        const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false);
        const string model = findDataFile("dnn/tiny-yolo-voc.weights", false);
        net = readNetFromDarknet(cfg, model);
        ASSERT_FALSE(net.empty());
    }

    net.setPreferableBackend(DNN_BACKEND_DEFAULT);
    net.setPreferableTarget(DNN_TARGET_OPENCL);

    // dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format
    Mat sample = imread(_tf("dog416.png"));
    ASSERT_TRUE(!sample.empty());

    Size inputSize(416, 416);

    if (sample.size() != inputSize)
        resize(sample, sample, inputSize);

    net.setInput(blobFromImage(sample, 1 / 255.F), "data");
    Mat out = net.forward("detection_out");

    Mat detection;
    const float confidenceThreshold = 0.24;

    for (int i = 0; i < out.rows; i++) {
        const int probability_index = 5;
        const int probability_size = out.cols - probability_index;
        float *prob_array_ptr = &out.at<float>(i, probability_index);
        size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr;
        float confidence = out.at<float>(i, (int)objectClass + probability_index);

        if (confidence > confidenceThreshold)
            detection.push_back(out.row(i));
    }

    // obtained by: ./darknet detector test ./cfg/voc.data  ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png
    // There are 2 objects (6-car, 11-dog) with 25 values for each:
    // { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] }
    float ref_array[] = {
        0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,

        0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F,
        0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F
    };

    const int number_of_objects = 2;
    Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array);

    normAssert(ref, detection);
}
예제 #8
0
TEST_P(Test_ONNX_nets, Alexnet)
{
    applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
    const String model =  _tf("models/alexnet.onnx");

    Net net = readNetFromONNX(model);
    ASSERT_FALSE(net.empty());

    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    Mat inp = imread(_tf("../grace_hopper_227.png"));
    Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy"));
    checkBackend(&inp, &ref);

    net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false));
    ASSERT_FALSE(net.empty());
    Mat out = net.forward();

    normAssert(out, ref, "", default_l1,  default_lInf);
    expectNoFallbacksFromIE(net);
}
TEST(Test_Caffe, memory_read)
{
    const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false);
    const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);

    string dataProto;
    ASSERT_TRUE(readFileInMemory(proto, dataProto));
    string dataModel;
    ASSERT_TRUE(readFileInMemory(model, dataModel));

    Net net = readNetFromCaffe(dataProto.c_str(), dataProto.size());
    ASSERT_FALSE(net.empty());

    Net net2 = readNetFromCaffe(dataProto.c_str(), dataProto.size(),
                                dataModel.c_str(), dataModel.size());
    ASSERT_FALSE(net2.empty());
}
TEST(Reproducibility_AlexNet, Accuracy)
{
    Net net;
    {
        const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
        const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
        net = readNetFromCaffe(proto, model);
        ASSERT_FALSE(net.empty());
    }

    Mat sample = imread(_tf("grace_hopper_227.png"));
    ASSERT_TRUE(!sample.empty());

    net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
    Mat out = net.forward("prob");
    Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
    normAssert(ref, out);
}
예제 #11
0
    void testONNXModels(const String& basename, const Extension ext = npy,
                        const double l1 = 0, const float lInf = 0, const bool useSoftmax = false,
                        bool checkNoFallbacks = true)
    {
        String onnxmodel = _tf("models/" + basename + ".onnx");
        Mat inp, ref;
        if (ext == npy) {
            inp = blobFromNPY(_tf("data/input_" + basename + ".npy"));
            ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
        }
        else if (ext == pb) {
            inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb"));
            ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb"));
        }
        else
            CV_Error(Error::StsUnsupportedFormat, "Unsupported extension");

        checkBackend(&inp, &ref);
        Net net = readNetFromONNX(onnxmodel);
        ASSERT_FALSE(net.empty());

        net.setPreferableBackend(backend);
        net.setPreferableTarget(target);

        net.setInput(inp);
        Mat out = net.forward("");

        if (useSoftmax)
        {
            LayerParams lp;
            Net netSoftmax;
            netSoftmax.addLayerToPrev("softmaxLayer", "SoftMax", lp);
            netSoftmax.setPreferableBackend(DNN_BACKEND_OPENCV);

            netSoftmax.setInput(out);
            out = netSoftmax.forward();

            netSoftmax.setInput(ref);
            ref = netSoftmax.forward();
        }
        normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
        if (checkNoFallbacks)
            expectNoFallbacksFromIE(net);
    }
예제 #12
0
TEST(Test_TensorFlow, inception_accuracy)
{
    Net net;
    {
        const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
        net = readNetFromTensorflow(model);
        ASSERT_FALSE(net.empty());
    }
    net.setPreferableBackend(DNN_BACKEND_OPENCV);

    Mat sample = imread(_tf("grace_hopper_227.png"));
    ASSERT_TRUE(!sample.empty());
    Mat inputBlob = blobFromImage(sample, 1.0, Size(224, 224), Scalar(), /*swapRB*/true);

    net.setInput(inputBlob, "input");
    Mat out = net.forward("softmax2");

    Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));

    normAssert(ref, out);
}
예제 #13
0
TEST(Test_TensorFlow, inception_accuracy)
{
    Net net;
    {
        const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
        net = readNetFromTensorflow(model);
        ASSERT_FALSE(net.empty());
    }

    Mat sample = imread(_tf("grace_hopper_227.png"));
    ASSERT_TRUE(!sample.empty());
    resize(sample, sample, Size(224, 224));
    Mat inputBlob = blobFromImage(sample);

    net.setInput(inputBlob, "input");
    Mat out = net.forward("softmax2");

    Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));

    normAssert(ref, out);
}
예제 #14
0
TEST_P(Test_ONNX_layers, MultyInputs)
{
    const String model =  _tf("models/multy_inputs.onnx");

    Net net = readNetFromONNX(model);
    ASSERT_FALSE(net.empty());

    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy"));
    Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy"));
    Mat ref  = blobFromNPY(_tf("data/output_multy_inputs.npy"));
    checkBackend(&inp1, &ref);

    net.setInput(inp1, "0");
    net.setInput(inp2, "1");
    Mat out = net.forward();

    normAssert(ref, out, "", default_l1,  default_lInf);
    expectNoFallbacksFromIE(net);
}
예제 #15
0
TEST(Test_TensorFlow, read_inception)
{
    Net net;
    {
        const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
        net = readNetFromTensorflow(model);
        ASSERT_FALSE(net.empty());
    }

    Mat sample = imread(_tf("grace_hopper_227.png"));
    ASSERT_TRUE(!sample.empty());
    Mat input;
    resize(sample, input, Size(224, 224));
    input -= 128; // mean sub

    Mat inputBlob = blobFromImage(input);

    net.setInput(inputBlob, "input");
    Mat out = net.forward("softmax2");

    std::cout << out.dims << std::endl;
}
예제 #16
0
    void runTensorFlowNet(const std::string& prefix, bool hasText = false,
                          double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false)
    {
        std::string netPath = path(prefix + "_net.pb");
        std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
        std::string inpPath = path(prefix + "_in.npy");
        std::string outPath = path(prefix + "_out.npy");

        cv::Mat input = blobFromNPY(inpPath);
        cv::Mat ref = blobFromNPY(outPath);
        checkBackend(&input, &ref);

        Net net;
        if (memoryLoad)
        {
            // Load files into a memory buffers
            string dataModel;
            ASSERT_TRUE(readFileInMemory(netPath, dataModel));

            string dataConfig;
            if (hasText)
            {
                ASSERT_TRUE(readFileInMemory(netConfig, dataConfig));
            }

            net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(),
                                        dataConfig.c_str(), dataConfig.size());
        }
        else
            net = readNetFromTensorflow(netPath, netConfig);

        ASSERT_FALSE(net.empty());

        net.setPreferableBackend(backend);
        net.setPreferableTarget(target);
        net.setInput(input);
        cv::Mat output = net.forward();
        normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
    }
예제 #17
0
TEST_P(Test_Torch_nets, ENet_accuracy)
{
    checkBackend();
    if (backend == DNN_BACKEND_INFERENCE_ENGINE ||
        (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
        throw SkipTestException("");

    Net net;
    {
        const string model = findDataFile("dnn/Enet-model-best.net", false);
        net = readNetFromTorch(model, true);
        ASSERT_TRUE(!net.empty());
    }

    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    Mat sample = imread(_tf("street.png", false));
    Mat inputBlob = blobFromImage(sample, 1./255, Size(), Scalar(), /*swapRB*/true);

    net.setInput(inputBlob, "");
    Mat out = net.forward();
    Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
    // Due to numerical instability in Pooling-Unpooling layers (indexes jittering)
    // thresholds for ENet must be changed. Accuracy of results was checked on
    // Cityscapes dataset and difference in mIOU with Torch is 10E-4%
    normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
    normAssertSegmentation(ref, out);

    const int N = 3;
    for (int i = 0; i < N; i++)
    {
        net.setInput(inputBlob, "");
        Mat out = net.forward();
        normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552);
        normAssertSegmentation(ref, out);
    }
}
예제 #18
0
static void runTensorFlowNet(const std::string& prefix, int targetId = DNN_TARGET_CPU, bool hasText = false,
                             double l1 = 1e-5, double lInf = 1e-4,
                             bool memoryLoad = false)
{
    std::string netPath = path(prefix + "_net.pb");
    std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
    std::string inpPath = path(prefix + "_in.npy");
    std::string outPath = path(prefix + "_out.npy");

    Net net;
    if (memoryLoad)
    {
        // Load files into a memory buffers
        string dataModel;
        ASSERT_TRUE(readFileInMemory(netPath, dataModel));

        string dataConfig;
        if (hasText)
            ASSERT_TRUE(readFileInMemory(netConfig, dataConfig));

        net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(),
                                    dataConfig.c_str(), dataConfig.size());
    }
    else
        net = readNetFromTensorflow(netPath, netConfig);

    ASSERT_FALSE(net.empty());

    net.setPreferableBackend(DNN_BACKEND_DEFAULT);
    net.setPreferableTarget(targetId);

    cv::Mat input = blobFromNPY(inpPath);
    cv::Mat target = blobFromNPY(outPath);

    net.setInput(input);
    cv::Mat output = net.forward();
    normAssert(target, output, "", l1, lInf);
}
TEST(Reproducibility_SSD, Accuracy)
{
    Net net;
    {
        const string proto = findDataFile("dnn/ssd_vgg16.prototxt", false);
        const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false);
        net = readNetFromCaffe(proto, model);
        ASSERT_FALSE(net.empty());
    }

    Mat sample = imread(_tf("street.png"));
    ASSERT_TRUE(!sample.empty());

    if (sample.channels() == 4)
        cvtColor(sample, sample, COLOR_BGRA2BGR);

    Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    net.setInput(in_blob, "data");
    Mat out = net.forward("detection_out");

    Mat ref = blobFromNPY(_tf("ssd_out.npy"));
    normAssert(ref, out);
}
예제 #20
0
TEST_P(Reproducibility_AlexNet, Accuracy)
{
    bool readFromMemory = get<0>(GetParam());
    Net net;
    {
        const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
        const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
        if (readFromMemory)
        {
            string dataProto;
            ASSERT_TRUE(readFileInMemory(proto, dataProto));
            string dataModel;
            ASSERT_TRUE(readFileInMemory(model, dataModel));

            net = readNetFromCaffe(dataProto.c_str(), dataProto.size(),
                                   dataModel.c_str(), dataModel.size());
        }
        else
            net = readNetFromCaffe(proto, model);
        ASSERT_FALSE(net.empty());
    }

    int targetId = get<1>(GetParam());
    const float l1 = 1e-5;
    const float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 3e-3 : 1e-4;

    net.setPreferableTarget(targetId);

    Mat sample = imread(_tf("grace_hopper_227.png"));
    ASSERT_TRUE(!sample.empty());

    net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data");
    Mat out = net.forward("prob");
    Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy"));
    normAssert(ref, out, "", l1, lInf);
}
예제 #21
0
TEST(Test_Darknet, read_yolo_voc)
{
    Net net = readNetFromDarknet(_tf("yolo-voc.cfg"));
    ASSERT_FALSE(net.empty());
}
TEST(Test_Caffe, read_gtsrb)
{
    Net net = readNetFromCaffe(_tf("gtsrb.prototxt"));
    ASSERT_FALSE(net.empty());
}
TEST(Test_Caffe, read_googlenet)
{
    Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt"));
    ASSERT_FALSE(net.empty());
}
예제 #24
0
TEST(Torch_Importer, simple_read)
{
    Net net;
    ASSERT_NO_THROW(net = readNetFromTorch(_tf("net_simple_net.txt"), false));
    ASSERT_FALSE(net.empty());
}
예제 #25
-1
TEST_P(Test_ONNX_nets, Googlenet)
{
    if (backend == DNN_BACKEND_INFERENCE_ENGINE)
        throw SkipTestException("");

    const String model = _tf("models/googlenet.onnx");

    Net net = readNetFromONNX(model);
    ASSERT_FALSE(net.empty());

    net.setPreferableBackend(backend);
    net.setPreferableTarget(target);

    std::vector<Mat> images;
    images.push_back( imread(_tf("../googlenet_0.png")) );
    images.push_back( imread(_tf("../googlenet_1.png")) );
    Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false);
    Mat ref = blobFromNPY(_tf("../googlenet_prob.npy"));
    checkBackend(&inp, &ref);

    net.setInput(inp);
    ASSERT_FALSE(net.empty());
    Mat out = net.forward();

    normAssert(ref, out, "", default_l1,  default_lInf);
    expectNoFallbacksFromIE(net);
}