/* ************************************************************************* */ int main(int argc, char* argv[]) { // Define the camera calibration parameters Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); // Define the camera observation noise model noiseModel::Isotropic::shared_ptr noise = // noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks vector<Point3> points = createPoints(); // Create the set of ground-truth poses vector<Pose3> poses = createPoses(); // Create a NonlinearISAM object which will relinearize and reorder the variables // every "relinearizeInterval" updates int relinearizeInterval = 3; NonlinearISAM isam(relinearizeInterval); // Create a Factor Graph and Values to hold the new data NonlinearFactorGraph graph; Values initialEstimate; // Loop over the different poses, adding the observations to iSAM incrementally for (size_t i = 0; i < poses.size(); ++i) { // Add factors for each landmark observation for (size_t j = 0; j < points.size(); ++j) { // Create ground truth measurement SimpleCamera camera(poses[i], *K); Point2 measurement = camera.project(points[j]); // Add measurement graph.add( GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, noise, Symbol('x', i), Symbol('l', j), K)); } // Intentionally initialize the variables off from the ground truth Pose3 noise(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); Pose3 initial_xi = poses[i].compose(noise); // Add an initial guess for the current pose initialEstimate.insert(Symbol('x', i), initial_xi); // If this is the first iteration, add a prior on the first pose to set the coordinate frame // and a prior on the first landmark to set the scale // Also, as iSAM solves incrementally, we must wait until each is observed at least twice before // adding it to iSAM. if (i == 0) { // Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // Add a prior on landmark l0 noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // Add initial guesses to all observed landmarks Point3 noise(-0.25, 0.20, 0.15); for (size_t j = 0; j < points.size(); ++j) { // Intentionally initialize the variables off from the ground truth Point3 initial_lj = points[j].compose(noise); initialEstimate.insert(Symbol('l', j), initial_lj); } } else { // Update iSAM with the new factors isam.update(graph, initialEstimate); Values currentEstimate = isam.estimate(); cout << "****************************************************" << endl; cout << "Frame " << i << ": " << endl; currentEstimate.print("Current estimate: "); // Clear the factor graph and values for the next iteration graph.resize(0); initialEstimate.clear(); } } return 0; }
int main(int argc, char** argv) { // Define the smoother lag (in seconds) double lag = 2.0; // Create a Concurrent Filter and Smoother ConcurrentBatchFilter concurrentFilter; ConcurrentBatchSmoother concurrentSmoother; // And a fixed lag smoother with a short lag BatchFixedLagSmoother fixedlagSmoother(lag); // And a fixed lag smoother with very long lag (i.e. a full batch smoother) BatchFixedLagSmoother batchSmoother(1000.0); // Create containers to store the factors and linearization points that // will be sent to the smoothers NonlinearFactorGraph newFactors; Values newValues; FixedLagSmoother::KeyTimestampMap newTimestamps; // Create a prior on the first pose, placing it at the origin Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); Key priorKey = 0; newFactors.push_back(PriorFactor<Pose2>(priorKey, priorMean, priorNoise)); newValues.insert(priorKey, priorMean); // Initialize the first pose at the mean of the prior newTimestamps[priorKey] = 0.0; // Set the timestamp associated with this key to 0.0 seconds; // Now, loop through several time steps, creating factors from different "sensors" // and adding them to the fixed-lag smoothers double deltaT = 0.25; for(double time = 0.0+deltaT; time <= 5.0; time += deltaT) { // Define the keys related to this timestamp Key previousKey(1000 * (time-deltaT)); Key currentKey(1000 * (time)); // Assign the current key to the current timestamp newTimestamps[currentKey] = time; // Add a guess for this pose to the new values // Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s] // {This is not a particularly good way to guess, but this is just an example} Pose2 currentPose(time * 2.0, 0.0, 0.0); newValues.insert(currentKey, currentPose); // Add odometry factors from two different sources with different error stats Pose2 odometryMeasurement1 = Pose2(0.61, -0.08, 0.02); noiseModel::Diagonal::shared_ptr odometryNoise1 = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement1, odometryNoise1)); Pose2 odometryMeasurement2 = Pose2(0.47, 0.03, 0.01); noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2)); // Unlike the fixed-lag versions, the concurrent filter implementation // requires the user to supply the specify which keys to move to the smoother FastList<Key> oldKeys; if(time >= lag+deltaT) { oldKeys.push_back(1000 * (time-lag-deltaT)); } // Update the various inference engines concurrentFilter.update(newFactors, newValues, oldKeys); fixedlagSmoother.update(newFactors, newValues, newTimestamps); batchSmoother.update(newFactors, newValues, newTimestamps); // Manually synchronize the Concurrent Filter and Smoother every 1.0 s if(fmod(time, 1.0) < 0.01) { // Synchronize the Filter and Smoother concurrentSmoother.update(); synchronize(concurrentFilter, concurrentSmoother); } // Print the optimized current pose cout << setprecision(5) << "Timestamp = " << time << endl; concurrentFilter.calculateEstimate<Pose2>(currentKey).print("Concurrent Estimate: "); fixedlagSmoother.calculateEstimate<Pose2>(currentKey).print("Fixed Lag Estimate: "); batchSmoother.calculateEstimate<Pose2>(currentKey).print("Batch Estimate: "); cout << endl; // Clear contains for the next iteration newTimestamps.clear(); newValues.clear(); newFactors.resize(0); } cout << "******************************************************************" << endl; cout << "All three versions should be identical." << endl; cout << "Adding a loop closure factor to the Batch version only." << endl; cout << "******************************************************************" << endl; cout << endl; // At the moment, all three versions produce the same output. // Now lets create a "loop closure" factor between the first pose and the current pose Key loopKey1(1000 * (0.0)); Key loopKey2(1000 * (5.0)); Pose2 loopMeasurement = Pose2(9.5, 1.00, 0.00); noiseModel::Diagonal::shared_ptr loopNoise = noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.25)); NonlinearFactor::shared_ptr loopFactor(new BetweenFactor<Pose2>(loopKey1, loopKey2, loopMeasurement, loopNoise)); // This measurement cannot be added directly to the concurrent filter because it connects a filter state to a smoother state // This measurement can never be added to the fixed-lag smoother, as one of the poses has been permanently marginalized out // This measurement can be incorporated into the full batch version though newFactors.push_back(loopFactor); batchSmoother.update(newFactors, Values(), FixedLagSmoother::KeyTimestampMap()); newFactors.resize(0); // Continue adding odometry factors until the loop closure may be incorporated into the concurrent smoother for(double time = 5.0+deltaT; time <= 8.0; time += deltaT) { // Define the keys related to this timestamp Key previousKey(1000 * (time-deltaT)); Key currentKey(1000 * (time)); // Assign the current key to the current timestamp newTimestamps[currentKey] = time; // Add a guess for this pose to the new values // Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s] // {This is not a particularly good way to guess, but this is just an example} Pose2 currentPose(time * 2.0, 0.0, 0.0); newValues.insert(currentKey, currentPose); // Add odometry factors from two different sources with different error stats Pose2 odometryMeasurement1 = Pose2(0.61, -0.08, 0.02); noiseModel::Diagonal::shared_ptr odometryNoise1 = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement1, odometryNoise1)); Pose2 odometryMeasurement2 = Pose2(0.47, 0.03, 0.01); noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2)); // Unlike the fixed-lag versions, the concurrent filter implementation // requires the user to supply the specify which keys to marginalize FastList<Key> oldKeys; if(time >= lag+deltaT) { oldKeys.push_back(1000 * (time-lag-deltaT)); } // Update the various inference engines concurrentFilter.update(newFactors, newValues, oldKeys); fixedlagSmoother.update(newFactors, newValues, newTimestamps); batchSmoother.update(newFactors, newValues, newTimestamps); // Manually synchronize the Concurrent Filter and Smoother every 1.0 s if(fmod(time, 1.0) < 0.01) { // Synchronize the Filter and Smoother concurrentSmoother.update(); synchronize(concurrentFilter, concurrentSmoother); } // Print the optimized current pose cout << setprecision(5) << "Timestamp = " << time << endl; concurrentFilter.calculateEstimate<Pose2>(currentKey).print("Concurrent Estimate: "); fixedlagSmoother.calculateEstimate<Pose2>(currentKey).print("Fixed Lag Estimate: "); batchSmoother.calculateEstimate<Pose2>(currentKey).print("Batch Estimate: "); cout << endl; // Clear contains for the next iteration newTimestamps.clear(); newValues.clear(); newFactors.resize(0); } cout << "******************************************************************" << endl; cout << "The Concurrent system and the Fixed-Lag Smoother should be " << endl; cout << "the same, but the Batch version has a loop closure." << endl; cout << "Adding the loop closure factor to the Concurrent version." << endl; cout << "This will not update the Concurrent Filter until the next " << endl; cout << "synchronization, but the Concurrent solution should be identical " << endl; cout << "to the Batch solution afterwards." << endl; cout << "******************************************************************" << endl; cout << endl; // The state at 5.0s should have been transferred to the concurrent smoother at this point. Add the loop closure. newFactors.push_back(loopFactor); concurrentSmoother.update(newFactors, Values()); newFactors.resize(0); // Now run for a few more seconds so the concurrent smoother and filter have to to re-sync // Continue adding odometry factors until the loop closure may be incorporated into the concurrent smoother for(double time = 8.0+deltaT; time <= 15.0; time += deltaT) { // Define the keys related to this timestamp Key previousKey(1000 * (time-deltaT)); Key currentKey(1000 * (time)); // Assign the current key to the current timestamp newTimestamps[currentKey] = time; // Add a guess for this pose to the new values // Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s] // {This is not a particularly good way to guess, but this is just an example} Pose2 currentPose(time * 2.0, 0.0, 0.0); newValues.insert(currentKey, currentPose); // Add odometry factors from two different sources with different error stats Pose2 odometryMeasurement1 = Pose2(0.61, -0.08, 0.02); noiseModel::Diagonal::shared_ptr odometryNoise1 = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement1, odometryNoise1)); Pose2 odometryMeasurement2 = Pose2(0.47, 0.03, 0.01); noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2)); // Unlike the fixed-lag versions, the concurrent filter implementation // requires the user to supply the specify which keys to marginalize FastList<Key> oldKeys; if(time >= lag+deltaT) { oldKeys.push_back(1000 * (time-lag-deltaT)); } // Update the various inference engines concurrentFilter.update(newFactors, newValues, oldKeys); fixedlagSmoother.update(newFactors, newValues, newTimestamps); batchSmoother.update(newFactors, newValues, newTimestamps); // Manually synchronize the Concurrent Filter and Smoother every 1.0 s if(fmod(time, 1.0) < 0.01) { // Synchronize the Filter and Smoother concurrentSmoother.update(); synchronize(concurrentFilter, concurrentSmoother); cout << "******************************************************************" << endl; cout << "Syncing Concurrent Filter and Smoother." << endl; cout << "******************************************************************" << endl; cout << endl; } // Print the optimized current pose cout << setprecision(5) << "Timestamp = " << time << endl; concurrentFilter.calculateEstimate<Pose2>(currentKey).print("Concurrent Estimate: "); fixedlagSmoother.calculateEstimate<Pose2>(currentKey).print("Fixed Lag Estimate: "); batchSmoother.calculateEstimate<Pose2>(currentKey).print("Batch Estimate: "); cout << endl; // Clear contains for the next iteration newTimestamps.clear(); newValues.clear(); newFactors.resize(0); } // And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds cout << "After 15.0 seconds, each version contains to the following keys:" << endl; cout << " Concurrent Filter Keys: " << endl; BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, concurrentFilter.getLinearizationPoint()) { cout << setprecision(5) << " Key: " << key_value.key << endl; } cout << " Concurrent Smoother Keys: " << endl; BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, concurrentSmoother.getLinearizationPoint()) { cout << setprecision(5) << " Key: " << key_value.key << endl; } cout << " Fixed-Lag Smoother Keys: " << endl; BOOST_FOREACH(const FixedLagSmoother::KeyTimestampMap::value_type& key_timestamp, fixedlagSmoother.timestamps()) { cout << setprecision(5) << " Key: " << key_timestamp.first << endl; } cout << " Batch Smoother Keys: " << endl; BOOST_FOREACH(const FixedLagSmoother::KeyTimestampMap::value_type& key_timestamp, batchSmoother.timestamps()) { cout << setprecision(5) << " Key: " << key_timestamp.first << endl; } return 0; }
void StateEstimator::optimizationLoop() { ISAM2Params parameters; // parameters.relinearizeThreshold = 0.0; // Set the relin threshold to zero such that the batch estimate is recovered // parameters.relinearizeSkip = 1; // Relinearize every time gtsam::IncrementalFixedLagSmoother graph(optLag_, parameters); double startTime; sensor_msgs::ImuConstPtr lastImu; double lastImuT; int imuKey = 1; int gpsKey = 1; // first we will initialize the graph with appropriate priors NonlinearFactorGraph newFactors; Values newVariables; FixedLagSmoother::KeyTimestampMap newTimestamps; sensor_msgs::NavSatFixConstPtr fix = gpsQ_.pop(); startTime = ROS_TIME(fix); enu_.Reset(fix->latitude, fix->longitude, fix->altitude); sensor_msgs::ImuConstPtr imu = imuQ_.pop(); lastImu = imu; lastImuT = ROS_TIME(imu) - 1 / imuFreq_; Rot3 initialOrientation = Rot3::Quaternion(imu->orientation.w, imu->orientation.x, imu->orientation.y, imu->orientation.z); // we set out initial position to the origin and assume we are stationary Pose3 x0(initialOrientation, Point3(0, 0, 0)); PriorFactor<Pose3> priorPose(X(0), x0, noiseModel::Diagonal::Sigmas((Vector(6) << priorOSigma_, priorOSigma_, priorOSigma_, priorPSigma_, priorPSigma_, priorPSigma_) .finished())); newFactors.add(priorPose); Vector3 v0 = Vector3(0, 0, 0); PriorFactor<Vector3> priorVel( V(0), v0, noiseModel::Diagonal::Sigmas((Vector(3) << priorVSigma_, priorVSigma_, priorVSigma_).finished())); newFactors.add(priorVel); imuBias::ConstantBias b0((Vector(6) << 0, 0, 0, 0, 0, 0).finished()); PriorFactor<imuBias::ConstantBias> priorBias( B(0), b0, noiseModel::Diagonal::Sigmas( (Vector(6) << priorABias_, priorABias_, priorABias_, priorGBias_, priorGBias_, priorGBias_).finished())); newFactors.add(priorBias); noiseModel::Diagonal::shared_ptr imuToGpsFactorNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << gpsTSigma_, gpsTSigma_, gpsTSigma_, gpsTSigma_, gpsTSigma_, gpsTSigma_).finished()); newFactors.add(BetweenFactor<Pose3>(X(0), G(0), imuToGps_, imuToGpsFactorNoise)); newVariables.insert(X(0), x0); newVariables.insert(V(0), v0); newVariables.insert(B(0), b0); newVariables.insert(G(0), x0.compose(imuToGps_)); newTimestamps[X(0)] = 0; newTimestamps[G(0)] = 0; newTimestamps[V(0)] = 0; newTimestamps[B(0)] = 0; graph.update(newFactors, newVariables); //, newTimestamps); Pose3 prevPose = prevPose_ = x0; Vector3 prevVel = prevVel_ = v0; imuBias::ConstantBias prevBias = prevBias_ = b0; // remove old imu messages while (!imuQ_.empty() && ROS_TIME(imuQ_.front()) < ROS_TIME(fix)) { lastImuT = ROS_TIME(lastImu); lastImu = imuQ_.pop(); } // setting up the IMU integration boost::shared_ptr<gtsam::PreintegrationParams> preintegrationParams = PreintegrationParams::MakeSharedU(gravityMagnitude_); preintegrationParams->accelerometerCovariance = accelSigma_ * I_3x3; preintegrationParams->gyroscopeCovariance = gyroSigma_ * I_3x3; preintegrationParams->integrationCovariance = imuIntSigma_ * I_3x3; PreintegratedImuMeasurements imuIntegrator(preintegrationParams, prevBias); Vector noiseModelBetweenBias = (Vector(6) << accelBSigma_, accelBSigma_, accelBSigma_, gyroBSigma_, gyroBSigma_, gyroBSigma_).finished(); SharedDiagonal gpsNoise = noiseModel::Diagonal::Sigmas(Vector3(gpsSigma_, gpsSigma_, 3 * gpsSigma_)); newFactors.resize(0); newVariables.clear(); newTimestamps.clear(); // now we loop and let use the queues to grab messages while (ros::ok()) { bool optimize = false; // integrate imu messages while (!imuQ_.empty() && ROS_TIME(imuQ_.back()) > (startTime + 0.1 * imuKey) && !optimize) { double curTime = startTime + 0.1 * imuKey; // we reset the integrator, then integrate imuIntegrator.resetIntegrationAndSetBias(prevBias); while (ROS_TIME(lastImu) < curTime) { double dt = ROS_TIME(lastImu) - lastImuT; imuIntegrator.integrateMeasurement( Vector3(lastImu->linear_acceleration.x, lastImu->linear_acceleration.y, lastImu->linear_acceleration.z), Vector3(lastImu->angular_velocity.x, lastImu->angular_velocity.y, lastImu->angular_velocity.z), dt); lastImuT = ROS_TIME(lastImu); lastImu = imuQ_.pop(); } // now put this into the graph ImuFactor imuf(X(imuKey - 1), V(imuKey - 1), X(imuKey), V(imuKey), B(imuKey - 1), imuIntegrator); newFactors.add(imuf); newFactors.add(BetweenFactor<imuBias::ConstantBias>( B(imuKey - 1), B(imuKey), imuBias::ConstantBias(), noiseModel::Diagonal::Sigmas(sqrt(imuIntegrator.deltaTij()) * noiseModelBetweenBias))); Rot3 orientation = Rot3::Quaternion(lastImu->orientation.w, lastImu->orientation.x, lastImu->orientation.y, lastImu->orientation.z); // std::cout << "adding orientation: " << orientation.xyz() << std::endl; newFactors.add(UnaryRotationFactor(X(imuKey), orientation.yaw(), noiseModel::Diagonal::Sigmas((Vector(1) << yawSigma_).finished()))); NavState cur(prevPose, prevVel); NavState next = imuIntegrator.predict(cur, prevBias); prevPose = next.pose(); prevVel = next.v(); newVariables.insert(X(imuKey), prevPose); newVariables.insert(G(imuKey), prevPose.compose(imuToGps_)); newVariables.insert(V(imuKey), prevVel); newVariables.insert(B(imuKey), prevBias); Pose3 temp = prevPose.compose(imuToGps_); std::cout << "imu(" << imuKey << "): " << temp.x() << " " << temp.y() << " " << temp.z() << std::endl; // for marginalizing out past the time window newTimestamps[X(imuKey)] = 0.1 * imuKey; newTimestamps[G(imuKey)] = 0.1 * imuKey; newTimestamps[V(imuKey)] = 0.1 * imuKey; newTimestamps[B(imuKey)] = 0.1 * imuKey; ++imuKey; optimize = true; } while (!gpsQ_.empty() && gpsKey < imuKey && optimize && ROS_TIME(gpsQ_.back()) > (startTime + gpsKey * 0.1)) { fix = gpsQ_.pop(); // we don't want all gps messages, just ones that are very close to the factors (10 hz) if (std::abs(ROS_TIME(fix) - (startTime + gpsKey * 0.1)) > 1e-2) continue; double E, N, U; enu_.Forward(fix->latitude, fix->longitude, fix->altitude, E, N, U); // we should maybe do a check on the GPS to make sure it's valid newFactors.add(GPSFactor(G(gpsKey), Point3(E, N, U), gpsNoise)); newFactors.add(BetweenFactor<Pose3>(X(gpsKey), G(gpsKey), imuToGps_, imuToGpsFactorNoise)); std::cout << "gps(" << gpsKey << "): " << E << " " << N << " " << U << std::endl; ++gpsKey; } if (!optimize) continue; try { graph.update(newFactors, newVariables); //, newTimestamps); prevPose = graph.calculateEstimate<Pose3>(X(imuKey - 1)); prevVel = graph.calculateEstimate<Vector3>(V(imuKey - 1)); prevBias = graph.calculateEstimate<imuBias::ConstantBias>(B(imuKey - 1)); // pass this to the other thread { std::lock_guard<std::mutex> lock(mutex_); prevPose_ = prevPose; prevVel_ = prevVel; prevBias_ = prevBias; currentTime_ = (imuKey - 1) * 0.1 + startTime; doneFirstOpt_ = true; } } catch (IndeterminantLinearSystemException ex) { // optimization blew up, not much to do just warn user ROS_ERROR("Indeterminant linear system error"); } newFactors.resize(0); newVariables.clear(); newTimestamps.clear(); } }
int main(int argc, char** argv) { // Define the smoother lag (in seconds) double lag = 2.0; // Create a fixed lag smoother // The Batch version uses Levenberg-Marquardt to perform the nonlinear optimization BatchFixedLagSmoother smootherBatch(lag); // The Incremental version uses iSAM2 to perform the nonlinear optimization ISAM2Params parameters; parameters.relinearizeThreshold = 0.0; // Set the relin threshold to zero such that the batch estimate is recovered parameters.relinearizeSkip = 1; // Relinearize every time IncrementalFixedLagSmoother smootherISAM2(lag, parameters); // Create containers to store the factors and linearization points that // will be sent to the smoothers NonlinearFactorGraph newFactors; Values newValues; FixedLagSmoother::KeyTimestampMap newTimestamps; // Create a prior on the first pose, placing it at the origin Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); Key priorKey = 0; newFactors.push_back(PriorFactor<Pose2>(priorKey, priorMean, priorNoise)); newValues.insert(priorKey, priorMean); // Initialize the first pose at the mean of the prior newTimestamps[priorKey] = 0.0; // Set the timestamp associated with this key to 0.0 seconds; // Now, loop through several time steps, creating factors from different "sensors" // and adding them to the fixed-lag smoothers double deltaT = 0.25; for(double time = deltaT; time <= 3.0; time += deltaT) { // Define the keys related to this timestamp Key previousKey(1000 * (time-deltaT)); Key currentKey(1000 * (time)); // Assign the current key to the current timestamp newTimestamps[currentKey] = time; // Add a guess for this pose to the new values // Since the robot moves forward at 2 m/s, then the position is simply: time[s]*2.0[m/s] // {This is not a particularly good way to guess, but this is just an example} Pose2 currentPose(time * 2.0, 0.0, 0.0); newValues.insert(currentKey, currentPose); // Add odometry factors from two different sources with different error stats Pose2 odometryMeasurement1 = Pose2(0.61, -0.08, 0.02); noiseModel::Diagonal::shared_ptr odometryNoise1 = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement1, odometryNoise1)); Pose2 odometryMeasurement2 = Pose2(0.47, 0.03, 0.01); noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05)); newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2)); // Update the smoothers with the new factors smootherBatch.update(newFactors, newValues, newTimestamps); smootherISAM2.update(newFactors, newValues, newTimestamps); for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations smootherISAM2.update(); } // Print the optimized current pose cout << setprecision(5) << "Timestamp = " << time << endl; smootherBatch.calculateEstimate<Pose2>(currentKey).print("Batch Estimate:"); smootherISAM2.calculateEstimate<Pose2>(currentKey).print("iSAM2 Estimate:"); cout << endl; // Clear contains for the next iteration newTimestamps.clear(); newValues.clear(); newFactors.resize(0); } // And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds cout << "After 3.0 seconds, " << endl; cout << " Batch Smoother Keys: " << endl; for(const FixedLagSmoother::KeyTimestampMap::value_type& key_timestamp: smootherBatch.timestamps()) { cout << setprecision(5) << " Key: " << key_timestamp.first << " Time: " << key_timestamp.second << endl; } cout << " iSAM2 Smoother Keys: " << endl; for(const FixedLagSmoother::KeyTimestampMap::value_type& key_timestamp: smootherISAM2.timestamps()) { cout << setprecision(5) << " Key: " << key_timestamp.first << " Time: " << key_timestamp.second << endl; } return 0; }