예제 #1
0
bool OpNewS::Do(OBBase* pOb, const char* OptionText, OpMap* pmap, OBConversion* pConv)
{
  OBMol* pmol = dynamic_cast<OBMol*>(pOb);
  if(!pmol)
    return false;

  // The SMARTS and any other parameters are extracted on the first molecule
  // and stored in the static variables vec, inv. The parameter is cleared so that:
  // (a) the original -s option in transform.cpp is inactive, and
  // (b) the parsing does not have to be done again for multi-molecule files

  string txt(pmap->find(GetID())->second); // ID can be "s" or "v"
  static vector<string> vec;
  static bool inv;
  static int nPatternAtoms; //non-zero for exact matches
  static OBQuery* query;
  static vector<OBQuery*> queries;
  vector<OBQuery*>::iterator qiter;
  if(!txt.empty())
  {
    //Set up on first call
    tokenize(vec, txt);
    inv = GetID()[0]=='v';
    if(vec[0][0]=='~')
    {
      inv = true;
      vec[0].erase(0,1);
    }

    //Interpret as a filename if possible
    MakeQueriesFromMolInFile(queries, vec[0], &nPatternAtoms);

    if(vec.size()>1 && vec[1]=="exact")
    {
      if(queries.empty())
      {
        //Convert SMARTS to SMILES to count number of atoms
        OBConversion conv;
        OBMol patmol;
        if(!conv.SetInFormat("smi") || !conv.ReadString(&patmol, vec[0]))
        {
          obErrorLog.ThrowError(__FUNCTION__, "Cannot read the parameter of -s option, "
          "which has to be valid SMILES when the exact option is used.", obError, onceOnly);
          delete pmol;
          pConv->SetOneObjectOnly(); //stop conversion
          return false;
        }
        nPatternAtoms = patmol.NumHvyAtoms();
      }
    }
    else
      nPatternAtoms = 0;
    
    //disable old versions
    pConv->AddOption(GetID(), OBConversion::GENOPTIONS, "");
  }

  bool match;
  //These are a vector of each mapping, each containing atom indxs.
  vector<vector<int> > vecatomvec;
  vector<vector<int> >* pMappedAtoms = NULL;
  OBSmartsPattern sp;

  if(nPatternAtoms)
    if(pmol->NumHvyAtoms() != nPatternAtoms)
      return false;

  int imol=0; //index of mol in pattern file
  if(!queries.empty()) //filename supplied
  {
    //match is set true if any of the structures match - OR behaviour
    for(qiter=queries.begin();qiter!=queries.end();++qiter, ++imol) 
    {
      OBIsomorphismMapper* mapper = OBIsomorphismMapper::GetInstance(*qiter);
      OBIsomorphismMapper::Mappings mappings;
      mapper->MapUnique(pmol, mappings);
      if( (match = !mappings.empty()) ) // extra parens to indicate truth value
      {
        OBIsomorphismMapper::Mappings::iterator ita;
        OBIsomorphismMapper::Mapping::iterator itb;
        for(ita=mappings.begin(); ita!=mappings.end();++ita)//each mapping
        {
          vector<int> atomvec;
          for(itb=ita->begin(); itb!=ita->end();++itb)//each atom index
            atomvec.push_back(itb->second+1);
          vecatomvec.push_back(atomvec);
          atomvec.clear();
        }
        pMappedAtoms = &vecatomvec;
        break;
      }
    }
  }
  else //SMARTS supplied
  {
    if(!sp.Init(vec[0]))
    {
      string msg = vec[0] + " cannot be interpreted as either valid SMARTS "
        "or the name of a file with an extension known to OpenBabel "
        "that contains one or more pattern molecules.";
      obErrorLog.ThrowError(__FUNCTION__, msg, obError, onceOnly);
      delete pmol;
      pmol = NULL;
      pConv->SetOneObjectOnly(); //stop conversion
      return false;
    }

    if( (match = sp.Match(*pmol)) ) // extra parens to indicate truth value
      pMappedAtoms = &sp.GetMapList();
  }

  if((!match && !inv) || (match && inv))
  {
    //delete a non-matching mol
    delete pmol;
    pmol = NULL;
    return false;
  }

  if(!inv && vec.size()>=2 && !vec[1].empty() && !nPatternAtoms)
  {
    vector<vector<int> >::iterator iter;

    if(vec[1]=="extract")
    {
      //Delete all unmatched atoms. Use only the first match
      ExtractSubstruct(pmol, *pMappedAtoms->begin());
      return true;
    }

    // color the substructure if there is a second parameter which is not "exact" or "extract"
    // with multiple color parameters use the one corresponding to the query molecule, or the last
    if(imol>vec.size()-2)
      imol = vec.size()-2;
    for(iter=pMappedAtoms->begin();iter!=pMappedAtoms->end();++iter)//each match
       AddDataToSubstruct(pmol, *iter, "color", vec[imol+1]);
    return true;
  }

  if(pConv && pConv->IsLast())
  {
    for(qiter=queries.begin();qiter!=queries.end();++qiter)
      delete *qiter;
    queries.clear();
  }
  return true;
}
예제 #2
0
int main(int argc, char* argv[])
{
	// Check the required number of command line arguments.
	if (argc != 5)
	{
		cout << "usr host user pwd jobs_path" << endl;
		return 0;
	}

	// Fetch command line arguments.
	const auto host = argv[1];
	const auto user = argv[2];
	const auto pwd = argv[3];
	const path jobs_path = argv[4];

	// Connect to host and authenticate user.
	DBClientConnection conn;
	{
		cout << local_time() << "Connecting to " << host << " and authenticating " << user << endl;
		string errmsg;
		if ((!conn.connect(host, errmsg)) || (!conn.auth("istar", user, pwd, errmsg)))
		{
			cerr << local_time() << errmsg << endl;
			return 1;
		}
	}

	// Initialize constants.
	cout << local_time() << "Initializing" << endl;
	const auto collection = "istar.usr";
	const auto epoch = date(1970, 1, 1);
	const size_t num_usrs = 2;
	constexpr array<size_t, num_usrs> qn{{ 12, 60 }};
	constexpr array<double, num_usrs> qv{{ 1.0 / qn[0], 1.0 / qn[1] }};
	const size_t num_references = 4;
	const size_t num_subsets = 5;
	const array<string, num_subsets> SubsetSMARTS
	{{
		"[!#1]", // heavy
		"[#6+0!$(*~[#7,#8,F]),SH0+0v2,s+0,S^3,Cl+0,Br+0,I+0]", // hydrophobic
		"[a]", // aromatic
		"[$([O,S;H1;v2]-[!$(*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N&v3;H1,H2]-[!$(*=[O,N,P,S])]),$([N;v3;H0]),$([n,o,s;+0]),F]", // acceptor
		"[N!H0v3,N!H0+v4,OH+0,SH+0,nH+0]", // donor
	}};

	// Initialize variables.
	array<array<double, qn.back()>, 1> qw;
	array<array<double, qn.back()>, 1> lw;
	auto q = qw[0];
	auto l = lw[0];

	// Read ZINC ID file.
	const string_array<size_t> zincids("16_zincid.txt");
	const auto num_ligands = zincids.size();

	// Read SMILES file.
	const string_array<size_t> smileses("16_smiles.txt");
	assert(smileses.size() == num_ligands);

	// Read supplier file.
	const string_array<size_t> suppliers("16_supplier.txt");
	assert(suppliers.size() == num_ligands);

	// Read property files of floating point types and integer types.
	const auto zfproperties = read<array<float, 4>>("16_zfprop.f32");
	assert(zfproperties.size() == num_ligands);
	const auto ziproperties = read<array<int16_t, 5>>("16_ziprop.i16");
	assert(ziproperties.size() == num_ligands);

	// Open files for subsequent reading.
	std::ifstream usrcat_bin("16_usrcat.f64");
	stream_array<size_t> ligands("16_ligand.pdbqt");
	assert(ligands.size() == num_ligands);
	array<vector<double>, 2> scores
	{{
		vector<double>(num_ligands, 0),
		vector<double>(num_ligands, 0)
	}};
	const auto& u0scores = scores[0];
	const auto& u1scores = scores[1];
	vector<size_t> scase(num_ligands);

	// Enter event loop.
	cout << local_time() << "Entering event loop" << endl;
	bool sleeping = false;
	while (true)
	{
		// Fetch an incompleted job in a first-come-first-served manner.
		if (!sleeping) cout << local_time() << "Fetching an incompleted job" << endl;
		BSONObj info;
		conn.runCommand("istar", BSON("findandmodify" << "usr" << "query" << BSON("done" << BSON("$exists" << false) << "started" << BSON("$exists" << false)) << "sort" << BSON("submitted" << 1) << "update" << BSON("$set" << BSON("started" << Date_t(duration_cast<std::chrono::milliseconds>(system_clock::now().time_since_epoch()).count())))), info); // conn.findAndModify() is available since MongoDB C++ Driver legacy-1.0.0
		const auto value = info["value"];
		if (value.isNull())
		{
			// No incompleted jobs. Sleep for a while.
			if (!sleeping) cout << local_time() << "Sleeping" << endl;
			sleeping = true;
			this_thread::sleep_for(chrono::seconds(10));
			continue;
		}
		sleeping = false;
		const auto job = value.Obj();

		// Obtain job properties.
		const auto _id = job["_id"].OID();
		cout << local_time() << "Executing job " << _id.str() << endl;
		const auto job_path = jobs_path / _id.str();
		const auto format = job["format"].String();
		const auto email = job["email"].String();

		// Parse the user-supplied ligand.
		OBMol obMol;
		OBConversion obConversion;
		obConversion.SetInFormat(format.c_str());
		obConversion.ReadFile(&obMol, (job_path / ("ligand." + format)).string());
		const auto num_atoms = obMol.NumAtoms();
//		obMol.AddHydrogens(); // Adding hydrogens does not seem to affect SMARTS matching.

		// Classify subset atoms.
		array<vector<int>, num_subsets> subsets;
		for (size_t k = 0; k < num_subsets; ++k)
		{
			auto& subset = subsets[k];
			subset.reserve(num_atoms);
			OBSmartsPattern smarts;
			smarts.Init(SubsetSMARTS[k]);
			smarts.Match(obMol);
			for (const auto& map : smarts.GetMapList())
			{
				subset.push_back(map.front());
			}
		}
		const auto& subset0 = subsets.front();

		// Check user-provided ligand validity.
		if (subset0.empty())
		{
			// Record job completion time stamp.
			const auto millis_since_epoch = duration_cast<std::chrono::milliseconds>(system_clock::now().time_since_epoch()).count();
			conn.update(collection, BSON("_id" << _id), BSON("$set" << BSON("done" << Date_t(millis_since_epoch))));

			// Send error notification email.
			cout << local_time() << "Sending an error notification email to " << email << endl;
			MailMessage message;
			message.setSender("usr <*****@*****.**>");
			message.setSubject("Your usr job has failed");
			message.setContent("Description: " + job["description"].String() + "\nSubmitted: " + to_simple_string(ptime(epoch, boost::posix_time::milliseconds(job["submitted"].Date().millis))) + " UTC\nFailed: " + to_simple_string(ptime(epoch, boost::posix_time::milliseconds(millis_since_epoch))) + " UTC\nReason: failed to parse the provided ligand.");
			message.addRecipient(MailRecipient(MailRecipient::PRIMARY_RECIPIENT, email));
			SMTPClientSession session("137.189.91.190");
			session.login();
			session.sendMessage(message);
			session.close();
			continue;
		}

		// Calculate the four reference points.
		const auto n = subset0.size();
		const auto v = 1.0 / n;
		array<vector3, num_references> references{};
		auto& ctd = references[0];
		auto& cst = references[1];
		auto& fct = references[2];
		auto& ftf = references[3];
		for (const auto i : subset0)
		{
			ctd += obMol.GetAtom(i)->GetVector();
		}
		ctd *= v;
		double cst_dist = numeric_limits<double>::max();
		double fct_dist = numeric_limits<double>::lowest();
		double ftf_dist = numeric_limits<double>::lowest();
		for (const auto i : subset0)
		{
			const auto& a = obMol.GetAtom(i)->GetVector();
			const auto this_dist = a.distSq(ctd);
			if (this_dist < cst_dist)
			{
				cst = a;
				cst_dist = this_dist;
			}
			if (this_dist > fct_dist)
			{
				fct = a;
				fct_dist = this_dist;
			}
		}
		for (const auto i : subset0)
		{
			const auto& a = obMol.GetAtom(i)->GetVector();
			const auto this_dist = a.distSq(fct);
			if (this_dist > ftf_dist)
			{
				ftf = a;
				ftf_dist = this_dist;
			}
		}

		// Precalculate the distances between each atom and each reference point.
		array<vector<double>, num_references> dista;
		for (size_t k = 0; k < num_references; ++k)
		{
			const auto& reference = references[k];
			auto& dists = dista[k];
			dists.resize(1 + num_atoms); // OpenBabel atom index starts from 1. dists[0] is dummy.
			for (size_t i = 0; i < n; ++i)
			{
				dists[subset0[i]] = sqrt(obMol.GetAtom(subset0[i])->GetVector().distSq(reference));
			}
		}

		// Calculate USR and USRCAT features of the input ligand.
		size_t qo = 0;
		for (const auto& subset : subsets)
		{
			const auto n = subset.size();
			for (size_t k = 0; k < num_references; ++k)
			{
				const auto& distp = dista[k];
				vector<double> dists(n);
				for (size_t i = 0; i < n; ++i)
				{
					dists[i] = distp[subset[i]];
				}
				array<double, 3> m{};
				if (n > 2)
				{
					const auto v = 1.0 / n;
					for (size_t i = 0; i < n; ++i)
					{
						const auto d = dists[i];
						m[0] += d;
					}
					m[0] *= v;
					for (size_t i = 0; i < n; ++i)
					{
						const auto d = dists[i] - m[0];
						m[1] += d * d;
					}
					m[1] = sqrt(m[1] * v);
					for (size_t i = 0; i < n; ++i)
					{
						const auto d = dists[i] - m[0];
						m[2] += d * d * d;
					}
					m[2] = cbrt(m[2] * v);
				}
				else if (n == 2)
				{
					m[0] = 0.5 *     (dists[0] + dists[1]);
					m[1] = 0.5 * fabs(dists[0] - dists[1]);
				}
				else if (n == 1)
				{
					m[0] = dists[0];
				}
				#pragma unroll
				for (const auto e : m)
				{
					q[qo++] = e;
				}
			}
		}
		assert(qo == qn.back());

		// Compute USR and USRCAT scores.
		usrcat_bin.seekg(0);
		for (size_t k = 0; k < num_ligands; ++k)
		{
			usrcat_bin.read(reinterpret_cast<char*>(l.data()), sizeof(l));
			double s = 0;
			#pragma unroll
			for (size_t i = 0, u = 0; u < num_usrs; ++u)
			{
				#pragma unroll
				for (const auto qnu = qn[u]; i < qnu; ++i)
				{
					s += fabs(q[i] - l[i]);
				}
				scores[u][k] = s;
			}
		}
		assert(usrcat_bin.tellg() == sizeof(l) * num_ligands);

		// Sort ligands by USRCAT score and then by USR score and then by ZINC ID.
		iota(scase.begin(), scase.end(), 0);
		sort(scase.begin(), scase.end(), [&](const size_t val0, const size_t val1)
		{
			const auto u1score0 = u1scores[val0];
			const auto u1score1 = u1scores[val1];
			if (u1score0 == u1score1)
			{
				const auto u0score0 = u0scores[val0];
				const auto u0score1 = u0scores[val1];
				if (u0score0 == u0score1)
				{
					return zincids[val0] < zincids[val1];
				}
				return u0score0 < u0score1;
			}
			return u1score0 < u1score1;
		});

		// Write results.
		filtering_ostream log_csv_gz;
		log_csv_gz.push(gzip_compressor());
		log_csv_gz.push(file_sink((job_path / "log.csv.gz").string()));
		log_csv_gz.setf(ios::fixed, ios::floatfield);
		log_csv_gz << "ZINC ID,USR score,USRCAT score\n" << setprecision(8);
		filtering_ostream ligands_pdbqt_gz;
		ligands_pdbqt_gz.push(gzip_compressor());
		ligands_pdbqt_gz.push(file_sink((job_path / "ligands.pdbqt.gz").string()));
		ligands_pdbqt_gz.setf(ios::fixed, ios::floatfield);
		for (size_t t = 0; t < 10000; ++t)
		{
			const size_t k = scase[t];
			const auto zincid = zincids[k].substr(0, 8); // Take another substr() to get rid of the trailing newline.
			const auto u0score = 1 / (1 + scores[0][k] * qv[0]);
			const auto u1score = 1 / (1 + scores[1][k] * qv[1]);
			log_csv_gz << zincid << ',' << u0score << ',' << u1score << '\n';

			// Only write conformations of the top ligands to ligands.pdbqt.gz.
			if (t >= 1000) continue;

			const auto zfp = zfproperties[k];
			const auto zip = ziproperties[k];
			ligands_pdbqt_gz
				<< "MODEL " << '\n'
				<< "REMARK 911 " << zincid
				<< setprecision(3)
				<< ' ' << setw(8) << zfp[0]
				<< ' ' << setw(8) << zfp[1]
				<< ' ' << setw(8) << zfp[2]
				<< ' ' << setw(8) << zfp[3]
				<< ' ' << setw(3) << zip[0]
				<< ' ' << setw(3) << zip[1]
				<< ' ' << setw(3) << zip[2]
				<< ' ' << setw(3) << zip[3]
				<< ' ' << setw(3) << zip[4]
				<< '\n'
				<< "REMARK 912 " << smileses[k]  // A newline is already included in smileses[k].
				<< "REMARK 913 " << suppliers[k] // A newline is already included in suppliers[k].
				<< setprecision(8)
				<< "REMARK 951    USR SCORE: " << setw(10) << u0score << '\n'
				<< "REMARK 952 USRCAT SCORE: " << setw(10) << u1score << '\n'
			;
			const auto lig = ligands[k];
			ligands_pdbqt_gz.write(lig.data(), lig.size());
			ligands_pdbqt_gz << "ENDMDL\n";
		}

		// Update progress.
		cout << local_time() << "Setting done time" << endl;
		const auto millis_since_epoch = duration_cast<std::chrono::milliseconds>(system_clock::now().time_since_epoch()).count();
		conn.update(collection, BSON("_id" << _id), BSON("$set" << BSON("done" << Date_t(millis_since_epoch))));

		// Send completion notification email.
		cout << local_time() << "Sending a completion notification email to " << email << endl;
		MailMessage message;
		message.setSender("istar <*****@*****.**>");
		message.setSubject("Your usr job has completed");
		message.setContent("Description: " + job["description"].String() + "\nSubmitted: " + to_simple_string(ptime(epoch, boost::posix_time::milliseconds(job["submitted"].Date().millis))) + " UTC\nCompleted: " + to_simple_string(ptime(epoch, boost::posix_time::milliseconds(millis_since_epoch))) + " UTC\nResult: http://istar.cse.cuhk.edu.hk/usr/iview/?" + _id.str());
		message.addRecipient(MailRecipient(MailRecipient::PRIMARY_RECIPIENT, email));
		SMTPClientSession session("137.189.91.190");
		session.login();
		session.sendMessage(message);
		session.close();
	}
}
예제 #3
0
int main(int argc, char* argv[])
{
	const array<string, 5> SmartsPatterns =
	{
		"[!#1]", // heavy
		"[#6+0!$(*~[#7,#8,F]),SH0+0v2,s+0,S^3,Cl+0,Br+0,I+0]", // hydrophobic
		"[a]", // aromatic
		"[$([O,S;H1;v2]-[!$(*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N&v3;H1,H2]-[!$(*=[O,N,P,S])]),$([N;v3;H0]),$([n,o,s;+0]),F]", // acceptor
		"[N!H0v3,N!H0+v4,OH+0,SH+0,nH+0]", // donor
	};
	OBConversion obConversion;
	obConversion.SetInFormat("pdbqt");
	while (true)
	{
		vector<array<double, 3>> atoms;
		atoms.reserve(80);
		stringstream ss;
		for (string line; getline(cin, line);)
		{
			ss << line << endl;
			const auto record = line.substr(0, 6);
			if (record == "TORSDO") break;
			if (record != "ATOM  " && record != "HETATM") continue;
			atoms.push_back({ stod(line.substr(30, 8)), stod(line.substr(38, 8)), stod(line.substr(46, 8)) });
		}
		if (atoms.empty()) break;
		OBMol obMol;
		obConversion.Read(&obMol, &ss);
		array<vector<int>, 5> subsets;
		for (size_t k = 0; k < 5; ++k)
		{
			auto& subset = subsets[k];
			subset.reserve(atoms.size());
			OBSmartsPattern smarts;
			smarts.Init(SmartsPatterns[k]);
			smarts.Match(obMol);
			for (const auto& map : smarts.GetMapList())
			{
				subset.push_back(map.front() - 1);
			}
		}
		const auto& subset0 = subsets.front();
		const auto n = subset0.size();
		const auto v = 1.0 / n;
		array<double, 3> ctd{};
		array<double, 3> cst{};
		array<double, 3> fct{};
		array<double, 3> ftf{};
		for (size_t k = 0; k < 3; ++k)
		{
			for (const auto i : subset0)
			{
				const auto& a = atoms[i];
				ctd[k] += a[k];
			}
			ctd[k] *= v;
		}
		double cst_dist = numeric_limits<double>::max();
		double fct_dist = numeric_limits<double>::lowest();
		double ftf_dist = numeric_limits<double>::lowest();
		for (const auto i : subset0)
		{
			const auto& a = atoms[i];
			const auto this_dist = dist2(a, ctd);
			if (this_dist < cst_dist)
			{
				cst = a;
				cst_dist = this_dist;
			}
			if (this_dist > fct_dist)
			{
				fct = a;
				fct_dist = this_dist;
			}
		}
		for (const auto i : subset0)
		{
			const auto& a = atoms[i];
			const auto this_dist = dist2(a, fct);
			if (this_dist > ftf_dist)
			{
				ftf = a;
				ftf_dist = this_dist;
			}
		}
		for (const auto& subset : subsets)
		{
			const auto n = subset.size();
			const auto v = 1.0 / n;
			for (const auto& rpt : { ctd, cst, fct, ftf })
			{
				vector<double> dists(n);
				for (size_t i = 0; i < n; ++i)
				{
					dists[i] = sqrt(dist2(atoms[subset[i]], rpt));
				}
				array<double, 3> m{};
				for (size_t i = 0; i < n; ++i)
				{
					const auto d = dists[i];
					m[0] += d;
				}
				m[0] *= v;
				for (size_t i = 0; i < n; ++i)
				{
					const auto d = dists[i] - m[0];
					m[1] += d * d;
				}
				m[1] = sqrt(m[1] * v);
				for (size_t i = 0; i < n; ++i)
				{
					const auto d = dists[i] - m[0];
					m[2] += d * d * d;
				}
				m[2] = cbrt(m[2] * v);
				cout.write(reinterpret_cast<char*>(m.data()), sizeof(m));
			}
		}
	}
}