boost::optional<Quantity> QuantityConverterSingleton::convert(const Quantity &original, const Unit& targetUnits) const { Quantity working(original); OptionalQuantity candidate; // See if nothing to be done. (Check for equality of system and base units + exponents.) if ((working.system() == targetUnits.system()) && (working.units() == targetUnits)) { // Assume targetUnits has desired scale. working.setScale(targetUnits.scale().exponent); return working; } // All conversions go through SI if (working.system() != UnitSystem::SI) { candidate = m_convertToSI(working); if (!candidate) { return boost::none; } working = *candidate; } // Retain pretty string OptionalQuantity result = m_convertToTargetFromSI(working,targetUnits); if (result && result->prettyUnitsString(false).empty() && !targetUnits.prettyString(false).empty()) { result->setPrettyUnitsString(targetUnits.prettyString(false)); } return result; }
TEST_F(UnitsFixture,QuantityConverter_PowerDensity) { Quantity siLpd(10.0,createSIPowerDensity()); Unit ipPowerDensity = createUnit("W/ft^2").get(); OptionalQuantity ipLpd = convert(siLpd,ipPowerDensity); Quantity siArea(1.0,pow(createSILength(),2)); OptionalQuantity ipArea = convert(siArea,UnitSystem(UnitSystem::IP)); ASSERT_TRUE(ipLpd); ASSERT_TRUE(ipArea); EXPECT_NEAR(10.0/ipArea->value(),ipLpd->value(),tol); EXPECT_EQ("W/ft^2",ipLpd->prettyUnitsString()); }
TEST_F(UnitsFixture,QuantityConverter_BTUandIPUsingSystem) { LOG(Debug, "QuantityConverter_BTUandIPUsingSystem"); UnitSystem siSys(UnitSystem::SI); UnitSystem ipSys(UnitSystem::IP); UnitSystem btuSys(UnitSystem::BTU); // uses BTU to SI, SI to IP BTUUnit btuu1(openstudio::BTUExpnt(1,-2,0,0), 3); Quantity bQ( 67.5, btuu1 ); testStreamOutput("67.5 kBtu/ft^2",bQ); OptionalQuantity ipQ = QuantityConverter::instance().convert( bQ, ipSys); EXPECT_TRUE(ipQ); if (ipQ) { EXPECT_EQ("lb_m/s^2",ipQ->standardUnitsString(false)); EXPECT_EQ("klb_m/s^2",ipQ->standardUnitsString()); SCOPED_TRACE("btu1 to IP"); testNumbersEqual(1689985.20448, ipQ->value()); } BTUUnit btuu2(openstudio::BTUExpnt(0,0,-1)); bQ = Quantity(5000.0, btuu2); ipQ = QuantityConverter::instance().convert( bQ, ipSys); EXPECT_TRUE(ipQ); if (ipQ) { SCOPED_TRACE("bQ to IP, 1"); testStreamOutput("1.3889 1/s",*ipQ,4); } bQ *= bQ; // 25E6/h^2 ipQ = QuantityConverter::instance().convert( bQ, ipSys); EXPECT_TRUE(ipQ); if (ipQ) { SCOPED_TRACE("bQ to IP, 2"); testStreamOutput("1.9290 1/s^2",*ipQ,4); } BTUUnit btuu3(openstudio::BTUExpnt(-1),-3); bQ = Quantity(1.0, btuu3); testStreamOutput("1 1/kBtu",bQ); OptionalQuantity siQ = QuantityConverter::instance().convert(bQ,siSys); EXPECT_TRUE(siQ); if (siQ) { EXPECT_EQ("1/J",siQ->prettyUnitsString(false)); SCOPED_TRACE("btu3 to SI"); testNumbersEqual(9.478171203133172e-4,siQ->value()); siQ->setScale(0); SCOPED_TRACE("rescaled btu3 to SI"); testNumbersEqual(9.478171203133172e-7,siQ->value()); } // uses IP to SI, SI to BTU IPUnit ipu1(openstudio::IPExpnt(0,1,0,-1,0,0,0,1), -2); Quantity ipQ2( 2.0, ipu1); OptionalQuantity bQ2 = QuantityConverter::instance().convert( ipQ2, btuSys); EXPECT_TRUE(bQ2); if (bQ2) { EXPECT_EQ("Btu/R", bQ2->standardUnitsString(false)); EXPECT_EQ("cBtu/R", bQ2->standardUnitsString()); SCOPED_TRACE("ipu1 to BTU"); testNumbersEqual(0.002570134927, bQ2->value(),1.0e-5); bQ2->setScale(0); EXPECT_EQ("Btu/R", bQ2->standardUnitsString()); testNumbersEqual(2.570134927e-5, bQ2->value(),1.0e-5); } }