예제 #1
0
bool PTXMFInfoExtract::runOnMachineFunction(MachineFunction &MF) {
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  // Generate list of all virtual registers used in this function
  for (unsigned i = 0; i < MRI.getNumVirtRegs(); ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
    unsigned RegType;
    if (TRC == PTX::RegPredRegisterClass)
      RegType = PTXRegisterType::Pred;
    else if (TRC == PTX::RegI16RegisterClass)
      RegType = PTXRegisterType::B16;
    else if (TRC == PTX::RegI32RegisterClass)
      RegType = PTXRegisterType::B32;
    else if (TRC == PTX::RegI64RegisterClass)
      RegType = PTXRegisterType::B64;
    else if (TRC == PTX::RegF32RegisterClass)
      RegType = PTXRegisterType::F32;
    else if (TRC == PTX::RegF64RegisterClass)
      RegType = PTXRegisterType::F64;
    MFI->addRegister(Reg, RegType, PTXRegisterSpace::Reg);
  }

  return false;
}
예제 #2
0
SDValue PTXTargetLowering::
  LowerReturn(SDValue Chain,
              CallingConv::ID CallConv,
              bool isVarArg,
              const SmallVectorImpl<ISD::OutputArg> &Outs,
              const SmallVectorImpl<SDValue> &OutVals,
              DebugLoc dl,
              SelectionDAG &DAG) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention.");
    case CallingConv::PTX_Kernel:
      assert(Outs.size() == 0 && "Kernel must return void.");
      return DAG.getNode(PTXISD::EXIT, dl, MVT::Other, Chain);
    case CallingConv::PTX_Device:
      //assert(Outs.size() <= 1 && "Can at most return one value.");
      break;
  }

  MachineFunction& MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
                 getTargetMachine(), RVLocs, *DAG.getContext());

  SDValue Flag;

  CCInfo.AnalyzeReturn(Outs, RetCC_PTX);

  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {

    CCValAssign& VA  = RVLocs[i];

    assert(VA.isRegLoc() && "CCValAssign must be RegLoc");

    unsigned Reg = VA.getLocReg();

    DAG.getMachineFunction().getRegInfo().addLiveOut(Reg);

    Chain = DAG.getCopyToReg(Chain, dl, Reg, OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together,
    // avoiding something bad
    Flag = Chain.getValue(1);

    MFI->addRetReg(Reg);
  }

  if (Flag.getNode() == 0) {
    return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain);
  }
  else {
    return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain, Flag);
  }
}
예제 #3
0
SDNode *PTXDAGToDAGISel::SelectFrameIndex(SDNode *Node) {
  int FI = cast<FrameIndexSDNode>(Node)->getIndex();
  //dbgs() << "Selecting FrameIndex at index " << FI << "\n";
  //SDValue TFI = CurDAG->getTargetFrameIndex(FI, Node->getValueType(0));

  PTXMachineFunctionInfo *MFI = MF->getInfo<PTXMachineFunctionInfo>();

  SDValue FrameSymbol = CurDAG->getTargetExternalSymbol(MFI->getFrameSymbol(FI),
                                                        Node->getValueType(0));

  return FrameSymbol.getNode();
}
bool PTXMFInfoExtract::runOnMachineFunction(MachineFunction &MF) {
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  // Generate list of all virtual registers used in this function
  for (unsigned i = 0; i < MRI.getNumVirtRegs(); ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
    MFI->addVirtualRegister(TRC, Reg);
  }

  return false;
}
예제 #5
0
SDValue PTXTargetLowering::
  LowerReturn(SDValue Chain,
              CallingConv::ID CallConv,
              bool isVarArg,
              const SmallVectorImpl<ISD::OutputArg> &Outs,
              const SmallVectorImpl<SDValue> &OutVals,
              DebugLoc dl,
              SelectionDAG &DAG) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention.");
    case CallingConv::PTX_Kernel:
      assert(Outs.size() == 0 && "Kernel must return void.");
      return DAG.getNode(PTXISD::EXIT, dl, MVT::Other, Chain);
    case CallingConv::PTX_Device:
      assert(Outs.size() <= 1 && "Can at most return one value.");
      break;
  }

  // PTX_Device

  // return void
  if (Outs.size() == 0)
    return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain);

  assert(Outs[0].VT == MVT::i32 && "Can return only basic types");

  SDValue Flag;
  unsigned reg = PTX::R0;

  MachineFunction &MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  MFI->setRetReg(reg);

  // If this is the first return lowered for this function, add the regs to the
  // liveout set for the function
  if (DAG.getMachineFunction().getRegInfo().liveout_empty())
    DAG.getMachineFunction().getRegInfo().addLiveOut(reg);

  // Copy the result values into the output registers
  Chain = DAG.getCopyToReg(Chain, dl, reg, OutVals[0], Flag);

  // Guarantee that all emitted copies are stuck together,
  // avoiding something bad
  Flag = Chain.getValue(1);

  return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain, Flag);
}
예제 #6
0
bool PTXMFInfoExtract::runOnMachineFunction(MachineFunction &MF) {
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  DEBUG(dbgs() << "******** PTX FUNCTION LOCAL VAR REG DEF ********\n");

  unsigned retreg = MFI->retReg();

  DEBUG(dbgs()
        << "PTX::NoRegister == " << PTX::NoRegister << "\n"
        << "PTX::NUM_TARGET_REGS == " << PTX::NUM_TARGET_REGS << "\n");

  DEBUG(for (unsigned reg = PTX::NoRegister + 1;
             reg < PTX::NUM_TARGET_REGS; ++reg)
          if (MRI.isPhysRegUsed(reg))
            dbgs() << "Used Reg: " << reg << "\n";);
예제 #7
0
SDValue PTXTargetLowering::
  LowerFormalArguments(SDValue Chain,
                       CallingConv::ID CallConv,
                       bool isVarArg,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl,
                       SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  MachineFunction &MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention");
      break;
    case CallingConv::PTX_Kernel:
      MFI->setKernel(true);
      break;
    case CallingConv::PTX_Device:
      MFI->setKernel(false);
      break;
  }

  // Make sure we don't add argument registers twice
  if (MFI->isDoneAddArg())
    llvm_unreachable("cannot add argument registers twice");

  // Reset argmap before allocation
  for (struct argmap_entry *i = argmap, *e = argmap + array_lengthof(argmap);
       i != e; ++ i)
    i->reset();

  for (int i = 0, e = Ins.size(); i != e; ++ i) {
    MVT::SimpleValueType VT = Ins[i].VT.SimpleTy;

    struct argmap_entry *entry = std::find(argmap,
                                           argmap + array_lengthof(argmap), VT);
    if (entry == argmap + array_lengthof(argmap))
      llvm_unreachable("Type of argument is not supported");

    if (MFI->isKernel() && entry->RC == PTX::PredsRegisterClass)
      llvm_unreachable("cannot pass preds to kernel");

    MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();

    unsigned preg = *++(entry->loc); // allocate start from register 1
    unsigned vreg = RegInfo.createVirtualRegister(entry->RC);
    RegInfo.addLiveIn(preg, vreg);

    MFI->addArgReg(preg);

    SDValue inval;
    if (MFI->isKernel())
      inval = DAG.getNode(PTXISD::READ_PARAM, dl, VT, Chain,
                          DAG.getTargetConstant(i, MVT::i32));
    else
      inval = DAG.getCopyFromReg(Chain, dl, vreg, VT);
    InVals.push_back(inval);
  }

  MFI->doneAddArg();

  return Chain;
}
예제 #8
0
SDValue PTXTargetLowering::
  LowerFormalArguments(SDValue Chain,
                       CallingConv::ID CallConv,
                       bool isVarArg,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl,
                       SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  MachineFunction &MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention");
      break;
    case CallingConv::PTX_Kernel:
      MFI->setKernel(true);
      break;
    case CallingConv::PTX_Device:
      MFI->setKernel(false);
      break;
  }

  if (MFI->isKernel()) {
    // For kernel functions, we just need to emit the proper READ_PARAM ISDs
    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {

      assert(Ins[i].VT != MVT::i1 && "Kernels cannot take pred operands");

      SDValue ArgValue = DAG.getNode(PTXISD::READ_PARAM, dl, Ins[i].VT, Chain,
                                     DAG.getTargetConstant(i, MVT::i32));
      InVals.push_back(ArgValue);

      // Instead of storing a physical register in our argument list, we just
      // store the total size of the parameter, in bits.  The ASM printer
      // knows how to process this.
      MFI->addArgReg(Ins[i].VT.getStoreSizeInBits());
    }
  }
  else {
    // For device functions, we use the PTX calling convention to do register
    // assignments then create CopyFromReg ISDs for the allocated registers

    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), ArgLocs,
                   *DAG.getContext());

    CCInfo.AnalyzeFormalArguments(Ins, CC_PTX);

    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {

      CCValAssign&         VA    = ArgLocs[i];
      EVT                  RegVT = VA.getLocVT();
      TargetRegisterClass* TRC   = 0;

      assert(VA.isRegLoc() && "CCValAssign must be RegLoc");

      // Determine which register class we need
      if (RegVT == MVT::i1) {
        TRC = PTX::RegPredRegisterClass;
      }
      else if (RegVT == MVT::i16) {
        TRC = PTX::RegI16RegisterClass;
      }
      else if (RegVT == MVT::i32) {
        TRC = PTX::RegI32RegisterClass;
      }
      else if (RegVT == MVT::i64) {
        TRC = PTX::RegI64RegisterClass;
      }
      else if (RegVT == MVT::f32) {
        TRC = PTX::RegF32RegisterClass;
      }
      else if (RegVT == MVT::f64) {
        TRC = PTX::RegF64RegisterClass;
      }
      else {
        llvm_unreachable("Unknown parameter type");
      }

      unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);
      MF.getRegInfo().addLiveIn(VA.getLocReg(), Reg);

      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
      InVals.push_back(ArgValue);

      MFI->addArgReg(VA.getLocReg());
    }
  }

  return Chain;
}
SDValue
PTXTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
                             CallingConv::ID CallConv, bool isVarArg,
                             bool &isTailCall,
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
                             const SmallVectorImpl<SDValue> &OutVals,
                             const SmallVectorImpl<ISD::InputArg> &Ins,
                             DebugLoc dl, SelectionDAG &DAG,
                             SmallVectorImpl<SDValue> &InVals) const {

  MachineFunction& MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  PTXParamManager &PM = MFI->getParamManager();

  assert(getTargetMachine().getSubtarget<PTXSubtarget>().callsAreHandled() &&
         "Calls are not handled for the target device");

  std::vector<SDValue> Ops;
  // The layout of the ops will be [Chain, #Ins, Ins, Callee, #Outs, Outs]
  Ops.resize(Outs.size() + Ins.size() + 4);

  Ops[0] = Chain;

  // Identify the callee function
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
  assert(cast<Function>(GV)->getCallingConv() == CallingConv::PTX_Device &&
         "PTX function calls must be to PTX device functions");
  Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
  Ops[Ins.size()+2] = Callee;

  // Generate STORE_PARAM nodes for each function argument.  In PTX, function
  // arguments are explicitly stored into .param variables and passed as
  // arguments. There is no register/stack-based calling convention in PTX.
  Ops[Ins.size()+3] = DAG.getTargetConstant(OutVals.size(), MVT::i32);
  for (unsigned i = 0; i != OutVals.size(); ++i) {
    unsigned Size = OutVals[i].getValueType().getSizeInBits();
    unsigned Param = PM.addLocalParam(Size);
    const std::string &ParamName = PM.getParamName(Param);
    SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
                                                     MVT::Other);
    Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain,
                        ParamValue, OutVals[i]);
    Ops[i+Ins.size()+4] = ParamValue;
  }

  std::vector<SDValue> InParams;

  // Generate list of .param variables to hold the return value(s).
  Ops[1] = DAG.getTargetConstant(Ins.size(), MVT::i32);
  for (unsigned i = 0; i < Ins.size(); ++i) {
    unsigned Size = Ins[i].VT.getStoreSizeInBits();
    unsigned Param = PM.addLocalParam(Size);
    const std::string &ParamName = PM.getParamName(Param);
    SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
                                                     MVT::Other);
    Ops[i+2] = ParamValue;
    InParams.push_back(ParamValue);
  }

  Ops[0] = Chain;

  // Create the CALL node.
  Chain = DAG.getNode(PTXISD::CALL, dl, MVT::Other, &Ops[0], Ops.size());

  // Create the LOAD_PARAM nodes that retrieve the function return value(s).
  for (unsigned i = 0; i < Ins.size(); ++i) {
    SDValue Load = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain,
                               InParams[i]);
    InVals.push_back(Load);
  }

  return Chain;
}
SDValue PTXTargetLowering::
  LowerReturn(SDValue Chain,
              CallingConv::ID CallConv,
              bool isVarArg,
              const SmallVectorImpl<ISD::OutputArg> &Outs,
              const SmallVectorImpl<SDValue> &OutVals,
              DebugLoc dl,
              SelectionDAG &DAG) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention.");
    case CallingConv::PTX_Kernel:
      assert(Outs.size() == 0 && "Kernel must return void.");
      return DAG.getNode(PTXISD::EXIT, dl, MVT::Other, Chain);
    case CallingConv::PTX_Device:
      assert(Outs.size() <= 1 && "Can at most return one value.");
      break;
  }

  MachineFunction& MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  PTXParamManager &PM = MFI->getParamManager();

  SDValue Flag;
  const PTXSubtarget& ST = getTargetMachine().getSubtarget<PTXSubtarget>();

  if (ST.useParamSpaceForDeviceArgs()) {
    assert(Outs.size() < 2 && "Device functions can return at most one value");

    if (Outs.size() == 1) {
      unsigned ParamSize = OutVals[0].getValueType().getSizeInBits();
      unsigned Param = PM.addReturnParam(ParamSize);
      const std::string &ParamName = PM.getParamName(Param);
      SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
                                                       MVT::Other);
      Chain = DAG.getNode(PTXISD::STORE_PARAM, dl, MVT::Other, Chain,
                          ParamValue, OutVals[0]);
    }
  } else {
    for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
      EVT                  RegVT = Outs[i].VT;
      TargetRegisterClass* TRC = 0;

      // Determine which register class we need
      if (RegVT == MVT::i1) {
        TRC = PTX::RegPredRegisterClass;
      }
      else if (RegVT == MVT::i16) {
        TRC = PTX::RegI16RegisterClass;
      }
      else if (RegVT == MVT::i32) {
        TRC = PTX::RegI32RegisterClass;
      }
      else if (RegVT == MVT::i64) {
        TRC = PTX::RegI64RegisterClass;
      }
      else if (RegVT == MVT::f32) {
        TRC = PTX::RegF32RegisterClass;
      }
      else if (RegVT == MVT::f64) {
        TRC = PTX::RegF64RegisterClass;
      }
      else {
        llvm_unreachable("Unknown parameter type");
      }

      unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);

      SDValue Copy = DAG.getCopyToReg(Chain, dl, Reg, OutVals[i]/*, Flag*/);
      SDValue OutReg = DAG.getRegister(Reg, RegVT);

      Chain = DAG.getNode(PTXISD::WRITE_PARAM, dl, MVT::Other, Copy, OutReg);

      MFI->addRetReg(Reg);
    }
  }

  if (Flag.getNode() == 0) {
    return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain);
  }
  else {
    return DAG.getNode(PTXISD::RET, dl, MVT::Other, Chain, Flag);
  }
}
SDValue PTXTargetLowering::
  LowerFormalArguments(SDValue Chain,
                       CallingConv::ID CallConv,
                       bool isVarArg,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl,
                       SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  MachineFunction &MF = DAG.getMachineFunction();
  const PTXSubtarget& ST = getTargetMachine().getSubtarget<PTXSubtarget>();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  PTXParamManager &PM = MFI->getParamManager();

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention");
      break;
    case CallingConv::PTX_Kernel:
      MFI->setKernel(true);
      break;
    case CallingConv::PTX_Device:
      MFI->setKernel(false);
      break;
  }

  // We do one of two things here:
  // IsKernel || SM >= 2.0  ->  Use param space for arguments
  // SM < 2.0               ->  Use registers for arguments
  if (MFI->isKernel() || ST.useParamSpaceForDeviceArgs()) {
    // We just need to emit the proper LOAD_PARAM ISDs
    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
      assert((!MFI->isKernel() || Ins[i].VT != MVT::i1) &&
             "Kernels cannot take pred operands");

      unsigned ParamSize = Ins[i].VT.getStoreSizeInBits();
      unsigned Param = PM.addArgumentParam(ParamSize);
      const std::string &ParamName = PM.getParamName(Param);
      SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
                                                       MVT::Other);
      SDValue ArgValue = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain,
                                     ParamValue);
      InVals.push_back(ArgValue);
    }
  }
  else {
    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
      EVT                  RegVT = Ins[i].VT;
      TargetRegisterClass* TRC   = getRegClassFor(RegVT);

      // Use a unique index in the instruction to prevent instruction folding.
      // Yes, this is a hack.
      SDValue Index = DAG.getTargetConstant(i, MVT::i32);
      unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);
      SDValue ArgValue = DAG.getNode(PTXISD::READ_PARAM, dl, RegVT, Chain,
                                     Index);

      InVals.push_back(ArgValue);

      MFI->addArgReg(Reg);
    }
  }

  return Chain;
}