예제 #1
0
void PusherBoris::operator() (Particles &particles, SmileiMPI* smpi, int istart, int iend, int ithread)
{
    std::vector<LocalFields> *Epart = &(smpi->dynamics_Epart[ithread]);
    std::vector<LocalFields> *Bpart = &(smpi->dynamics_Bpart[ithread]);
    std::vector<double> *gf = &(smpi->dynamics_gf[ithread]);

    double charge_over_mass_ ;
    double umx, umy, umz, upx, upy, upz;
    double alpha, inv_det_T, Tx, Ty, Tz, Tx2, Ty2, Tz2;
    double TxTy, TyTz, TzTx;
    double pxsm, pysm, pzsm;

    for (int ipart=istart ; ipart<iend; ipart++ ) {
        charge_over_mass_ = static_cast<double>(particles.charge(ipart))*one_over_mass_;
        //(*this)(particles, ipart, (*Epart)[ipart], (*Bpart)[ipart] , (*gf)[ipart]);
        umx = particles.momentum(0, ipart) + charge_over_mass_*(*Epart)[ipart].x*dts2;
        umy = particles.momentum(1, ipart) + charge_over_mass_*(*Epart)[ipart].y*dts2;
        umz = particles.momentum(2, ipart) + charge_over_mass_*(*Epart)[ipart].z*dts2;
        (*gf)[ipart]  = sqrt( 1.0 + umx*umx + umy*umy + umz*umz );

        // Rotation in the magnetic field
        alpha = charge_over_mass_*dts2/(*gf)[ipart];
        Tx    = alpha * (*Bpart)[ipart].x;
        Ty    = alpha * (*Bpart)[ipart].y;
        Tz    = alpha * (*Bpart)[ipart].z;
        Tx2   = Tx*Tx;
        Ty2   = Ty*Ty;
        Tz2   = Tz*Tz;
        TxTy  = Tx*Ty;
        TyTz  = Ty*Tz;
        TzTx  = Tz*Tx;
        inv_det_T = 1.0/(1.0+Tx2+Ty2+Tz2);

        upx = (  (1.0+Tx2-Ty2-Tz2)* umx  +      2.0*(TxTy+Tz)* umy  +      2.0*(TzTx-Ty)* umz  )*inv_det_T;
        upy = (      2.0*(TxTy-Tz)* umx  +  (1.0-Tx2+Ty2-Tz2)* umy  +      2.0*(TyTz+Tx)* umz  )*inv_det_T;
        upz = (      2.0*(TzTx+Ty)* umx  +      2.0*(TyTz-Tx)* umy  +  (1.0-Tx2-Ty2+Tz2)* umz  )*inv_det_T;

        // Half-acceleration in the electric field
        pxsm = upx + charge_over_mass_*(*Epart)[ipart].x*dts2;
        pysm = upy + charge_over_mass_*(*Epart)[ipart].y*dts2;
        pzsm = upz + charge_over_mass_*(*Epart)[ipart].z*dts2;
        (*gf)[ipart] = sqrt( 1.0 + pxsm*pxsm + pysm*pysm + pzsm*pzsm );

        particles.momentum(0, ipart) = pxsm;
        particles.momentum(1, ipart) = pysm;
        particles.momentum(2, ipart) = pzsm;

        // Move the particle
        for ( int i = 0 ; i<nDim_ ; i++ ) 
            particles.position(i, ipart)     += dt*particles.momentum(i, ipart)/(*gf)[ipart];
    }
}
void PusherPonderomotivePositionBorisV::operator()( Particles &particles, SmileiMPI *smpi, int istart, int iend, int ithread, int ipart_ref )
{
/////////// not vectorized

    std::vector<double> *Phi_mpart     = &( smpi->dynamics_PHI_mpart[ithread] );
    std::vector<double> *GradPhi_mpart = &( smpi->dynamics_GradPHI_mpart[ithread] );
    
    double charge_sq_over_mass_dts4, charge_over_mass_sq;
    double gamma0, gamma0_sq, gamma_ponderomotive;
    double pxsm, pysm, pzsm;
    
    //int* cell_keys;
    
    double *momentum[3];
    for( int i = 0 ; i<3 ; i++ ) {
        momentum[i] =  &( particles.momentum( i, 0 ) );
    }
    double *position[3];
    for( int i = 0 ; i<nDim_ ; i++ ) {
        position[i] =  &( particles.position( i, 0 ) );
    }
#ifdef  __DEBUG
    double *position_old[3];
    for( int i = 0 ; i<nDim_ ; i++ ) {
        position_old[i] =  &( particles.position_old( i, 0 ) );
    }
#endif
    
    short *charge = &( particles.charge( 0 ) );
    
    int nparts = GradPhi_mpart->size()/3;
    
    
    double *Phi_m       = &( ( *Phi_mpart )[0*nparts] );
    double *GradPhi_mx = &( ( *GradPhi_mpart )[0*nparts] );
    double *GradPhi_my = &( ( *GradPhi_mpart )[1*nparts] );
    double *GradPhi_mz = &( ( *GradPhi_mpart )[2*nparts] );
    
    //particles.cell_keys.resize(nparts);
    //cell_keys = &( particles.cell_keys[0]);
    
    #pragma omp simd
    for( int ipart=istart ; ipart<iend; ipart++ ) { // begin loop on particles
    
        // ! ponderomotive force is proportional to charge squared and the field is divided by 4 instead of 2
        charge_sq_over_mass_dts4 = ( double )( charge[ipart] )*( double )( charge[ipart] )*one_over_mass_*dts4;
        // (charge over mass)^2
        charge_over_mass_sq      = ( double )( charge[ipart] )*one_over_mass_*( charge[ipart] )*one_over_mass_;
        
        // compute initial ponderomotive gamma
        gamma0_sq = 1. + momentum[0][ipart]*momentum[0][ipart] + momentum[1][ipart]*momentum[1][ipart] + momentum[2][ipart]*momentum[2][ipart] + ( *( Phi_m+ipart-ipart_ref ) )*charge_over_mass_sq;
        gamma0    = sqrt( gamma0_sq ) ;
        
        // ponderomotive force for ponderomotive gamma advance (Grad Phi is interpolated in time, hence the division by 2)
        pxsm = charge_sq_over_mass_dts4 * ( *( GradPhi_mx+ipart-ipart_ref ) ) / gamma0_sq ;
        pysm = charge_sq_over_mass_dts4 * ( *( GradPhi_my+ipart-ipart_ref ) ) / gamma0_sq ;
        pzsm = charge_sq_over_mass_dts4 * ( *( GradPhi_mz+ipart-ipart_ref ) ) / gamma0_sq ;
        
        // update of gamma ponderomotive
        gamma_ponderomotive = gamma0 + ( pxsm*momentum[0][ipart]+pysm*momentum[1][ipart]+pzsm*momentum[2][ipart] ) ;
        
        // Move the particle
#ifdef  __DEBUG
        for( int i = 0 ; i<nDim_ ; i++ ) {
            position_old[i][ipart] = position[i][ipart];
        }
#endif
        for( int i = 0 ; i<nDim_ ; i++ ) {
            position[i][ipart]     += dt*momentum[i][ipart]/gamma_ponderomotive;
        }
        
    } // end loop on particles
    
    //#pragma omp simd
    //for (int ipart=0 ; ipart<nparts; ipart++ ) {
    //
    //    for ( int i = 0 ; i<nDim_ ; i++ ){
    //        cell_keys[ipart] *= nspace[i];
    //        cell_keys[ipart] += round( (position[i][ipart]-min_loc_vec[i]) * dx_inv_[i] );
    //    }
    //
    //} // end loop on particles
    
    
}
예제 #3
0
// ---------------------------------------------------------------------------------------------------------------------
//! Project current densities : main projector
// ---------------------------------------------------------------------------------------------------------------------
void Projector2D4Order::currents( double *Jx, double *Jy, double *Jz, Particles &particles, unsigned int ipart, double invgf, int *iold, double *deltaold )
{
    int nparts = particles.size();
    
    // -------------------------------------
    // Variable declaration & initialization
    // -------------------------------------
    
    int iloc;
    // (x,y,z) components of the current density for the macro-particle
    double charge_weight = inv_cell_volume * ( double )( particles.charge( ipart ) )*particles.weight( ipart );
    double crx_p = charge_weight*dx_ov_dt;
    double cry_p = charge_weight*dy_ov_dt;
    double crz_p = charge_weight*one_third*particles.momentum( 2, ipart )*invgf;
    
    // variable declaration
    double xpn, ypn;
    double delta, delta2, delta3, delta4;
    // arrays used for the Esirkepov projection method
    double  Sx0[7], Sx1[7], Sy0[7], Sy1[7], DSx[7], DSy[7], tmpJx[7];
    
    for( unsigned int i=0; i<7; i++ ) {
        Sx1[i] = 0.;
        Sy1[i] = 0.;
        tmpJx[i] = 0.;
    }
    Sx0[0] = 0.;
    Sx0[6] = 0.;
    Sy0[0] = 0.;
    Sy0[6] = 0.;
    
    // --------------------------------------------------------
    // Locate particles & Calculate Esirkepov coef. S, DS and W
    // --------------------------------------------------------
    
    // locate the particle on the primal grid at former time-step & calculate coeff. S0
    delta = deltaold[0*nparts];
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    
    Sx0[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx0[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx0[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sx0[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx0[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    delta = deltaold[1*nparts];
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    
    Sy0[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy0[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy0[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sy0[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy0[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    
    // locate the particle on the primal grid at current time-step & calculate coeff. S1
    xpn = particles.position( 0, ipart ) * dx_inv_;
    int ip = round( xpn );
    int ipo = iold[0*nparts];
    int ip_m_ipo = ip-ipo-i_domain_begin;
    delta  = xpn - ( double )ip;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    
    Sx1[ip_m_ipo+1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx1[ip_m_ipo+2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[ip_m_ipo+3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sx1[ip_m_ipo+4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[ip_m_ipo+5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    ypn = particles.position( 1, ipart ) * dy_inv_;
    int jp = round( ypn );
    int jpo = iold[1*nparts];
    int jp_m_jpo = jp-jpo-j_domain_begin;
    delta  = ypn - ( double )jp;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    
    Sy1[jp_m_jpo+1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy1[jp_m_jpo+2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[jp_m_jpo+3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sy1[jp_m_jpo+4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[jp_m_jpo+5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    for( unsigned int i=0; i < 7; i++ ) {
        DSx[i] = Sx1[i] - Sx0[i];
        DSy[i] = Sy1[i] - Sy0[i];
    }
    
    // calculate Esirkepov coeff. Wx, Wy, Wz when used
    double tmp, tmp2, tmp3, tmpY;
    //Do not compute useless weights.
    // ------------------------------------------------
    // Local current created by the particle
    // calculate using the charge conservation equation
    // ------------------------------------------------
    
    // ---------------------------
    // Calculate the total current
    // ---------------------------
    ipo -= 3; //This minus 3 come from the order 4 scheme, based on a 7 points stencil from -3 to +3.
    jpo -= 3;
    // i =0
    {
        iloc = ipo*nprimy+jpo;
        tmp2 = 0.5*Sx1[0];
        tmp3 =     Sx1[0];
        Jz[iloc]  += crz_p * ( Sy1[0]*tmp3 );
        tmp = 0;
        tmpY = Sx0[0] + 0.5*DSx[0];
        for( unsigned int j=1 ; j<7 ; j++ ) {
            tmp -= cry_p * DSy[j-1] * tmpY;
            Jy[iloc+j+ipo]  += tmp; //Because size of Jy in Y is nprimy+1.
            Jz[iloc+j]  += crz_p * ( Sy0[j]*tmp2 + Sy1[j]*tmp3 );
        }
    }//i
    
    for( unsigned int i=1 ; i<7 ; i++ ) {
        iloc = ( i+ipo )*nprimy+jpo;
        tmpJx[0] -= crx_p *  DSx[i-1] * ( 0.5*DSy[0] );
        Jx[iloc]  += tmpJx[0];
        tmp2 = 0.5*Sx1[i] + Sx0[i];
        tmp3 = 0.5*Sx0[i] + Sx1[i];
        Jz[iloc]  += crz_p * ( Sy1[0]*tmp3 );
        tmp = 0;
        tmpY = Sx0[i] + 0.5*DSx[i];
        for( unsigned int j=1 ; j<7 ; j++ ) {
            tmpJx[j] -= crx_p * DSx[i-1] * ( Sy0[j] + 0.5*DSy[j] );
            Jx[iloc+j]  += tmpJx[j];
            tmp -= cry_p * DSy[j-1] * tmpY;
            Jy[iloc+j+i+ipo]  += tmp; //Because size of Jy in Y is nprimy+1.
            Jz[iloc+j]  += crz_p * ( Sy0[j]*tmp2 + Sy1[j]*tmp3 );
        }
    }//i
    
}
예제 #4
0
// ---------------------------------------------------------------------------------------------------------------------
//! Project charge : frozen & diagFields timstep
// ---------------------------------------------------------------------------------------------------------------------
void Projector2D4Order::basic( double *rhoj, Particles &particles, unsigned int ipart, unsigned int type )
{
    //Warning : this function is used for frozen species or initialization only and doesn't use the standard scheme.
    //rho type = 0
    //Jx type = 1
    //Jy type = 2
    //Jz type = 3
    
    int iloc;
    int ny( nprimy );
    // (x,y,z) components of the current density for the macro-particle
    double charge_weight = inv_cell_volume * ( double )( particles.charge( ipart ) )*particles.weight( ipart );
    
    if( type > 0 ) {
        charge_weight *= 1./sqrt( 1.0 + particles.momentum( 0, ipart )*particles.momentum( 0, ipart )
                                  + particles.momentum( 1, ipart )*particles.momentum( 1, ipart )
                                  + particles.momentum( 2, ipart )*particles.momentum( 2, ipart ) );
                                  
        if( type == 1 ) {
            charge_weight *= particles.momentum( 0, ipart );
        } else if( type == 2 ) {
            charge_weight *= particles.momentum( 1, ipart );
            ny ++;
        } else {
            charge_weight *= particles.momentum( 2, ipart );
        }
    }
    
    // variable declaration
    double xpn, ypn;
    double delta, delta2, delta3, delta4;
    // arrays used for the Esirkepov projection method
    double  Sx1[7], Sy1[7];
    
    for( unsigned int i=0; i<7; i++ ) {
        Sx1[i] = 0.;
        Sy1[i] = 0.;
    }
    
    // --------------------------------------------------------
    // Locate particles & Calculate Esirkepov coef. S, DS and W
    // --------------------------------------------------------
    // locate the particle on the primal grid at current time-step & calculate coeff. S1
    xpn = particles.position( 0, ipart ) * dx_inv_;
    int ip        = round( xpn + 0.5 * ( type==1 ) );                       // index of the central node
    delta  = xpn - ( double )ip;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    
    Sx1[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sx1[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sx1[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sx1[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    ypn = particles.position( 1, ipart ) * dy_inv_;
    int jp = round( ypn + 0.5*( type==2 ) );
    delta  = ypn - ( double )jp;
    delta2 = delta*delta;
    delta3 = delta2*delta;
    delta4 = delta3*delta;
    
    Sy1[1] = dble_1_ov_384   - dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 - dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    Sy1[2] = dble_19_ov_96   - dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 + dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[3] = dble_115_ov_192 - dble_5_ov_8   * delta2 + dble_1_ov_4  * delta4;
    Sy1[4] = dble_19_ov_96   + dble_11_ov_24 * delta  + dble_1_ov_4  * delta2 - dble_1_ov_6  * delta3 - dble_1_ov_6  * delta4;
    Sy1[5] = dble_1_ov_384   + dble_1_ov_48  * delta  + dble_1_ov_16 * delta2 + dble_1_ov_12 * delta3 + dble_1_ov_24 * delta4;
    
    // ---------------------------
    // Calculate the total current
    // ---------------------------
    ip -= i_domain_begin + 3;
    jp -= j_domain_begin + 3;
    
    for( unsigned int i=0 ; i<7 ; i++ ) {
        iloc = ( i+ip )*ny+jp;
        for( unsigned int j=0 ; j<7 ; j++ ) {
            rhoj[iloc+j] += charge_weight * Sx1[i]*Sy1[j];
        }
    }//i
}
예제 #5
0
// ---------------------------------------------------------------------------------------------------------------------
//! Project current densities : main projector
// ---------------------------------------------------------------------------------------------------------------------
void Projector1D4Order::currents( double *Jx, double *Jy, double *Jz, Particles &particles, unsigned int ipart, double invgf, int *iold, double *delta )
{
    // Declare local variables
    int ipo, ip;
    int ip_m_ipo;
    double charge_weight = inv_cell_volume * ( double )( particles.charge( ipart ) )*particles.weight( ipart );
    double xjn, xj_m_xipo, xj_m_xipo2, xj_m_xipo3, xj_m_xipo4, xj_m_xip, xj_m_xip2, xj_m_xip3, xj_m_xip4;
    double crx_p = charge_weight*dx_ov_dt;                // current density for particle moving in the x-direction
    double cry_p = charge_weight*particles.momentum( 1, ipart )*invgf;  // current density in the y-direction of the macroparticle
    double crz_p = charge_weight*particles.momentum( 2, ipart )*invgf;  // current density allow the y-direction of the macroparticle
    double S0[7], S1[7], Wl[7], Wt[7], Jx_p[7];            // arrays used for the Esirkepov projection method
    // Initialize variables
    for( unsigned int i=0; i<7; i++ ) {
        S0[i]=0.;
        S1[i]=0.;
        Wl[i]=0.;
        Wt[i]=0.;
        Jx_p[i]=0.;
    }//i
    
    
    // Locate particle old position on the primal grid
    xj_m_xipo  = *delta;                   // normalized distance to the nearest grid point
    xj_m_xipo2 = xj_m_xipo  * xj_m_xipo;                 // square of the normalized distance to the nearest grid point
    xj_m_xipo3 = xj_m_xipo2 * xj_m_xipo;              // cube of the normalized distance to the nearest grid point
    xj_m_xipo4 = xj_m_xipo3 * xj_m_xipo;              // 4th power of the normalized distance to the nearest grid point
    
    // Locate particle new position on the primal grid
    xjn       = particles.position( 0, ipart ) * dx_inv_;
    ip        = round( xjn );                         // index of the central node
    xj_m_xip  = xjn - ( double )ip;                   // normalized distance to the nearest grid point
    xj_m_xip2 = xj_m_xip  * xj_m_xip;                    // square of the normalized distance to the nearest grid point
    xj_m_xip3 = xj_m_xip2 * xj_m_xip;                 // cube of the normalized distance to the nearest grid point
    xj_m_xip4 = xj_m_xip3 * xj_m_xip;                 // 4th power of the normalized distance to the nearest grid point
    
    
    // coefficients 4th order interpolation on 5 nodes
    
    S0[1] = dble_1_ov_384   - dble_1_ov_48  * xj_m_xipo  + dble_1_ov_16 * xj_m_xipo2 - dble_1_ov_12 * xj_m_xipo3 + dble_1_ov_24 * xj_m_xipo4;
    S0[2] = dble_19_ov_96   - dble_11_ov_24 * xj_m_xipo  + dble_1_ov_4 * xj_m_xipo2  + dble_1_ov_6  * xj_m_xipo3 - dble_1_ov_6  * xj_m_xipo4;
    S0[3] = dble_115_ov_192 - dble_5_ov_8   * xj_m_xipo2 + dble_1_ov_4 * xj_m_xipo4;
    S0[4] = dble_19_ov_96   + dble_11_ov_24 * xj_m_xipo  + dble_1_ov_4 * xj_m_xipo2  - dble_1_ov_6  * xj_m_xipo3 - dble_1_ov_6  * xj_m_xipo4;
    S0[5] = dble_1_ov_384   + dble_1_ov_48  * xj_m_xipo  + dble_1_ov_16 * xj_m_xipo2 + dble_1_ov_12 * xj_m_xipo3 + dble_1_ov_24 * xj_m_xipo4;
    
    // coefficients 2nd order interpolation on 5 nodes
    ipo        = *iold;                          // index of the central node
    ip_m_ipo = ip-ipo-index_domain_begin;
    
    S1[ip_m_ipo+1] = dble_1_ov_384   - dble_1_ov_48  * xj_m_xip  + dble_1_ov_16 * xj_m_xip2 - dble_1_ov_12 * xj_m_xip3 + dble_1_ov_24 * xj_m_xip4;
    S1[ip_m_ipo+2] = dble_19_ov_96   - dble_11_ov_24 * xj_m_xip  + dble_1_ov_4 * xj_m_xip2  + dble_1_ov_6  * xj_m_xip3 - dble_1_ov_6  * xj_m_xip4;
    S1[ip_m_ipo+3] = dble_115_ov_192 - dble_5_ov_8   * xj_m_xip2 + dble_1_ov_4 * xj_m_xip4;
    S1[ip_m_ipo+4] = dble_19_ov_96   + dble_11_ov_24 * xj_m_xip  + dble_1_ov_4 * xj_m_xip2  - dble_1_ov_6  * xj_m_xip3 - dble_1_ov_6  * xj_m_xip4;
    S1[ip_m_ipo+5] = dble_1_ov_384   + dble_1_ov_48  * xj_m_xip  + dble_1_ov_16 * xj_m_xip2 + dble_1_ov_12 * xj_m_xip3 + dble_1_ov_24 * xj_m_xip4;
    
    // coefficients used in the Esirkepov method
    for( unsigned int i=0; i<7; i++ ) {
        Wl[i] = S0[i] - S1[i];           // for longitudinal current (x)
        Wt[i] = 0.5 * ( S0[i] + S1[i] ); // for transverse currents (y,z)
    }//i
    
    // local current created by the particle
    // calculate using the charge conservation equation
    for( unsigned int i=1; i<7; i++ ) {
        Jx_p[i] = Jx_p[i-1] + crx_p * Wl[i-1];
    }
    
    ipo -= 3 ;
    
    // 4th order projection for the total currents & charge density
    // At the 4th order, oversize = 3.
    for( unsigned int i=0; i<7; i++ ) {
        Jx[i  + ipo]  += Jx_p[i];
        Jy[i  + ipo]  += cry_p * Wt[i];
        Jz[i  + ipo]  += crz_p * Wt[i];
    }//i
    
}
예제 #6
0
// ---------------------------------------------------------------------------------------------------------------------
//! Project charge : frozen & diagFields timstep
// ---------------------------------------------------------------------------------------------------------------------
void Projector1D4Order::basic( double *rhoj, Particles &particles, unsigned int ipart, unsigned int type )
{

    //Warning : this function is used for frozen species or initialization only and doesn't use the standard scheme.
    //rho type = 0
    //Jx type = 1
    //Jy type = 2
    //Jz type = 3
    
    
    // Declare local variables
    //int ipo, ip, iloc;
    int ip;
    //int ip_m_ipo;
    double charge_weight = inv_cell_volume * ( double )( particles.charge( ipart ) )*particles.weight( ipart );
    double xjn, xj_m_xip, xj_m_xip2, xj_m_xip3, xj_m_xip4;
    double S1[7];            // arrays used for the Esirkepov projection method
    // Initialize variables
    for( unsigned int i=0; i<7; i++ ) {
        S1[i]=0.;
    }//i
    
    if( type > 0 ) {
        charge_weight *= 1./sqrt( 1.0 + particles.momentum( 0, ipart )*particles.momentum( 0, ipart )
                                  + particles.momentum( 1, ipart )*particles.momentum( 1, ipart )
                                  + particles.momentum( 2, ipart )*particles.momentum( 2, ipart ) );
                                  
        if( type == 1 ) {
            charge_weight *= particles.momentum( 0, ipart );
        } else if( type == 2 ) {
            charge_weight *= particles.momentum( 1, ipart );
        } else {
            charge_weight *= particles.momentum( 2, ipart );
        }
    }
    
    // Locate particle new position on the primal grid
    xjn       = particles.position( 0, ipart ) * dx_inv_;
    ip        = round( xjn + 0.5 * ( type==1 ) );                       // index of the central node
    xj_m_xip  = xjn - ( double )ip;                   // normalized distance to the nearest grid point
    xj_m_xip2 = xj_m_xip  * xj_m_xip;                    // square of the normalized distance to the nearest grid point
    xj_m_xip3 = xj_m_xip2 * xj_m_xip;                 // cube of the normalized distance to the nearest grid point
    xj_m_xip4 = xj_m_xip3 * xj_m_xip;                 // 4th power of the normalized distance to the nearest grid point
    
    // coefficients 2nd order interpolation on 5 nodes
    //ip_m_ipo = ip-ipo;
    
    S1[1] = dble_1_ov_384   - dble_1_ov_48  * xj_m_xip  + dble_1_ov_16 * xj_m_xip2 - dble_1_ov_12 * xj_m_xip3 + dble_1_ov_24 * xj_m_xip4;
    S1[2] = dble_19_ov_96   - dble_11_ov_24 * xj_m_xip  + dble_1_ov_4 * xj_m_xip2  + dble_1_ov_6  * xj_m_xip3 - dble_1_ov_6  * xj_m_xip4;
    S1[3] = dble_115_ov_192 - dble_5_ov_8   * xj_m_xip2 + dble_1_ov_4 * xj_m_xip4;
    S1[4] = dble_19_ov_96   + dble_11_ov_24 * xj_m_xip  + dble_1_ov_4 * xj_m_xip2  - dble_1_ov_6  * xj_m_xip3 - dble_1_ov_6  * xj_m_xip4;
    S1[5] = dble_1_ov_384   + dble_1_ov_48  * xj_m_xip  + dble_1_ov_16 * xj_m_xip2 + dble_1_ov_12 * xj_m_xip3 + dble_1_ov_24 * xj_m_xip4;
    
    ip -= index_domain_begin + 3 ;
    
    // 4th order projection for the charge density
    // At the 4th order, oversize = 3.
    for( unsigned int i=0; i<7; i++ ) {
        //iloc = i  + ipo - 3;
        rhoj[i  + ip ] += charge_weight * S1[i];
    }//i
    
}
예제 #7
0
void PusherPonderomotiveBorisV::operator()( Particles &particles, SmileiMPI *smpi, int istart, int iend, int ithread, int ipart_ref )
{

    std::vector<double> *Epart       = &( smpi->dynamics_Epart[ithread] );
    std::vector<double> *Bpart       = &( smpi->dynamics_Bpart[ithread] );
    std::vector<double> *GradPhipart = &( smpi->dynamics_GradPHIpart[ithread] );
    std::vector<double> *dynamics_inv_gamma_ponderomotive = &( smpi->dynamics_inv_gamma_ponderomotive[ithread] );
    
    double charge_over_mass_dts2, charge_sq_over_mass_sq_dts4;
    double alpha, inv_det_T, Tx, Ty, Tz, Tx2, Ty2, Tz2;
    double TxTy, TyTz, TzTx;
    double one_ov_gamma_ponderomotive;
    
    double *momentum[3];
    for( int i = 0 ; i<3 ; i++ ) {
        momentum[i] =  &( particles.momentum( i, 0 ) );
    }
    
    short *charge = &( particles.charge( 0 ) );
    
    int nparts = Epart->size()/3;
    double *Ex       = &( ( *Epart )[0*nparts] );
    double *Ey       = &( ( *Epart )[1*nparts] );
    double *Ez       = &( ( *Epart )[2*nparts] );
    double *Bx       = &( ( *Bpart )[0*nparts] );
    double *By       = &( ( *Bpart )[1*nparts] );
    double *Bz       = &( ( *Bpart )[2*nparts] );
    double *GradPhix = &( ( *GradPhipart )[0*nparts] );
    double *GradPhiy = &( ( *GradPhipart )[1*nparts] );
    double *GradPhiz = &( ( *GradPhipart )[2*nparts] );
    double *inv_gamma_ponderomotive = &( ( *dynamics_inv_gamma_ponderomotive )[0*nparts] );
    
    double dcharge[nparts];
    #pragma omp simd
    for( int ipart=istart ; ipart<iend; ipart++ ) {
        dcharge[ipart] = ( double )( charge[ipart] );
    }
    
    #pragma omp simd
    for( int ipart=istart ; ipart<iend; ipart++ ) {
        double psm[3], um[3];
        
        charge_over_mass_dts2 = dcharge[ipart]*one_over_mass_*dts2;
        // ! ponderomotive force is proportional to charge squared and the field is divided by 4 instead of 2
        charge_sq_over_mass_sq_dts4 = ( double )( charge[ipart] )*( double )( charge[ipart] )*one_over_mass_*one_over_mass_*dts4;
        
        // ponderomotive gamma buffered from susceptibility
        one_ov_gamma_ponderomotive = ( *( inv_gamma_ponderomotive+ipart ) );
        
        // init Half-acceleration in the electric field and ponderomotive force
        psm[0] = charge_over_mass_dts2 * ( *( Ex+ipart-ipart_ref ) ) - charge_sq_over_mass_sq_dts4 * ( *( GradPhix+ipart-ipart_ref ) ) * one_ov_gamma_ponderomotive;
        psm[1] = charge_over_mass_dts2 * ( *( Ey+ipart-ipart_ref ) ) - charge_sq_over_mass_sq_dts4 * ( *( GradPhiy+ipart-ipart_ref ) ) * one_ov_gamma_ponderomotive;
        psm[2] = charge_over_mass_dts2 * ( *( Ez+ipart-ipart_ref ) ) - charge_sq_over_mass_sq_dts4 * ( *( GradPhiz+ipart-ipart_ref ) ) * one_ov_gamma_ponderomotive;
        
        um[0] = momentum[0][ipart] + psm[0];
        um[1] = momentum[1][ipart] + psm[1];
        um[2] = momentum[2][ipart] + psm[2];
        
        // Rotation in the magnetic field, using updated gamma ponderomotive
        alpha = charge_over_mass_dts2 * one_ov_gamma_ponderomotive;
        Tx    = alpha * ( *( Bx+ipart-ipart_ref ) );
        Ty    = alpha * ( *( By+ipart-ipart_ref ) );
        Tz    = alpha * ( *( Bz+ipart-ipart_ref ) );
        Tx2   = Tx*Tx;
        Ty2   = Ty*Ty;
        Tz2   = Tz*Tz;
        TxTy  = Tx*Ty;
        TyTz  = Ty*Tz;
        TzTx  = Tz*Tx;
        inv_det_T = 1.0/( 1.0+Tx2+Ty2+Tz2 );
        
        psm[0] += ( ( 1.0+Tx2-Ty2-Tz2 )* um[0]  +      2.0*( TxTy+Tz )* um[1]  +      2.0*( TzTx-Ty )* um[2] )*inv_det_T;
        psm[1] += ( 2.0*( TxTy-Tz )* um[0]  + ( 1.0-Tx2+Ty2-Tz2 )* um[1]  +      2.0*( TyTz+Tx )* um[2] )*inv_det_T;
        psm[2] += ( 2.0*( TzTx+Ty )* um[0]  +      2.0*( TyTz-Tx )* um[1]  + ( 1.0-Tx2-Ty2+Tz2 )* um[2] )*inv_det_T;
        
        momentum[0][ipart] = psm[0];
        momentum[1][ipart] = psm[1];
        momentum[2][ipart] = psm[2];
        
    }
    
}
예제 #8
0
void PusherBorisV::operator()( Particles &particles, SmileiMPI *smpi, int istart, int iend, int ithread, int ipart_ref )
{
    std::vector<double> *Epart = &( smpi->dynamics_Epart[ithread] );
    std::vector<double> *Bpart = &( smpi->dynamics_Bpart[ithread] );
    double *invgf = &( smpi->dynamics_invgf[ithread][0] );
    
    double charge_over_mass_dts2;
    double inv_det_T, Tx, Ty, Tz;
    double local_invgf;
    //int IX;
    
    //int* cell_keys;
    
    double *momentum[3];
    for( int i = 0 ; i<3 ; i++ ) {
        momentum[i] =  &( particles.momentum( i, 0 ) );
    }
    double *position[3];
    for( int i = 0 ; i<nDim_ ; i++ ) {
        position[i] =  &( particles.position( i, 0 ) );
    }
#ifdef  __DEBUG
    double *position_old[3];
    for( int i = 0 ; i<nDim_ ; i++ ) {
        position_old[i] =  &( particles.position_old( i, 0 ) );
    }
#endif
    short *charge = &( particles.charge( 0 ) );
    
    int nparts = Epart->size()/3;
    double *Ex = &( ( *Epart )[0*nparts] );
    double *Ey = &( ( *Epart )[1*nparts] );
    double *Ez = &( ( *Epart )[2*nparts] );
    double *Bx = &( ( *Bpart )[0*nparts] );
    double *By = &( ( *Bpart )[1*nparts] );
    double *Bz = &( ( *Bpart )[2*nparts] );
    
    //particles.cell_keys.resize(nparts);
    //cell_keys = &( particles.cell_keys[0]);
    
    double dcharge[nparts];
    #pragma omp simd
    for( int ipart=istart ; ipart<iend; ipart++ ) {
        dcharge[ipart] = ( double )( charge[ipart] );
    }
    
    #pragma omp simd
    for( int ipart=istart ; ipart<iend; ipart++ ) {
        double psm[3], um[3];
        
        charge_over_mass_dts2 = dcharge[ipart]*one_over_mass_*dts2;
        
        // init Half-acceleration in the electric field
        psm[0] = charge_over_mass_dts2*( *( Ex+ipart-ipart_ref ) );
        psm[1] = charge_over_mass_dts2*( *( Ey+ipart-ipart_ref ) );
        psm[2] = charge_over_mass_dts2*( *( Ez+ipart-ipart_ref ) );
        
        //(*this)(particles, ipart, (*Epart)[ipart], (*Bpart)[ipart] , (*invgf)[ipart]);
        um[0] = momentum[0][ipart] + psm[0];
        um[1] = momentum[1][ipart] + psm[1];
        um[2] = momentum[2][ipart] + psm[2];
        
        // Rotation in the magnetic field
        local_invgf = charge_over_mass_dts2 / sqrt( 1.0 + um[0]*um[0] + um[1]*um[1] + um[2]*um[2] );
        Tx    = local_invgf * ( *( Bx+ipart-ipart_ref ) );
        Ty    = local_invgf * ( *( By+ipart-ipart_ref ) );
        Tz    = local_invgf * ( *( Bz+ipart-ipart_ref ) );
        inv_det_T = 1.0/( 1.0+Tx*Tx+Ty*Ty+Tz*Tz );
        
        psm[0] += ( ( 1.0+Tx*Tx-Ty*Ty-Tz*Tz )* um[0]  +      2.0*( Tx*Ty+Tz )* um[1]  +      2.0*( Tz*Tx-Ty )* um[2] )*inv_det_T;
        psm[1] += ( 2.0*( Tx*Ty-Tz )* um[0]  + ( 1.0-Tx*Tx+Ty*Ty-Tz*Tz )* um[1]  +      2.0*( Ty*Tz+Tx )* um[2] )*inv_det_T;
        psm[2] += ( 2.0*( Tz*Tx+Ty )* um[0]  +      2.0*( Ty*Tz-Tx )* um[1]  + ( 1.0-Tx*Tx-Ty*Ty+Tz*Tz )* um[2] )*inv_det_T;
        
        // finalize Half-acceleration in the electric field
        local_invgf = 1. / sqrt( 1.0 + psm[0]*psm[0] + psm[1]*psm[1] + psm[2]*psm[2] );
        invgf[ipart-ipart_ref] = local_invgf;
        
        momentum[0][ipart] = psm[0];
        momentum[1][ipart] = psm[1];
        momentum[2][ipart] = psm[2];
        
        // Move the particle
#ifdef  __DEBUG
        for( int i = 0 ; i<nDim_ ; i++ ) {
            position_old[i][ipart] = position[i][ipart];
        }
#endif
        local_invgf *= dt;
        for( int i = 0 ; i<nDim_ ; i++ ) {
            position[i][ipart]     += psm[i]*local_invgf;
        }
        
    }
    
    // This is temporarily moved to SpeciesV.cpp
    //#pragma omp simd
    //for (int ipart=istart ; ipart<iend; ipart++ )  {
    //
    //    for ( int i = 0 ; i<nDim_ ; i++ ){
    //        cell_keys[ipart] *= nspace[i];
    //        cell_keys[ipart] += round( (position[i][ipart]-min_loc_vec[i]) * dx_inv_[i] );
    //    }
    //
    //}
    
}