예제 #1
0
/*----------------------------------------------------------------------------------------------------------------------
|	Constructor initializes the conditional likelihood vectors using `nRates' and `nStates', and initializes the
|	`pMatrices' data member using `pMat'. The parameter `managePMatrices' determines whether to allocate space for the
|	transition probability matrices.
*/
InternalData::InternalData(
  PartitionModelShPtr	partition,			/**< is the PartitionModel object containing information about the number of states and rates for each subset */
  CondLikelihoodStorageShPtr cla_storage)
	:
	state(-1),
	cla_pool(cla_storage)
	{
	const unsigned num_subsets = partition->getNumSubsets();

	pMatrices.resize(num_subsets);
	for (unsigned i = 0; i < num_subsets; ++i)
		{
		const unsigned num_rates	= partition->subset_num_rates[i];
		const unsigned num_states	= partition->subset_num_states[i];
		pMatrices[i].Initialize(num_rates, num_states, num_states);
		}
	}
예제 #2
0
/*----------------------------------------------------------------------------------------------------------------------
|	Calls proposeNewState(), then decides whether to accept or reject the proposed new state, calling accept() or
|	revert(), whichever is appropriate.
|
| We actually generate a new mapping all the time (in proposeNewState).  Then we change the branch length.  The branch length
|	change might be rejected.
*/
bool UnimapEdgeMove::update()
{
#if 1 || DISABLED_UNTIL_UNIMAP_WORKING_WITH_PARTITIONING
    // The only case in which is_fixed is true occurs when the user decides to fix the edge lengths.
    // A proposed UnimapEdgeMove cannot be accepted without changing edge lengths, so it is best to just bail out now.
    if (is_fixed)
        return false;

//	std::cerr << "****** UnimapEdgeMove::update" << std::endl;

    ChainManagerShPtr p = chain_mgr.lock();
    PHYCAS_ASSERT(p);

    //likelihood->fullRemapping(tree, rng, true); ///@TEMP!!!!

    proposeNewState();
    PartitionModelShPtr partModel = likelihood->getPartitionModel();
    const unsigned nSubsets = partModel->getNumSubsets();
    std::vector<double> uniformization_lambda(nSubsets);
    for (unsigned i = 0; i < nSubsets; ++i)
    {
        ModelShPtr subMod = partModel->getModel(i);
        uniformization_lambda[i] = subMod->calcUniformizationLambda();
    }

    bool is_internal_edge       = origNode->IsInternal();
    double prev_ln_prior		= (is_internal_edge ? p->calcInternalEdgeLenPriorUnnorm(origEdgelen) : p->calcExternalEdgeLenPriorUnnorm(origEdgelen));

    double curr_edgelen         = r*origEdgelen;
    double curr_ln_prior		= (is_internal_edge ? p->calcInternalEdgeLenPriorUnnorm(curr_edgelen) : p->calcExternalEdgeLenPriorUnnorm(curr_edgelen));

    double log_posterior_ratio = 0.0;
    const double log_prior_ratio = curr_ln_prior - prev_ln_prior;

    double log_likelihood_ratio = (double)mdot*log(r);

    const double edgeLenDiff = (curr_edgelen - origEdgelen);
    for (unsigned i = 0; i < nSubsets; ++i)
    {
        const unsigned numSites = partModel->getNumSites(i);
        const double ul = uniformization_lambda[i];
        PHYCAS_ASSERT(ul > 0.0);
        log_likelihood_ratio -= numSites*ul*edgeLenDiff;
    }

    likelihood->incrementNumLikelihoodEvals();
    if (is_standard_heating)
        log_posterior_ratio = heating_power*(log_likelihood_ratio + log_prior_ratio);
    else
        log_posterior_ratio = heating_power*log_likelihood_ratio + log_prior_ratio;

    double ln_accept_ratio	= log_posterior_ratio + getLnHastingsRatio();

    double lnu = std::log(rng->Uniform(FILE_AND_LINE));
    /*	std::cerr << " log_likelihood_ratio = " << log_likelihood_ratio << '\n';
    	std::cerr << " log_posterior_ratio = " << log_posterior_ratio << '\n';
    	std::cerr << " ln_accept_ratio = " << ln_accept_ratio << '\n';
    	*/
    if (ln_accept_ratio >= 0.0 || lnu <= ln_accept_ratio)
    {
        p->setLastLnPrior(p->getLastLnPrior() + log_prior_ratio);
        p->setLastLnLike(p->getLastLnLike() + log_likelihood_ratio);
        accept();
        return true;
    }
    else
    {
        curr_ln_like	= p->getLastLnLike();
        curr_ln_prior	= p->getLastLnPrior();
        revert();
        return false;
    }
#else
    return true;
#endif
}