// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.setParam("noise",0.05); global.odeConfig.setParam("controlinterval",1); global.odeConfig.setParam("gravity:",1); // normally at -9.81 // initialization Playground* playground = new Playground(odeHandle, osgHandle, osg::Vec3(25, 0.2, 1.5)); playground->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren global.obstacles.push_back(playground); for(int i=0; i<5; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), 0.2); s->setPosition(Pos(i*0.5-2, i*0.5, 1.0)); s->setTexture("Images/dusty.rgb"); global.obstacles.push_back(s); } OdeAgent* agent; AbstractWiring* wiring; // OdeRobot* robot; AbstractController *controller; CaterPillar* myCaterPillar; CaterPillarConf myCaterPillarConf = DefaultCaterPillar::getDefaultConf(); //******* R A U P E *********/ myCaterPillarConf.segmNumber=6; myCaterPillarConf.jointLimit=M_PI/4; myCaterPillarConf.motorPower=0.8; myCaterPillarConf.frictionGround=0.04; myCaterPillar = new CaterPillar ( odeHandle, osgHandle.changeColor(Color(0.0f,1.0f,0.0f)), myCaterPillarConf, "Raupe1"); ((OdeRobot*) myCaterPillar)->place(Pos(-5,-5,0.2)); InvertMotorNStepConf invertnconf = InvertMotorNStep::getDefaultConf(); invertnconf.cInit=2.0; controller = new InvertMotorNStep(invertnconf); wiring = new One2OneWiring(new ColorUniformNoise(0.1)); agent = new OdeAgent( global, plotoptions ); agent->init(controller, myCaterPillar, wiring); global.agents.push_back(agent); global.configs.push_back(controller); global.configs.push_back(myCaterPillar); myCaterPillar->setParam("gamma",/*gb"); global.obstacles.push_back(s)0.0000*/ 0.0); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); setCameraMode(Follow); global.odeConfig.setParam("noise",0.1); global.odeConfig.setParam("controlinterval",4); global.odeConfig.setParam("realtimefactor",4); // global.odeConfig.setParam("gravity", 0); // no gravity for(int i=0; i<0; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(0.0,1.0,0.0)), 0.5); s->setPosition(osg::Vec3(5,0,i*3)); global.obstacles.push_back(s); } // Spherical Robot with axis orientation sensors: Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); // regular behaviour conf.motorsensor=false; conf.diameter=1.0; conf.pendularrange= 0.25; conf.motorpowerfactor = 150; // conf.diameter=1.0; // conf.pendularrange= 0.35; sphere1 = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(1.0,0.0,0)), conf, "Sphere1", 0.2); ((OdeRobot*)sphere1)->place ( Pos( 0 , 0 , 0.1 )); global.configs.push_back ( sphere1 ); controller = new Sox(.8,true); controller->setParam("epsA",0.3); // model learning rate controller->setParam("epsC",1); // controller learning rate controller->setParam("causeaware",0.4); controller->setParam("pseudo",2); global.configs.push_back ( controller ); One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent ( global ); agent->init ( controller , sphere1 , wiring ); if(track) agent->setTrackOptions(TrackRobot(true, true, true, false, "zaxis", 20)); global.agents.push_back ( agent ); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); // initialization // - set global noise sensor to 0.05 global.odeConfig.setParam("noise",0.05); // global.odeConfig.setParam("gravity", 0); // no gravity // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting initial position of the playground: setPosition(osg::Vec3(double x, double y, double z)) // - push playground to the global list of obstacles (global list comes from simulation.cpp) OctaPlayground* playground = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(10, 0.2, 1), 12); playground->setPosition(osg::Vec3(0,0,0)); // place and create playground global.obstacles.push_back(playground); // add passive spheres as obstacles // - create pointer to sphere (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere // - add sphere to list of obstacles for(int i=0; i<8; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(0.0,1.0,0.0)), 0.5); s->setPosition(osg::Vec3(5,0,i*3)); global.obstacles.push_back(s); } // Spherical Robot with axis (gyro) sensors: // - get default configuration for robot // - create pointer to spherical robot (with odeHandle, osgHandle and configuration) // - place robot (unfortunatelly there is a type cast necessary, which is not quite understandable) Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); conf.diameter=1.0; conf.pendularrange= 0.35; robot = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(1.0,0.0,0)), conf, "Spherical", 0.2); (robot)->place ( Pos( 0 , 0 , 0.1 )); // Selforg - Controller (Note there are several: use Sos or Sox now) // create pointer to controller // set some parameters // push controller in global list of configurables controller = new InvertMotorSpace(10); controller->setParam("epsA",0.05); // model learning rate controller->setParam("epsC",0.2); // controller learning rate controller->setParam("rootE",3); // model and contoller learn with square rooted error global.configs.push_back ( controller ); // SineController (produces just sine waves) // controller = new SineController(); // controller->setParam("sinerate", 40); // controller->setParam("phaseshift", 0.0); // create pointer to one2onewiring which uses colored-noise One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); // create pointer to agent // initialize pointer with controller, robot and wiring // push agent in globel list of agents OdeAgent* agent = new OdeAgent ( global ); agent->init ( controller , robot , wiring ); if(track){ // the following line will enables a position tracking of the robot, which is written into a file // you can customize what is logged with the TrackRobotConf TrackRobotConf tc = TrackRobot::getDefaultConf(); tc.scene = "zaxis"; tc.displayTrace = true; agent->setTrackOptions(TrackRobot(tc)); } global.agents.push_back ( agent ); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(6.5701, 17.3534, 11.7749), Pos(159.449, -30.0839, 0)); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.noise=0.1; // global.odeConfig.setParam("gravity", 0); // int chessTexture = dsRegisterTexture("chess.ppm"); // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting geometry for each wall of playground: // setGeometry(double length, double width, double height) // - setting initial position of the playground: setPosition(double x, double y, double z) // - push playground in the global list of obstacles(globla list comes from simulation.cpp) OctaPlayground* playground = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(8.0f, 0.2, 6.0f), 12, // number of corners true); // if ground is created (only create one) // true); // if ground is created (only create one) // when you not set this texture, a brown wooden texture // is used, the setColor would overlay with the wooden texture playground->setColor(Color(1.0,0.5,0.0,0.2)); // when you not set this texture, a brown wooden texture // is used, the setColor would overlay with the wooden texture playground->setTexture("Images/really_white.rgb"); playground->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren global.obstacles.push_back(playground); OctaPlayground* playground2 = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(1.0f, 0.2, 2.5f), 12, // number of corners false); // if ground is created (only create one) playground2->setColor(Color(1.0,0.5,0.0,0.1)); // when you not set this texture, a brown wooden texture // is used, the setColor would overlay with the wooden texture playground2->setTexture("Images/really_white.rgb"); playground2->setPosition(osg::Vec3(0.0,0.0,0)); // playground positionieren und generieren global.obstacles.push_back(playground2); // Creation of passive boxes // add passive spheres, boxes and capsules as obstacles // - create pointer to sphere, box or capsule (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere, box or capsule // - set a texture for the sphere, box or capsule // - add sphere, box or capsule to list of obstacles // note that the dependent header file has to be include above // ("passivesphere.h", "passivebox.h" and/or "passivecapsule.h" int n=10; int m=3; for (int j=0;j<m;j++) { for(int i=0; i<n; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), /*Diameter=*/.2+i*0.03,/*Mass=*/.5); s->setPosition(Pos(sin(2*M_PI*(((float)i)/((float)n)+0.05f))*(3.0f+2.0f*j), cos(2*M_PI*(((float)i)/((float)n)+0.05f))*(3.0f+2.0f*j), 0.8f+2.0f*j)); s->setTexture("Images/dusty.rgb"); global.obstacles.push_back(s); } } n=8; m=3; for (int j=0;j<m;j++) { for(int i=0; i<n; i++){ PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), osg::Vec3(0.4+i*0.1, 0.8-i*0.03, 0.4), 0.2+i*0.1); if (i==1) b->setTexture("Images/light_chess.rgb"); else b->setTexture("Images/dusty.rgb"); b->setPosition(Pos(sin(2*M_PI*(((float)i)/((float)n))+0.1f)*(3.0f+2.0f*j), cos(2*M_PI*(((float)i)/((float)n))+0.1f)*(3.0f+2.0f*j), 3.0f+2.0f*j)); global.obstacles.push_back(b); } } n=15; m=3; for (int j=0;j<m;j++) { for(int i=0; i<n; i++){ PassiveCapsule* b = new PassiveCapsule(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), 0.2f+0.03*i,1.0f-i*0.04); b->setPosition(Pos(sin(2*M_PI*(((float)i)/((float)n)))*(3.0f+2.0f*j), cos(2*M_PI*(((float)i)/((float)n)))*(3.0f+2.0f*j), 5.0f+2.0f*j)); b->setTexture("Images/dusty.rgb"); global.obstacles.push_back(b); } } // Creation of spherical robots: for(int i=0; i<0; i++){ OdeRobot* sphere1; Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.diameter=2; conf.irAxis1=true; conf.irAxis2=true; conf.irAxis3=true; sphere1 = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(0.0+.1*i,0.0,1.0)), conf, "Sphere1", 0.4); // sphere1 = new ForcedSphere(odeHandle, osgHandle, "FSphere"); // sphere1->place ( Pos(-3,1/2,3+2*i)); sphere1->place ( Pos(0,0,7+2*i)); AbstractController* controller = new InvertMotorNStep(); controller->setParam("steps", 2); controller->setParam("adaptrate", 0.005); controller->setParam("nomupdate", 0.01); controller->setParam("epsC", 0.01); controller->setParam("epsA", 0.005); controller->setParam("rootE", 3); DerivativeWiringConf c = DerivativeWiring::getDefaultConf(); c.useId = true; c.useFirstD = true; DerivativeWiring* wiring = new DerivativeWiring ( c , new ColorUniformNoise() ); // One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent ( plotoptions ); agent->init ( controller , sphere1 , wiring ); // agent->setTrackOptions(TrackRobot(true, false, false, "ZSens_Ring10_11", 50)); global.agents.push_back ( agent ); global.configs.push_back ( controller ); } //creation of snakes for(int i=0; i<1; i++){ //****************/ SchlangeConf conf = Schlange::getDefaultConf(); conf.motorPower=.3; conf.segmNumber =10-i/2; conf.segmDia = 0.15; // diameter of a snake element // conf.jointLimit=conf.jointLimit*3; conf.jointLimit=conf.jointLimit*2.0; conf.frictionJoint=0.002; SchlangeServo2* schlange1 = //new SchlangeServo2 ( odeHandle, osgHandle.changeColor(Color(0.8, 0.3, 0.5)), new SchlangeServo2 ( odeHandle, osgHandle.changeColor(Color(1.0, 1.0, 1.0)), conf, "S1"); //Positionieren und rotieren schlange1->place(osg::Matrix::rotate(M_PI/2, 0, 1, 0)* osg::Matrix::translate(2*i,i,conf.segmNumber/2+2)); if (i==0) { // schlange1->setTexture("Images/whitemetal_tiefgruen.rgb"); // schlange1->setHeadTexture("Images/whitemetal_tiefrot.rgb"); } else { // schlange1->setTexture("Images/whitemetal_tiefrot.rgb"); // schlange1->setHeadTexture("Images/whitemetal_tiefgruen.rgb"); } //AbstractController *controller = new InvertNChannelController(100/*,true*/); // AbstractController *controller = new InvertMotorSpace(100/*,true*/); AbstractController *controller = new InvertMotorNStep(); // AbstractController *controller = new invertmotornstep(); //AbstractController *controller = new SineController(); // AbstractController *controller = new InvertMotorNStep(); // AbstractController *controller = new SineController(); // AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.05)); //Only this line for one2Onewiring // AbstractWiring* wiring = new DerivativeWiring(c, new ColorUniformNoise(0.1)); DerivativeWiringConf c = DerivativeWiring::getDefaultConf(); c.useId = true; c.useFirstD = true; // c.derivativeScale=10; DerivativeWiring* wiring = new DerivativeWiring ( c , new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent(global); agent->init(controller, schlange1, wiring); global.agents.push_back(agent); global.configs.push_back(controller); global.configs.push_back(schlange1); global.odeConfig.setParam("controlinterval",2); global.odeConfig.setParam("gravity", -2); controller->setParam("steps",2); controller->setParam("epsC",0.01); controller->setParam("epsA",0.01); controller->setParam("adaptrate",0.005); controller->setParam("logaE",3); // controller->setParam("desens",0.0); controller->setParam("s4delay",3.0); // controller->setParam("s4avg",1.0); controller->setParam("factorB",0.0); // controller->setParam("zetaupdate",0.1); }//creation of snakes End }