예제 #1
0
파일: PMFFilter.cpp 프로젝트: EricAlex/PDAL
PointViewSet PMFFilter::run(PointViewPtr input)
{
    bool logOutput = log()->getLevel() > LogLevel::Debug1;
    if (logOutput)
        log()->floatPrecision(8);
    log()->get(LogLevel::Debug2) << "Process PMFFilter...\n";

    auto idx = processGround(input);

    PointViewSet viewSet;
    if (!idx.empty() && (m_classify || m_extract))
    {

        if (m_classify)
        {
            log()->get(LogLevel::Debug2) << "Labeled " << idx.size() << " ground returns!\n";

            // set the classification label of ground returns as 2
            // (corresponding to ASPRS LAS specification)
            for (const auto& i : idx)
            {
                input->setField(Dimension::Id::Classification, i, 2);
            }

            viewSet.insert(input);
        }

        if (m_extract)
        {
            log()->get(LogLevel::Debug2) << "Extracted " << idx.size() << " ground returns!\n";

            // create new PointView containing only ground returns
            PointViewPtr output = input->makeNew();
            for (const auto& i : idx)
            {
                output->appendPoint(*input, i);
            }

            viewSet.erase(input);
            viewSet.insert(output);
        }
    }
    else
    {
        if (idx.empty())
            log()->get(LogLevel::Debug2) << "Filtered cloud has no ground returns!\n";

        if (!(m_classify || m_extract))
            log()->get(LogLevel::Debug2) << "Must choose --classify or --extract\n";

        // return the input buffer unchanged
        viewSet.insert(input);
    }

    return viewSet;
}
예제 #2
0
파일: Stage.cpp 프로젝트: jwend/PDAL
PointViewSet Stage::execute(PointTableRef table)
{



    //printf("called %s\n", this->classname());
    log()->setLevel(LogLevel::Enum::Debug);

    std::string cn(this->classname());
    log()->setLeader(cn + " Stage::execute");
    log()->get(LogLevel::Debug) << "Called by class " << std::endl;

    table.layout()->finalize();

    PointViewSet views;
    if (m_inputs.empty())
    {
        log()->get(LogLevel::Debug) << "if block, class" << std::endl;
        views.insert(PointViewPtr(new PointView(table)));
    }
    else
    {
        for (size_t i = 0; i < m_inputs.size(); ++i)
        {
            log()->get(LogLevel::Debug) << "block, class"
                    << "input number "<< i << std::endl;
            log()->get(LogLevel::Debug) << "if block, class" << std::endl;
            Stage *prev = m_inputs[i];
            PointViewSet temp = prev->execute(table);
            views.insert(temp.begin(), temp.end());
        }
    }

    PointViewSet outViews;
    std::vector<StageRunnerPtr> runners;

    ready(table);
    for (auto const& it : views)
    {
        log()->get(LogLevel::Debug) << "run, class" << std::endl;
        StageRunnerPtr runner(new StageRunner(this, it));
        runners.push_back(runner);
        runner->run();
    }
    for (auto const& it : runners)
    {
        log()->get(LogLevel::Debug) << "wait, class" << std::endl;
        StageRunnerPtr runner(it);
        PointViewSet temp = runner->wait();
        outViews.insert(temp.begin(), temp.end());
    }
    l_done(table);
    done(table);
    return outViews;
}
예제 #3
0
파일: SMRFilter.cpp 프로젝트: PDAL/PDAL
PointViewSet SMRFilter::run(PointViewPtr view)
{
    log()->get(LogLevel::Info) << "run: Process SMRFilter...\n";

    std::vector<PointId> idx = processGround(view);

    PointViewSet viewSet;

    if (!idx.empty() && (m_classify || m_extract))
    {

        if (m_classify)
        {
            log()->get(LogLevel::Info) << "run: Labeled " << idx.size() << " ground returns!\n";

            // set the classification label of ground returns as 2
            // (corresponding to ASPRS LAS specification)
            for (const auto& i : idx)
            {
                view->setField(Dimension::Id::Classification, i, 2);
            }

            viewSet.insert(view);
        }

        if (m_extract)
        {
            log()->get(LogLevel::Info) << "run: Extracted " << idx.size() << " ground returns!\n";

            // create new PointView containing only ground returns
            PointViewPtr output = view->makeNew();
            for (const auto& i : idx)
            {
                output->appendPoint(*view, i);
            }

            viewSet.erase(view);
            viewSet.insert(output);
        }
    }
    else
    {
        if (idx.empty())
            log()->get(LogLevel::Info) << "run: Filtered cloud has no ground returns!\n";

        if (!(m_classify || m_extract))
            log()->get(LogLevel::Info) << "run: Must choose --classify or --extract\n";

        // return the view buffer unchanged
        viewSet.insert(view);
    }

    return viewSet;
}
예제 #4
0
 virtual PointViewSet run(PointViewPtr view)
 {
     PointViewSet out;
     PointViewPtr v = view->makeNew();
     for (PointId i = 0; i < view->size(); ++i)
     {
         if (i && (i % m_viewSize == 0))
         {
             out.insert(v);
             v = v->makeNew();
         }
         v->appendPoint(*view, i);
     }
     out.insert(v);
     return out;
 }
예제 #5
0
TEST(PointViewTest, order)
{
    PointTable table;

    const size_t COUNT(1000);
    std::array<PointViewPtr, COUNT> views;

    std::random_device dev;
    std::mt19937 generator(dev());

    for (size_t i = 0; i < COUNT; ++i)
        views[i] = PointViewPtr(new PointView(table));
    std::shuffle(views.begin(), views.end(), generator);

    PointViewSet set;
    for (size_t i = 0; i < COUNT; ++i)
        set.insert(views[i]);

    PointViewSet::iterator pi;
    for (auto si = set.begin(); si != set.end(); ++si)
    {
        if (si != set.begin())
           EXPECT_TRUE((*pi)->id() < (*si)->id());
        pi = si;
    }
}
예제 #6
0
PointViewSet PredicateFilter::run(PointViewPtr view)
{
    MetadataNode n;

    m_pythonMethod->resetArguments();
    m_pythonMethod->begin(*view, n);
    m_pythonMethod->execute();

    if (!m_pythonMethod->hasOutputVariable("Mask"))
        throw pdal::pdal_error("Mask variable not set in predicate "
            "filter function.");

    PointViewPtr outview = view->makeNew();

    void *pydata =
        m_pythonMethod->extractResult("Mask", Dimension::Type::Unsigned8);
    char *ok = (char *)pydata;
    for (PointId idx = 0; idx < view->size(); ++idx)
        if (*ok++)
            outview->appendPoint(*view, idx);

    PointViewSet viewSet;
    viewSet.insert(outview);
    return viewSet;
}
예제 #7
0
파일: LocateFilter.cpp 프로젝트: PDAL/PDAL
PointViewSet LocateFilter::run(PointViewPtr inView)
{
    PointViewSet viewSet;
    if (!inView->size())
        return viewSet;

    PointId minidx, maxidx;
    double minval = (std::numeric_limits<double>::max)();
    double maxval = std::numeric_limits<double>::lowest();

    for (PointId idx = 0; idx < inView->size(); idx++)
    {
        double val = inView->getFieldAs<double>(m_dimId, idx);
        if (val > maxval)
        {
            maxval = val;
            maxidx = idx;
        }
        if (val < minval)
        {
            minval = val;
            minidx = idx;
        }
    }

    PointViewPtr outView = inView->makeNew();

    if (Utils::iequals("min", m_minmax))
        outView->appendPoint(*inView.get(), minidx);
    if (Utils::iequals("max", m_minmax))
        outView->appendPoint(*inView.get(), maxidx);

    viewSet.insert(outView);
    return viewSet;
}
예제 #8
0
PointViewSet DecimationFilter::run(PointViewPtr inView)
{
    PointViewSet viewSet;
    PointViewPtr outView = inView->makeNew();
    decimate(*inView.get(), *outView.get());
    viewSet.insert(outView);
    return viewSet;
}
예제 #9
0
 PointViewSet run(PointViewPtr view)
 {
     if (m_count > view->size())
         log()->get(LogLevel::Warning)
             << "Requested number of points (count=" << m_count
             << ") exceeds number of available points.\n";
     PointViewSet viewSet;
     PointViewPtr outView = view->makeNew();
     for (PointId i = view->size() - std::min(m_count, view->size());
          i < view->size(); ++i)
         outView->appendPoint(*view, i);
     viewSet.insert(outView);
     return viewSet;
 }
예제 #10
0
파일: MergeFilter.cpp 프로젝트: cugwhp/PDAL
PointViewSet MergeFilter::run(PointViewPtr in)
{
    PointViewSet viewSet;

    // If the SRS of all the point views aren't the same, print a warning
    // unless we're explicitly overriding the SRS.
    if (getSpatialReference().empty() &&
      (in->spatialReference() != m_view->spatialReference()))
        log()->get(LogLevel::Warning) << getName() << ": merging points "
            "with inconsistent spatial references." << std::endl;
    m_view->append(*in.get());
    viewSet.insert(m_view);
    return viewSet;
}
예제 #11
0
TEST(PointViewTest, calcBounds)
{
    auto set_points = [](PointViewPtr view, PointId i, double x, double y,
        double z)
    {
        view->setField(Dimension::Id::X, i, x);
        view->setField(Dimension::Id::Y, i, y);
        view->setField(Dimension::Id::Z, i, z);
    };

    PointTable table;
    PointLayoutPtr layout(table.layout());

    layout->registerDim(Dimension::Id::X);
    layout->registerDim(Dimension::Id::Y);
    layout->registerDim(Dimension::Id::Z);

    const double lim_min = (std::numeric_limits<double>::lowest)();
    const double lim_max = (std::numeric_limits<double>::max)();
    PointViewPtr b0(new PointView(table));
    BOX3D box_b0;
    b0->calculateBounds(box_b0);
    check_bounds(box_b0, lim_max, lim_min, lim_max, lim_min, lim_max, lim_min);

    PointViewPtr b1(new PointView(table));
    set_points(b1, 0, 0.0, 0.0, 0.0);
    set_points(b1, 1, 2.0, 2.0, 2.0);

    PointViewPtr b2(new PointView(table));
    set_points(b2, 0, 3.0, 3.0, 3.0);
    set_points(b2, 1, 1.0, 1.0, 1.0);

    PointViewSet bs;
    bs.insert(b1);
    bs.insert(b2);

    BOX3D box_b1;
    b1->calculateBounds(box_b1);
    check_bounds(box_b1, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0);

    BOX3D box_b2;
    b2->calculateBounds(box_b2);
    check_bounds(box_b2, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0);

    BOX3D box_bs;
    PointView::calculateBounds(bs, box_bs);
    check_bounds(box_bs, 0.0, 3.0, 0.0, 3.0, 0.0, 3.0);
}
예제 #12
0
PointViewSet SampleFilter::run(PointViewPtr inView)
{
    point_count_t np = inView->size();

    // Return empty PointViewSet if the input PointView has no points.
    // Otherwise, make a new output PointView.
    PointViewSet viewSet;
    if (!np)
        return viewSet;
    PointViewPtr outView = inView->makeNew();

    // Build the 3D KD-tree.
    KD3Index index(*inView);
    index.build();

    // All points are marked as kept (1) by default. As they are masked by
    // neighbors within the user-specified radius, their value is changed to 0.
    std::vector<int> keep(np, 1);

    // We are able to subsample in a single pass over the shuffled indices.
    for (PointId i = 0; i < np; ++i)
    {
        // If a point is masked, it is forever masked, and cannot be part of the
        // sampled cloud. Otherwise, the current index is appended to the output
        // PointView.
        if (keep[i] == 0)
            continue;
        outView->appendPoint(*inView, i);

        // We now proceed to mask all neighbors within m_radius of the kept
        // point.
        auto ids = index.radius(i, m_radius);
        for (auto const& id : ids)
            keep[id] = 0;
    }

    // Simply calculate the percentage of retained points.
    double frac = (double)outView->size() / (double)inView->size();
    log()->get(LogLevel::Debug2)
        << "Retaining " << outView->size() << " of " << inView->size()
        << " points (" << 100 * frac << "%)\n";

    viewSet.insert(outView);
    return viewSet;
}
예제 #13
0
PointViewSet VoxelGridFilter::run(PointViewPtr input)
{
    PointViewPtr output = input->makeNew();
    PointViewSet viewSet;
    viewSet.insert(output);

    bool logOutput = log()->getLevel() > LogLevel::Debug1;
    if (logOutput)
        log()->floatPrecision(8);

    log()->get(LogLevel::Debug2) << "Process VoxelGridFilter..." << std::endl;

    BOX3D buffer_bounds;
    input->calculateBounds(buffer_bounds);

    // convert PointView to PointNormal
    typedef pcl::PointCloud<pcl::PointXYZ> Cloud;
    Cloud::Ptr cloud(new Cloud);
    pclsupport::PDALtoPCD(input, *cloud, buffer_bounds);

    pclsupport::setLogLevel(log()->getLevel());

    // initial setup
    pcl::VoxelGrid<pcl::PointXYZ> vg;
    vg.setInputCloud(cloud);
    vg.setLeafSize(m_leaf_x, m_leaf_y, m_leaf_z);

    // create PointCloud for results
    Cloud::Ptr cloud_f(new Cloud);
    vg.filter(*cloud_f);

    if (cloud_f->points.empty())
    {
        log()->get(LogLevel::Debug2) << "Filtered cloud has no points!" << std::endl;
        return viewSet;
    }

    pclsupport::PCDtoPDAL(*cloud_f, output, buffer_bounds);

    log()->get(LogLevel::Debug2) << cloud->points.size() << " before, " <<
                                 cloud_f->points.size() << " after" << std::endl;
    log()->get(LogLevel::Debug2) << output->size() << std::endl;

    return viewSet;
}
예제 #14
0
PointViewSet RangeFilter::run(PointViewPtr inView)
{
    PointViewSet viewSet;
    if (!inView->size())
        return viewSet;

    PointViewPtr outView = inView->makeNew();

    for (PointId i = 0; i < inView->size(); ++i)
    {
        PointRef point = inView->point(i);
        if (processOne(point))
            outView->appendPoint(*inView, i);
    }

    viewSet.insert(outView);
    return viewSet;
}
예제 #15
0
PointViewSet MADFilter::run(PointViewPtr view)
{
    using namespace Dimension;

    PointViewSet viewSet;
    PointViewPtr output = view->makeNew();

    auto estimate_median = [](std::vector<double> vals)
    {
        std::nth_element(vals.begin(), vals.begin()+vals.size()/2, vals.end());
        return *(vals.begin()+vals.size()/2);
    };

    std::vector<double> z(view->size());
    for (PointId j = 0; j < view->size(); ++j)
        z[j] = view->getFieldAs<double>(m_dimId, j);

    double median = estimate_median(z);
    log()->get(LogLevel::Debug) << getName() << " estimated median value: " << median << std::endl;

    std::transform(z.begin(), z.end(), z.begin(),
       [median](double v) { return std::fabs(v - median); });
    double mad = estimate_median(z)*m_madMultiplier;
    log()->get(LogLevel::Debug) << getName() << " mad " << mad << std::endl;

    for (PointId j = 0; j < view->size(); ++j)
    {
        if (z[j]/mad < m_multiplier)
            output->appendPoint(*view, j);
    }

    double low_fence = median - m_multiplier * mad;
    double hi_fence = median + m_multiplier * mad;

    log()->get(LogLevel::Debug) << getName() << " cropping " << m_dimName
                                << " in the range (" << low_fence
                                << "," << hi_fence << ")" << std::endl;

    viewSet.erase(view);
    viewSet.insert(output);

    return viewSet;
}
예제 #16
0
PointViewSet SplitterFilter::run(PointViewPtr inView)
{
    PointViewSet viewSet;
    if (!inView->size())
        return viewSet;

    // Use the location of the first point as the origin, unless specified.
    // (!= test == isnan(), which doesn't exist on windows)
    if (m_xOrigin != m_xOrigin)
        m_xOrigin = inView->getFieldAs<double>(Dimension::Id::X, 0);
    if (m_yOrigin != m_yOrigin)
        m_yOrigin = inView->getFieldAs<double>(Dimension::Id::Y, 0);
    // Overlay a grid of squares on the points (m_length sides).  Each square
    // corresponds to a new point buffer.  Place the points falling in the
    // each square in the corresponding point buffer.
    for (PointId idx = 0; idx < inView->size(); idx++)
    {
        double x = inView->getFieldAs<double>(Dimension::Id::X, idx);
        x -= m_xOrigin;
        int xpos = x / m_length;
        if (x < 0)
            xpos--;

        double y = inView->getFieldAs<double>(Dimension::Id::Y, idx);
        y -= m_yOrigin;
        int ypos = y / m_length;
        if (y < 0)
            ypos--;

        Coord loc(xpos, ypos);
        PointViewPtr& outView = m_viewMap[loc];
        if (!outView)
            outView = inView->makeNew();
        outView->appendPoint(*inView.get(), idx);
    }

    // Pull the buffers out of the map and stick them in the standard
    // output set.
    for (auto bi = m_viewMap.begin(); bi != m_viewMap.end(); ++bi)
        viewSet.insert(bi->second);
    return viewSet;
}
예제 #17
0
파일: GroupByFilter.cpp 프로젝트: PDAL/PDAL
PointViewSet GroupByFilter::run(PointViewPtr inView)
{
    PointViewSet viewSet;
    if (!inView->size())
        return viewSet;

    for (PointId idx = 0; idx < inView->size(); idx++)
    {
        uint64_t val = inView->getFieldAs<uint64_t>(m_dimId, idx);
        PointViewPtr& outView = m_viewMap[val];
        if (!outView)
            outView = inView->makeNew();
        outView->appendPoint(*inView.get(), idx);
    }

    // Pull the buffers out of the map and stick them in the standard
    // output set.
    for (auto bi = m_viewMap.begin(); bi != m_viewMap.end(); ++bi)
        viewSet.insert(bi->second);
    return viewSet;
}
예제 #18
0
PointViewSet StatisticalOutlierFilter::run(PointViewPtr input)
{
    bool logOutput = log()->getLevel() > LogLevel::Debug1;
    if (logOutput)
        log()->floatPrecision(8);
    log()->get(LogLevel::Debug2) << "Process StatisticalOutlierFilter...\n";

    // convert PointView to PointXYZ
    typedef pcl::PointCloud<pcl::PointXYZ> Cloud;
    Cloud::Ptr cloud(new Cloud);
    BOX3D bounds;
    input->calculateBounds(bounds);
    pclsupport::PDALtoPCD(input, *cloud, bounds);

    // PCL should provide console output at similar verbosity level as PDAL
    int level = log()->getLevel();
    switch (level)
    {
        case 0:
            pcl::console::setVerbosityLevel(pcl::console::L_ALWAYS);
            break;
        case 1:
            pcl::console::setVerbosityLevel(pcl::console::L_ERROR);
            break;
        case 2:
            pcl::console::setVerbosityLevel(pcl::console::L_WARN);
            break;
        case 3:
            pcl::console::setVerbosityLevel(pcl::console::L_INFO);
            break;
        case 4:
            pcl::console::setVerbosityLevel(pcl::console::L_DEBUG);
            break;
        default:
            pcl::console::setVerbosityLevel(pcl::console::L_VERBOSE);
            break;
    }

    // setup the outlier filter
    pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor(true);
    sor.setInputCloud(cloud);
    sor.setMeanK(m_meanK);
    sor.setStddevMulThresh(m_multiplier);

    pcl::PointCloud<pcl::PointXYZ> output;
    sor.setNegative(true);
    sor.filter(output);

    // filtered to return inliers
    pcl::PointIndicesPtr inliers(new pcl::PointIndices);
    sor.getRemovedIndices(*inliers);

    log()->get(LogLevel::Debug2) << inliers->indices.size() << std::endl;

    PointViewSet viewSet;
    if (inliers->indices.empty())
    {
        log()->get(LogLevel::Warning) << "Requested filter would remove all points. Try increasing the multiplier.\n";
        viewSet.insert(input);
        return viewSet;
    }

    // inverse are the outliers
    std::vector<int> outliers(input->size()-inliers->indices.size());
    for (PointId i = 0, j = 0, k = 0; i < input->size(); ++i)
    {
        if (i == (PointId)inliers->indices[j])
        {
            j++;
            continue;
        }
        outliers[k++] = i;
    }

    if (!outliers.empty() && (m_classify || m_extract))
    {

        if (m_classify)
        {
            log()->get(LogLevel::Debug2) << "Labeled " << outliers.size() << " outliers as noise!\n";

            // set the classification label of outlier returns as 18
            // (corresponding to ASPRS LAS specification for high noise)
            for (const auto& i : outliers)
            {
                input->setField(Dimension::Id::Classification, i, 18);
            }

            viewSet.insert(input);
        }

        if (m_extract)
        {
            log()->get(LogLevel::Debug2) << "Extracted " << inliers->indices.size() << " inliers!\n";

            // create new PointView containing only outliers
            PointViewPtr output = input->makeNew();
            for (const auto& i : inliers->indices)
            {
                output->appendPoint(*input, i);
            }

            viewSet.erase(input);
            viewSet.insert(output);
        }
    }
    else
    {
        if (outliers.empty())
            log()->get(LogLevel::Warning) << "Filtered cloud has no outliers!\n";

        if (!(m_classify || m_extract))
            log()->get(LogLevel::Warning) << "Must choose --classify or --extract\n";

        // return the input buffer unchanged
        viewSet.insert(input);
    }

    return viewSet;
}
예제 #19
0
PointViewSet DartSampleFilter::run(PointViewPtr input)
{
    PointViewSet viewSet;
    PointViewPtr output = input->makeNew();

    log()->floatPrecision(2);
    log()->get(LogLevel::Info) << "DartSampleFilter (radius="
                               << m_radius << ")\n";

    BOX3D buffer_bounds;
    input->calculateBounds(buffer_bounds);

    typedef pcl::PointCloud<pcl::PointXYZ> Cloud;
    Cloud::Ptr cloud(new Cloud);
    pclsupport::PDALtoPCD(input, *cloud, buffer_bounds);

    int level = log()->getLevel();
    switch (level)
    {
        case 0:
            pcl::console::setVerbosityLevel(pcl::console::L_ALWAYS);
            break;
        case 1:
            pcl::console::setVerbosityLevel(pcl::console::L_ERROR);
            break;
        case 2:
            pcl::console::setVerbosityLevel(pcl::console::L_WARN);
            break;
        case 3:
            pcl::console::setVerbosityLevel(pcl::console::L_INFO);
            break;
        case 4:
            pcl::console::setVerbosityLevel(pcl::console::L_DEBUG);
            break;
        default:
            pcl::console::setVerbosityLevel(pcl::console::L_VERBOSE);
            break;
    }

    pcl::DartSample<pcl::PointXYZ> ds;
    ds.setInputCloud(cloud);
    ds.setRadius(m_radius);

    std::vector<int> samples;
    ds.filter(samples);

    if (samples.empty())
    {
        log()->get(LogLevel::Warning) << "Filtered cloud has no points!\n";
        return viewSet;
    }

    for (const auto& i : samples)
        output->appendPoint(*input, i);

    double frac = (double)samples.size() / (double)cloud->size();
    log()->get(LogLevel::Info) << "Retaining " << samples.size() << " of "
                               << cloud->size() << " points ("
                               <<  100*frac
                               << "%)\n";

    viewSet.insert(output);
    return viewSet;
}
예제 #20
0
PointViewSet RadiusOutlierFilter::run(PointViewPtr input)
{
    bool logOutput = log()->getLevel() > LogLevel::Debug1;
    if (logOutput)
        log()->floatPrecision(8);
    log()->get(LogLevel::Debug2) << "Process RadiusOutlierFilter...\n";

    // convert PointView to PointXYZ
    typedef pcl::PointCloud<pcl::PointXYZ> Cloud;
    Cloud::Ptr cloud(new Cloud);
    BOX3D bounds;
    input->calculateBounds(bounds);
    pclsupport::PDALtoPCD(input, *cloud, bounds);

    pclsupport::setLogLevel(log()->getLevel());

    // setup the outlier filter
    pcl::RadiusOutlierRemoval<pcl::PointXYZ> ror(true);
    ror.setInputCloud(cloud);
    ror.setMinNeighborsInRadius(m_min_neighbors);
    ror.setRadiusSearch(m_radius);

    pcl::PointCloud<pcl::PointXYZ> output;
    ror.setNegative(true);
    ror.filter(output);

    // filtered to return inliers
    pcl::PointIndicesPtr inliers(new pcl::PointIndices);
    ror.getRemovedIndices(*inliers);

    PointViewSet viewSet;
    if (inliers->indices.empty())
    {
        log()->get(LogLevel::Warning) << "Requested filter would remove all points. Try a larger radius/smaller minimum neighbors.\n";
        viewSet.insert(input);
        return viewSet;
    }

    // inverse are the outliers
    std::vector<int> outliers(input->size()-inliers->indices.size());
    for (PointId i = 0, j = 0, k = 0; i < input->size(); ++i)
    {
        if (i == (PointId)inliers->indices[j])
        {
            j++;
            continue;
        }
        outliers[k++] = i;
    }

    if (!outliers.empty() && (m_classify || m_extract))
    {

        if (m_classify)
        {
            log()->get(LogLevel::Debug2) << "Labeled " << outliers.size() << " outliers as noise!\n";

            // set the classification label of outlier returns as 18
            // (corresponding to ASPRS LAS specification for high noise)
            for (const auto& i : outliers)
            {
                input->setField(Dimension::Id::Classification, i, 18);
            }

            viewSet.insert(input);
        }

        if (m_extract)
        {
            log()->get(LogLevel::Debug2) << "Extracted " << inliers->indices.size() << " inliers!\n";

            // create new PointView containing only outliers
            PointViewPtr output = input->makeNew();
            for (const auto& i : inliers->indices)
            {
                output->appendPoint(*input, i);
            }

            viewSet.erase(input);
            viewSet.insert(output);
        }
    }
    else
    {
        if (outliers.empty())
            log()->get(LogLevel::Warning) << "Filtered cloud has no outliers!\n";

        if (!(m_classify || m_extract))
            log()->get(LogLevel::Warning) << "Must choose --classify or --extract\n";

        // return the input buffer unchanged
        viewSet.insert(input);
    }

    return viewSet;
}
예제 #21
0
파일: Stage.cpp 프로젝트: cugwhp/PDAL
PointViewSet Stage::execute(PointTableRef table)
{
    table.finalize();

    PointViewSet views;

    // If the inputs are empty, we're a reader.
    if (m_inputs.empty())
    {
        views.insert(PointViewPtr(new PointView(table)));
    }
    else
    {
        for (size_t i = 0; i < m_inputs.size(); ++i)
        {
            Stage *prev = m_inputs[i];
            PointViewSet temp = prev->execute(table);
            views.insert(temp.begin(), temp.end());
        }
    }

    PointViewSet outViews;
    std::vector<StageRunnerPtr> runners;

    // Put the spatial references from the views onto the table.
    // The table's spatial references are only valid as long as the stage
    // is running.
    // ABELL - Should we clear the references once the stage run has
    //   completed?  Wondering if that would break something where a
    //   writer wants to check a table's SRS.
    SpatialReference srs;
    table.clearSpatialReferences();
    for (auto const& it : views)
        table.addSpatialReference(it->spatialReference());

    // Do the ready operation and then start running all the views
    // through the stage.
    ready(table);
    for (auto const& it : views)
    {
        StageRunnerPtr runner(new StageRunner(this, it));
        runners.push_back(runner);
        runner->run();
    }

    // As the stages complete (synchronously at this time), propagate the
    // spatial reference and merge the output views.
    srs = getSpatialReference();
    for (auto const& it : runners)
    {
        StageRunnerPtr runner(it);
        PointViewSet temp = runner->wait();

        // If our stage has a spatial reference, the view takes it on once
        // the stage has been run.
        if (!srs.empty())
            for (PointViewPtr v : temp)
                v->setSpatialReference(srs);
        outViews.insert(temp.begin(), temp.end());
    }
    done(table);
    return outViews;
}
예제 #22
0
PointViewSet MyFilter::run(PointViewPtr input)
{
    PointViewSet viewSet;
    viewSet.insert(input);
    return viewSet;
}
예제 #23
0
PointViewSet PoissonFilter::run(PointViewPtr input)
{
    PointViewPtr output = input->makeNew();
    PointViewSet viewSet;
    viewSet.insert(output);

    bool logOutput = log()->getLevel() > LogLevel::Debug1;
    if (logOutput)
        log()->floatPrecision(8);

    log()->get(LogLevel::Debug2) << "Process PoissonFilter..." << std::endl;

    BOX3D buffer_bounds;
    input->calculateBounds(buffer_bounds);

    // convert PointView to PointNormal
    typedef pcl::PointCloud<pcl::PointXYZ> Cloud;
    Cloud::Ptr cloud(new Cloud);
    pclsupport::PDALtoPCD(input, *cloud, buffer_bounds);

    pclsupport::setLogLevel(log()->getLevel());

    // pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals(new pcl::PointCloud<pcl::PointNormal>);
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree;
    pcl::search::KdTree<pcl::PointNormal>::Ptr tree2;

    // Create search tree
    tree.reset(new pcl::search::KdTree<pcl::PointXYZ> (false));
    tree->setInputCloud(cloud);

    // Normal estimation
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal> ());
    n.setInputCloud(cloud);
    n.setSearchMethod(tree);
    n.setKSearch(20);
    n.compute(*normals);

    // Concatenate XYZ and normal information
    pcl::concatenateFields(*cloud, *normals, *cloud_with_normals);

    // Create search tree
    tree2.reset(new pcl::search::KdTree<pcl::PointNormal>);
    tree2->setInputCloud(cloud_with_normals);

    // initial setup
    pcl::Poisson<pcl::PointNormal> p;
    p.setInputCloud(cloud_with_normals);
    p.setSearchMethod(tree2);
    p.setDepth(m_depth);
    p.setPointWeight(m_point_weight);

    // create PointCloud for results
    pcl::PolygonMesh grid;
    p.reconstruct(grid);

    Cloud::Ptr cloud_f(new Cloud);
    pcl::fromPCLPointCloud2(grid.cloud, *cloud_f);

    if (cloud_f->points.empty())
    {
        log()->get(LogLevel::Debug2) << "Filtered cloud has no points!" << std::endl;
        return viewSet;
    }

    pclsupport::PCDtoPDAL(*cloud_f, output, buffer_bounds);

    log()->get(LogLevel::Debug2) << cloud->points.size() << " before, " <<
                                 cloud_f->points.size() << " after" << std::endl;
    log()->get(LogLevel::Debug2) << output->size() << std::endl;

    return viewSet;
}