void DifferentialEvolution::fillInitialPopulation( std::vector<Candidate> & population, const Problem& p) const { // use initial values provided by the user population.front().values = p.currentValue(); population.front().cost = p.costFunction().value(population.front().values); // rest of the initial population is random for (Size j = 1; j < population.size(); ++j) { for (Size i = 0; i < p.currentValue().size(); ++i) { Real l = lowerBound_[i], u = upperBound_[i]; population[j].values[i] = l + (u-l)*rng_.nextReal(); } population[j].cost = p.costFunction().value(population[j].values); } }
EndCriteria::Type DifferentialEvolution::minimize(Problem& p, const EndCriteria& endCriteria) { EndCriteria::Type ecType; upperBound_ = p.constraint().upperBound(p.currentValue()); lowerBound_ = p.constraint().lowerBound(p.currentValue()); currGenSizeWeights_ = Array(configuration().populationMembers, configuration().stepsizeWeight); currGenCrossover_ = Array(configuration().populationMembers, configuration().crossoverProbability); std::vector<Candidate> population(configuration().populationMembers, Candidate(p.currentValue().size())); fillInitialPopulation(population, p); std::partial_sort(population.begin(), population.begin() + 1, population.end(), sort_by_cost()); bestMemberEver_ = population.front(); Real fxOld = population.front().cost; Size iteration = 0, stationaryPointIteration = 0; // main loop - calculate consecutive emerging populations while (!endCriteria.checkMaxIterations(iteration++, ecType)) { calculateNextGeneration(population, p.costFunction()); std::partial_sort(population.begin(), population.begin() + 1, population.end(), sort_by_cost()); if (population.front().cost < bestMemberEver_.cost) bestMemberEver_ = population.front(); Real fxNew = population.front().cost; if (endCriteria.checkStationaryFunctionValue(fxOld, fxNew, stationaryPointIteration, ecType)) break; fxOld = fxNew; }; p.setCurrentValue(bestMemberEver_.values); p.setFunctionValue(bestMemberEver_.cost); return ecType; }
EndCriteria::Type LevenbergMarquardt::minimize(Problem& P, const EndCriteria& endCriteria) { EndCriteria::Type ecType = EndCriteria::None; P.reset(); Array x_ = P.currentValue(); currentProblem_ = &P; initCostValues_ = P.costFunction().values(x_); int m = initCostValues_.size(); int n = x_.size(); boost::scoped_array<double> xx(new double[n]); std::copy(x_.begin(), x_.end(), xx.get()); boost::scoped_array<double> fvec(new double[m]); boost::scoped_array<double> diag(new double[n]); int mode = 1; double factor = 1; int nprint = 0; int info = 0; int nfev =0; boost::scoped_array<double> fjac(new double[m*n]); int ldfjac = m; boost::scoped_array<int> ipvt(new int[n]); boost::scoped_array<double> qtf(new double[n]); boost::scoped_array<double> wa1(new double[n]); boost::scoped_array<double> wa2(new double[n]); boost::scoped_array<double> wa3(new double[n]); boost::scoped_array<double> wa4(new double[m]); // requirements; check here to get more detailed error messages. QL_REQUIRE(n > 0, "no variables given"); QL_REQUIRE(m >= n, "less functions (" << m << ") than available variables (" << n << ")"); QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0, "negative f tolerance"); QL_REQUIRE(xtol_ >= 0.0, "negative x tolerance"); QL_REQUIRE(gtol_ >= 0.0, "negative g tolerance"); QL_REQUIRE(endCriteria.maxIterations() > 0, "null number of evaluations"); // call lmdif to minimize the sum of the squares of m functions // in n variables by the Levenberg-Marquardt algorithm. MINPACK::LmdifCostFunction lmdifCostFunction = boost::bind(&LevenbergMarquardt::fcn, this, _1, _2, _3, _4, _5); MINPACK::lmdif(m, n, xx.get(), fvec.get(), static_cast<double>(endCriteria.functionEpsilon()), static_cast<double>(xtol_), static_cast<double>(gtol_), static_cast<int>(endCriteria.maxIterations()), static_cast<double>(epsfcn_), diag.get(), mode, factor, nprint, &info, &nfev, fjac.get(), ldfjac, ipvt.get(), qtf.get(), wa1.get(), wa2.get(), wa3.get(), wa4.get(), lmdifCostFunction); info_ = info; // check requirements & endCriteria evaluation QL_REQUIRE(info != 0, "MINPACK: improper input parameters"); //QL_REQUIRE(info != 6, "MINPACK: ftol is too small. no further " // "reduction in the sum of squares " // "is possible."); if (info != 6) ecType = QuantLib::EndCriteria::StationaryFunctionValue; //QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has " // "reached or exceeded maxfev."); endCriteria.checkMaxIterations(nfev, ecType); QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further " "improvement in the approximate " "solution x is possible."); QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is " "orthogonal to the columns of the " "jacobian to machine precision."); // set problem std::copy(xx.get(), xx.get()+n, x_.begin()); P.setCurrentValue(x_); P.setFunctionValue(P.costFunction().value(x_)); return ecType; }
EndCriteria::Type DifferentialEvolution::minimize(Problem& P, const EndCriteria& endCriteria) { EndCriteria::Type ecType = EndCriteria::MaxIterations; QL_REQUIRE(P.currentValue().size() == nParam_, "Number of parameters mismatch between problem and DE optimizer"); P.reset(); init(); Real bestCost = QL_MAX_REAL; Size bestPop = 0; for (Size p = 0; p < nPop_; ++p) { Array tmp(currGen_[p].pop_); try { currGen_[p].cost_ = P.costFunction().value(tmp); } catch (Error&) { currGen_[p].cost_ = QL_MAX_REAL; } if (currGen_[p].cost_ < bestCost) { bestPop = p; bestCost = currGen_[p].cost_; } } Size lastChange = 0; Size lastParamChange = 0; for(Size i=0; i<endCriteria.maxIterations(); ++i) { Size newBestPop = bestPop; Real newBestCost = bestCost; for (Size p=0; p<nPop_; ++p) { // Find 3 different populations randomly Size r1; do { r1 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while(r1 == p || r1 == bestPop); Size r2; do { r2 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while ( r2 == p || r2 == bestPop || r2 == r1); Size r3; do { r3 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while ( r3 == p || r3 == bestPop || r3 == r1 || r3 == r2); for(Size j=0; j<nParam_; ++j) { nextGen_[p].pop_[j] = currGen_[p].pop_[j]; } Size j = static_cast <Size> (uniformRng_.nextInt32() % nParam_); Size L = 0; do { const double tmp = currGen_[ p].pop_[j] * a0_ + currGen_[ r1].pop_[j] * a1_ + currGen_[ r2].pop_[j] * a2_ + currGen_[ r3].pop_[j] * a3_ + currGen_[bestPop].pop_[j] * aBest_; nextGen_[p].pop_[j] = std::min(maxParams_[j], std::max(minParams_[j], tmp)); j = (j+1)%nParam_; ++L; } while ((uniformRng_.nextReal() < CR_) && (L < nParam_)); // Evaluate the new population Array tmp(nextGen_[p].pop_); try { nextGen_[p].cost_ = P.costFunction().value(tmp); } catch (Error&) { nextGen_[p].cost_ = QL_MAX_REAL; } // Not better, discard it and keep the old one. if (nextGen_[p].cost_ >= currGen_[p].cost_) { nextGen_[p] = currGen_[p]; } // Better, keep it. else { // New best? if (nextGen_[p].cost_ < newBestCost) { newBestPop = p; newBestCost = nextGen_[p].cost_; } } } if(std::abs(newBestCost-bestCost) > endCriteria.functionEpsilon()) { lastChange = i; } const Array absDiff = Abs(nextGen_[newBestPop].pop_-currGen_[bestPop].pop_); if(*std::max_element(absDiff.begin(), absDiff.end()) > endCriteria.rootEpsilon()) { lastParamChange = i; } bestPop = newBestPop; bestCost = newBestCost; currGen_ = nextGen_; if(i-lastChange > endCriteria.maxStationaryStateIterations()) { ecType = EndCriteria::StationaryFunctionValue; break; } if(i-lastParamChange > endCriteria.maxStationaryStateIterations()) { ecType = EndCriteria::StationaryPoint; break; } if (adaptive_) adaptParameters(); } const Array res(currGen_[bestPop].pop_); P.setCurrentValue(res); P.setFunctionValue(bestCost); return ecType; }