PxRigidDynamic* PxCloneDynamic(PxPhysics& physicsSDK, const PxTransform& transform, const PxRigidDynamic& from) { PxRigidDynamic* to = physicsSDK.createRigidDynamic(transform); if(!to) return NULL; copyStaticProperties(*to, from); to->setRigidDynamicFlags(from.getRigidDynamicFlags()); to->setMass(from.getMass()); to->setMassSpaceInertiaTensor(from.getMassSpaceInertiaTensor()); to->setCMassLocalPose(from.getCMassLocalPose()); to->setLinearVelocity(from.getLinearVelocity()); to->setAngularVelocity(from.getAngularVelocity()); to->setLinearDamping(from.getAngularDamping()); to->setAngularDamping(from.getAngularDamping()); to->setMaxAngularVelocity(from.getMaxAngularVelocity()); PxU32 posIters, velIters; from.getSolverIterationCounts(posIters, velIters); to->setSolverIterationCounts(posIters, velIters); to->setSleepThreshold(from.getSleepThreshold()); to->setContactReportThreshold(from.getContactReportThreshold()); return to; }
void Spacetime::restoreState(void) { for (int i = 0; i < dynamic_actors.size(); i++) { PxRigidDynamic *current = dynamic_actors[i]; current->setLinearVelocity(linearVelocityVector[i]); current->setAngularVelocity(angularVelocityVector[i]); current->setGlobalPose(globalPoseVector[i]); } }
PxRigidDynamic* CloneDynamic(PxPhysics& physicsSDK, const PxTransform& transform, const PxRigidDynamic& from, NxMirrorScene::MirrorFilter &mirrorFilter) { PxRigidDynamic* to = physicsSDK.createRigidDynamic(transform); if(!to) return NULL; if ( !copyStaticProperties(*to, from, mirrorFilter) ) { to->release(); to = NULL; return NULL; } to->setRigidDynamicFlags(from.getRigidDynamicFlags()); to->setMass(from.getMass()); to->setMassSpaceInertiaTensor(from.getMassSpaceInertiaTensor()); to->setCMassLocalPose(from.getCMassLocalPose()); if ( !(to->getRigidDynamicFlags() & PxRigidDynamicFlag::eKINEMATIC) ) { to->setLinearVelocity(from.getLinearVelocity()); to->setAngularVelocity(from.getAngularVelocity()); } to->setLinearDamping(from.getAngularDamping()); to->setAngularDamping(from.getAngularDamping()); to->setMaxAngularVelocity(from.getMaxAngularVelocity()); PxU32 posIters, velIters; from.getSolverIterationCounts(posIters, velIters); to->setSolverIterationCounts(posIters, velIters); to->setSleepThreshold(from.getSleepThreshold()); to->setContactReportThreshold(from.getContactReportThreshold()); return to; }
void Spacetime::setState(matrix<double> stateVector) { std::vector<PxQuat> theta; for (int i = 0; i < joints.size(); i++) { PxQuat q = PxQuat::createIdentity(); if (i == 0) { if (DOF > X) { q *= PxQuat(stateVector((i)*DOF+X,0), PxVec3(1,0,0)); } if (DOF > Y) { q *= PxQuat(stateVector((i)*DOF+Y,0), PxVec3(0,1,0)); } if (DOF > Z) { q *= PxQuat(stateVector((i)*DOF+Z,0), PxVec3(0,0,1)); } } else { if (DOF > X) { q *= PxQuat(stateVector((i)*DOF+X,0), PxVec3(1,0,0)) * theta[(i-1)*DOF+X]; } if (DOF > Y) { q *= PxQuat(stateVector((i)*DOF+Y,0), PxVec3(0,1,0)) * theta[(i-1)*DOF+Y]; } if (DOF > Z) { q *= PxQuat(stateVector((i)*DOF+Z,0), PxVec3(0,0,1)) * theta[(i-1)*DOF+Z]; } } theta.push_back(q); } dynamic_actors[0]->setGlobalPose(PxTransform(root, PxQuat::createIdentity())); PxVec3 lastJointPos = dynamic_actors[0]->getGlobalPose().p + PxVec3(0,0.5,0); PxQuat lastJointRot = dynamic_actors[0]->getGlobalPose().q; for (int i = 0; i < joints.size(); i++) { PxRigidDynamic *current = dynamic_actors[i+1]; PxVec3 t = theta[i].rotate(-joint_local_positions[i]); PxVec3 gPos = lastJointPos + t; current->setGlobalPose(PxTransform(gPos, theta[i])); lastJointPos = lastJointPos + 2*t; } for (int i = 0; i < joints.size(); i++) { PxRigidDynamic *current = dynamic_actors[i+1]; PxVec3 angularVelocity; if (DOF > X) { angularVelocity[X] = stateVector(joints.size()*DOF + i*DOF+X,0); } else { angularVelocity[X] = 0.0; } if (DOF > Y) { angularVelocity[Y] = stateVector(joints.size()*DOF + i*DOF+Y,0); } else { angularVelocity[Y] = 0.0; } if (DOF > Z) { angularVelocity[Z] = stateVector(joints.size()*DOF + i*DOF+Z,0); } else { angularVelocity[Z] = 0.0; } current->setAngularVelocity(angularVelocity); current->setLinearVelocity(PxVec3(0,0,0)); } }
void SampleSubmarine::explode(PxRigidActor* actor, const PxVec3& explosionPos, const PxReal explosionStrength) { size_t numRenderActors = mRenderActors.size(); for(PxU32 i = 0; i < numRenderActors; i++) { if(&(mRenderActors[i]->getPhysicsShape()->getActor()) == actor) { PxShape* shape = mRenderActors[i]->getPhysicsShape(); PxTransform pose = PxShapeExt::getGlobalPose(*shape); PxGeometryHolder geom = shape->getGeometry(); // create new actor from shape (to split compound) PxRigidDynamic* newActor = mPhysics->createRigidDynamic(pose); if(!newActor) fatalError("createRigidDynamic failed!"); PxShape* newShape = newActor->createShape(geom.any(), *mMaterial); newShape->userData = mRenderActors[i]; mRenderActors[i]->setPhysicsShape(newShape); newActor->setActorFlag(PxActorFlag::eVISUALIZATION, true); newActor->setLinearDamping(10.5f); newActor->setAngularDamping(0.5f); PxRigidBodyExt::updateMassAndInertia(*newActor, 1.0f); mScene->addActor(*newActor); mPhysicsActors.push_back(newActor); PxVec3 explosion = pose.p - explosionPos; PxReal len = explosion.normalize(); explosion *= (explosionStrength / len); newActor->setLinearVelocity(explosion); newActor->setAngularVelocity(PxVec3(1,2,3)); } } removeActor(actor); }
void PxVehicleCopyDynamicsData(const PxVehicleCopyDynamicsMap& wheelMap, const PxVehicleWheels& src, PxVehicleWheels* trg) { PX_CHECK_AND_RETURN(trg, "PxVehicleCopyDynamicsData requires that trg is a valid vehicle pointer"); PX_CHECK_AND_RETURN(src.getVehicleType() == trg->getVehicleType(), "PxVehicleCopyDynamicsData requires that both src and trg are the same type of vehicle"); #ifdef PX_CHECKED { const PxU32 numWheelsSrc = src.mWheelsSimData.getNbWheels(); const PxU32 numWheelsTrg = trg->mWheelsSimData.getNbWheels(); PxU8 copiedWheelsSrc[PX_MAX_NB_WHEELS]; PxMemZero(copiedWheelsSrc, sizeof(PxU8) * PX_MAX_NB_WHEELS); PxU8 setWheelsTrg[PX_MAX_NB_WHEELS]; PxMemZero(setWheelsTrg, sizeof(PxU8) * PX_MAX_NB_WHEELS); for(PxU32 i = 0; i < PxMin(numWheelsSrc, numWheelsTrg); i++) { const PxU32 srcWheelId = wheelMap.sourceWheelIds[i]; PX_CHECK_AND_RETURN(srcWheelId < numWheelsSrc, "PxVehicleCopyDynamicsData - wheelMap contains illegal source wheel id"); PX_CHECK_AND_RETURN(0 == copiedWheelsSrc[srcWheelId], "PxVehicleCopyDynamicsData - wheelMap contains illegal source wheel id"); copiedWheelsSrc[srcWheelId] = 1; const PxU32 trgWheelId = wheelMap.targetWheelIds[i]; PX_CHECK_AND_RETURN(trgWheelId < numWheelsTrg, "PxVehicleCopyDynamicsData - wheelMap contains illegal target wheel id"); PX_CHECK_AND_RETURN(0 == setWheelsTrg[trgWheelId], "PxVehicleCopyDynamicsData - wheelMap contains illegal target wheel id"); setWheelsTrg[trgWheelId]=1; } } #endif const PxU32 numWheelsSrc = src.mWheelsSimData.getNbWheels(); const PxU32 numWheelsTrg = trg->mWheelsSimData.getNbWheels(); //Set all dynamics data on the target to zero. //Be aware that setToRestState sets the rigid body to //rest so set the momentum back after calling setToRestState. PxRigidDynamic* actorTrg = trg->getRigidDynamicActor(); PxVec3 linVel = actorTrg->getLinearVelocity(); PxVec3 angVel = actorTrg->getAngularVelocity(); switch(src.getVehicleType()) { case PxVehicleTypes::eDRIVE4W: ((PxVehicleDrive4W*)trg)->setToRestState(); break; case PxVehicleTypes::eDRIVENW: ((PxVehicleDriveNW*)trg)->setToRestState(); break; case PxVehicleTypes::eDRIVETANK: ((PxVehicleDriveTank*)trg)->setToRestState(); break; case PxVehicleTypes::eNODRIVE: ((PxVehicleNoDrive*)trg)->setToRestState(); break; default: break; } actorTrg->setLinearVelocity(linVel); actorTrg->setAngularVelocity(angVel); //Keep a track of the wheels on trg that have their dynamics data set as a copy from src. PxU8 setWheelsTrg[PX_MAX_NB_WHEELS]; PxMemZero(setWheelsTrg, sizeof(PxU8) * PX_MAX_NB_WHEELS); //Keep a track of the average wheel rotation speed of all enabled wheels on src. PxU32 numEnabledWheelsSrc = 0; PxF32 accumulatedWheelRotationSpeedSrc = 0.0f; //Copy wheel dynamics data from src wheels to trg wheels. //Track the target wheels that have been given dynamics data from src wheels. //Compute the accumulated wheel rotation speed of all enabled src wheels. const PxU32 numMappedWheels = PxMin(numWheelsSrc, numWheelsTrg); for(PxU32 i = 0; i < numMappedWheels; i++) { const PxU32 srcWheelId = wheelMap.sourceWheelIds[i]; const PxU32 trgWheelId = wheelMap.targetWheelIds[i]; trg->mWheelsDynData.copy(src.mWheelsDynData, srcWheelId, trgWheelId); setWheelsTrg[trgWheelId] = 1; if(!src.mWheelsSimData.getIsWheelDisabled(srcWheelId)) { numEnabledWheelsSrc++; accumulatedWheelRotationSpeedSrc += src.mWheelsDynData.getWheelRotationSpeed(srcWheelId); } } //Compute the average wheel rotation speed of src. PxF32 averageWheelRotationSpeedSrc = 0; if(numEnabledWheelsSrc > 0) { averageWheelRotationSpeedSrc = (accumulatedWheelRotationSpeedSrc/ (1.0f * numEnabledWheelsSrc)); } //For wheels on trg that have not had their dynamics data copied from src just set //their wheel rotation speed to the average wheel rotation speed. for(PxU32 i = 0; i < numWheelsTrg; i++) { if(0 == setWheelsTrg[i] && !trg->mWheelsSimData.getIsWheelDisabled(i)) { trg->mWheelsDynData.setWheelRotationSpeed(i, averageWheelRotationSpeedSrc); } } //Copy the engine rotation speed/gear states/autobox states/etc. switch(src.getVehicleType()) { case PxVehicleTypes::eDRIVE4W: case PxVehicleTypes::eDRIVENW: case PxVehicleTypes::eDRIVETANK: { const PxVehicleDriveDynData& driveDynDataSrc = ((const PxVehicleDrive&)src).mDriveDynData; PxVehicleDriveDynData* driveDynDataTrg = &((PxVehicleDrive*)trg)->mDriveDynData; *driveDynDataTrg = driveDynDataSrc; } break; default: break; } }