예제 #1
0
void QGLBezierPatchesPrivate::subdivide(QGLBuilder *list) const
{
    QGeometryData prim;
    int count = positions.size();
    for (int posn = 0; (posn + 15) < count; posn += 16) {
        // Construct a QGLBezierPatch object from the next high-level patch.
        QGLBezierPatch patch;
        int vertex;
        for (int vertex = 0; vertex < 16; ++vertex)
            patch.points[vertex] = positions[posn + vertex];
        QVector2D tex1, tex2;
        if (!textureCoords.isEmpty()) {
            tex1 = textureCoords[(posn / 16) * 2];
            tex2 = textureCoords[(posn / 16) * 2 + 1];
        } else {
            tex1 = QVector2D(0.0f, 0.0f);
            tex2 = QVector2D(1.0f, 1.0f);
        }
        qreal xtex = tex1.x();
        qreal ytex = tex1.y();
        qreal wtex = tex2.x() - xtex;
        qreal htex = tex2.y() - ytex;
        for (int corner = 0; corner < 4; ++corner) {
            vertex = posn + cornerOffsets[corner];
            QVector3D n = patch.normal(cornerS[corner], cornerT[corner]);
            patch.indices[corner] = prim.count();
            prim.appendVertex(patch.points[cornerOffsets[corner]]);
            prim.appendNormal(n);
            prim.appendTexCoord
                (QVector2D(xtex + wtex * cornerS[corner],
                           ytex + htex * cornerT[corner]));
        }

        // Subdivide the patch and generate the final triangles.
        patch.recursiveSubDivide(&prim, subdivisionDepth,
                                 xtex, ytex, wtex, htex);
    }
    list->addTriangles(prim);
}
예제 #2
0
qreal QGLBezierPatchesPrivate::intersection
    (const QRay3D &ray, bool anyIntersection, QVector2D *texCoord, int *bestPatch) const
{
    int count = positions.size();
    qreal result = qSNaN();
    QVector2D tc;
    if (bestPatch)
        *bestPatch = -1;
    for (int posn = 0; (posn + 15) < count; posn += 16) {
        QGLBezierPatch patch;
        for (int vertex = 0; vertex < 16; ++vertex)
            patch.points[vertex] = positions[posn + vertex];
        QVector2D tex1, tex2;
        if (!textureCoords.isEmpty()) {
            tex1 = textureCoords[(posn / 16) * 2];
            tex2 = textureCoords[(posn / 16) * 2 + 1];
        } else {
            tex1 = QVector2D(0.0f, 0.0f);
            tex2 = QVector2D(1.0f, 1.0f);
        }
        qreal xtex = tex1.x();
        qreal ytex = tex1.y();
        qreal wtex = tex2.x() - xtex;
        qreal htex = tex2.y() - ytex;
        qreal prev = result;
        result = patch.intersection
            (result, subdivisionDepth, ray, anyIntersection,
             xtex, ytex, wtex, htex, &tc);
        if (bestPatch && result != prev)
            *bestPatch = posn / 16;
        if (anyIntersection && !qIsNaN(result))
            break;
    }
    if (texCoord && !qIsNaN(result))
        *texCoord = tc;
    return result;
}
예제 #3
0
void tst_QVectorArray::create2DArray()
{
    QVector2DArray array;
    QVERIFY(array.isEmpty());

    array.append(1.0f, 2.0f);
    array.append(3.0f, 4.0f);
    array.append(QVector2D(5.0f, 6.0f));
    array.append(QPointF(7.0f, 8.0f));
    array.append(QPoint(9, 10));

    QCOMPARE(array.size(), 5);
    QVERIFY(array[0] == QVector2D(1.0f, 2.0f));
    QVERIFY(array[1] == QVector2D(3.0f, 4.0f));
    QVERIFY(array[2] == QVector2D(5.0f, 6.0f));
    QVERIFY(array[3] == QVector2D(7.0f, 8.0f));
    QVERIFY(array[4] == QVector2D(9.0f, 10.0f));

    array.append(QVector2D(11.0f, 12.0f), QVector2D(13.0f, 14.0f));
    array.append(QVector2D(15.0f, 16.0f), QVector2D(17.0f, 18.0f),
                 QVector2D(19.0f, 20.0f));
    array.append(QVector2D(21.0f, 22.0f), QVector2D(23.0f, 24.0f),
                 QVector2D(25.0f, 26.0f));

    for (int index = 0; index < array.size(); ++index)
        QVERIFY(array[index] == QVector2D(index * 2 + 1, index * 2 + 2));

    QVector2DArray array2(34);
    QCOMPARE(array2.size(), 34);
    for (int index = 0; index < array2.size(); ++index)
        QCOMPARE(array2[index], QVector2D(0.0f, 0.0f));

    QVector2DArray array3(15, QVector2D(1.0f, 2.0f));
    QCOMPARE(array3.size(), 15);
    for (int index = 0; index < array3.size(); ++index)
        QCOMPARE(array3[index], QVector2D(1.0f, 2.0f));
}
예제 #4
0
void tst_QVectorArray::vector2DArray()
{
    QVector2DArray array;
    QVERIFY(array.isEmpty());

    array.append(1.0f, 2.0f);
    array.append(3.0f, 4.0f);
    array.append(QVector2D(5.0f, 6.0f));
    array.append(QPointF(7.0f, 8.0f));
    array.append(QPoint(9, 10));

    QCOMPARE(array.size(), 5);
    QVERIFY(array[0] == QVector2D(1.0f, 2.0f));
    QVERIFY(array[1] == QVector2D(3.0f, 4.0f));
    QVERIFY(array[2] == QVector2D(5.0f, 6.0f));
    QVERIFY(array[3] == QVector2D(7.0f, 8.0f));
    QVERIFY(array[4] == QVector2D(9.0f, 10.0f));

    array.append(QVector2D(11.0f, 12.0f), QVector2D(13.0f, 14.0f));
    array.append(QVector2D(15.0f, 16.0f), QVector2D(17.0f, 18.0f),
                 QVector2D(19.0f, 20.0f));
    array.append(QVector2D(21.0f, 22.0f), QVector2D(23.0f, 24.0f),
                 QVector2D(25.0f, 26.0f));

    for (int index = 0; index < array.size(); ++index)
        QVERIFY(array[index] == QVector2D(index * 2 + 1, index * 2 + 2));

    int size = array.size();
    QVector2DArray result = array.scaled(1.0);
    // check did not change the original
    QCOMPARE(array.size(), size);
    QVERIFY(array[0] == QVector2D(1.0f, 2.0f));
    QVERIFY(array[4] == QVector2D(9.0f, 10.0f));
    // result should be copy - mult by 1.0 costs nothing
    QVERIFY(!result.isDetached());
    QCOMPARE(result.size(), size);
    QCOMPARE(result[0], QVector2D(1.0f, 2.0f));
    QCOMPARE(result[4], QVector2D(9.0f, 10.0f));
    QCOMPARE(result[12], QVector2D(25.0f, 26.0f));
    // now actually do a scale
    result = array.scaled(2.0);
    QCOMPARE(result.size(), size);
    QCOMPARE(array.size(), size);
    QCOMPARE(array[0], QVector2D(1.0f, 2.0f));
    QCOMPARE(array[4], QVector2D(9.0f, 10.0f));
    QCOMPARE(result[0], QVector2D(2.0f, 4.0f));
    QCOMPARE(result[4], QVector2D(18.0f, 20.0f));
    QCOMPARE(result[12], QVector2D(50.0f, 52.0f));

    array.scale(1.0);
    QCOMPARE(array.size(), size);  // should all be the same
    QCOMPARE(array[0], QVector2D(1.0f, 2.0f));
    QCOMPARE(array[4], QVector2D(9.0f, 10.0f));
    QCOMPARE(array[12], QVector2D(25.0f, 26.0f));

    array.scale(2.0);
    QCOMPARE(array.size(), size);  // size should be the same
    QCOMPARE(array[0], QVector2D(2.0f, 4.0f));
    QCOMPARE(array[4], QVector2D(18.0f, 20.0f));
    QCOMPARE(array[12], QVector2D(50.0f, 52.0f));
}
/*!
    Paints this GL graphics viewport onto \a painter, with the specified
    \a option and \a widget parameters.

    This override creates a QGLPainter for \a painter and passes
    it to paintGL().

    \sa paintGL()
*/
void QGLGraphicsViewportItem::paint
    (QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget)
{
    Q_D(QGLGraphicsViewportItem);

    Q_UNUSED(option);
    Q_UNUSED(widget);

    if (d->rect.isEmpty())
        return;

    // Initialize a QGLPainter for the surface and bail out if not active.
    QGLPainter glpainter;
    if (!glpainter.begin(painter)) {
        qWarning("GL graphics system is not active; cannot use 3D items");
        return;
    }

    // Set up the GL viewport to limit drawing to the bounds of this item.
    QRect viewport = painter->deviceTransform().mapRect(rect()).toRect();
    QGLSubsurface surface(glpainter.currentSurface(), viewport);
    glpainter.pushSurface(&surface);

    // Set up the desired drawing options.
    glDisable(GL_CULL_FACE);
    d->setDefaults(&glpainter);
    if (d->backgroundColor.isValid()) {
        // We clear the background by drawing a triangle fan so
        // that the background color will blend with the underlying
        // screen content if it has an alpha component.
        glDisable(GL_DEPTH_TEST);
        if (d->backgroundColor.alpha() != 255)
            glEnable(GL_BLEND);
        else
            glDisable(GL_BLEND);
        QVector2DArray array;
        array.append(-1, -1);
        array.append(1, -1);
        array.append(1, 1);
        array.append(-1, 1);
        glpainter.projectionMatrix().setToIdentity();
        glpainter.modelViewMatrix().setToIdentity();
        glpainter.setStandardEffect(QGL::FlatColor);
        glpainter.setColor(d->backgroundColor);
        glpainter.setVertexAttribute(QGL::Position, array);
        glpainter.draw(QGL::TriangleFan, 4);
    }
    glClear(GL_DEPTH_BUFFER_BIT);
    glEnable(GL_DEPTH_TEST);
    glDisable(GL_BLEND);

    // Apply the camera.
    glpainter.setEye(QGL::NoEye);
    glpainter.setCamera(d->camera);

    // Paint the GL contents.
    paintGL(&glpainter);

    // Disable the current drawing effect so that QGLPainter will
    // forcibly update the GL context the next time QGLPainter is used.
    glpainter.disableEffect();

    // Try to restore the GL state to something paint-engine compatible.
    glDisable(GL_CULL_FACE);
    d->setDefaults(&glpainter);
    glDisable(GL_DEPTH_TEST);

    glpainter.popSurface();
}
예제 #6
0
/*!
    \relates QGLCubeSphere

    Builds the geometry for \a sphere within the specified
    display \a list.
*/
QGLBuilder& operator<<(QGLBuilder& list, const QGLCubeSphere& sphere)
{
    /*
              A-----H
              |     |
              |     |
        A-----D-----E-----H-----A
        |     |     |     |     |
        |     |     |     |     |
        B-----C-----F-----G-----B
              |     |
              |     |
              B-----G

       ^  d  e
       |  c  f
       y  
        x-->
    */

    qreal scale = sphere.diameter();
    int depth = sphere.subdivisionDepth();

    const qreal offset = 1.0f;
    float cube[8][3] = {
        { -offset,  offset, -offset},    // A - 0
        { -offset, -offset, -offset },   // B - 1
        { -offset, -offset,  offset },   // C - 2
        { -offset,  offset,  offset },  // D - 3
        {  offset,  offset,  offset },   // E - 4
        {  offset, -offset,  offset },    // F - 5
        {  offset, -offset, -offset },   // G - 6
        {  offset,  offset, -offset },  // H - 7
    };

    int face[6][4] = {
        { 0, 1, 2, 3 }, // A-B-C-D
        { 3, 2, 5, 4 }, // D-C-F-E
        { 4, 5, 6, 7 }, // E-F-G-H
        { 7, 6, 1, 0 }, // H-G-B-A
        { 0, 3, 4, 7 }, // A-D-E-H
        { 2, 1, 6, 5 }, // C-B-G-F
    };

    const float v3 = 0.0f;
    const float v2 = 0.333333333f;
    const float v1 = 0.666666666f;
    const float v0 = 1.0f;

    const float u0 = 0.0f;
    const float u1 = 0.25f;
    const float u2 = 0.5f;
    const float u3 = 0.75f;
    const float u4 = 1.0f;

    float tex[6][4][2] = {
        { {u0, v1}, {u0, v2}, {u1, v2}, {u1, v1} }, // A-B-C-D
        { {u1, v1}, {u1, v2}, {u2, v2}, {u2, v1} }, // D-C-F-E
        { {u2, v1}, {u2, v2}, {u3, v2}, {u3, v1} }, // E-F-G-H
        { {u3, v1}, {u3, v2}, {u4, v2}, {u4, v1} }, // H-G-B-A
        { {u1, v0}, {u1, v1}, {u2, v1}, {u2, v0} }, // A-D-E-H
        { {u1, v2}, {u1, v3}, {u2, v3}, {u2, v2} }, // C-B-G-F
    };

    // Generate the initial vertex list from a plain cube.
    QVector3DArray vertices;
    QVector3DArray normals;
    QVector2DArray texCoords;
    for (int ix = 0; ix < 6; ++ix) {
        QVector3D n0(cube[face[ix][0]][0], cube[face[ix][0]][1], cube[face[ix][0]][2]);
        QVector3D n1(cube[face[ix][1]][0], cube[face[ix][1]][1], cube[face[ix][1]][2]);
        QVector3D n2(cube[face[ix][2]][0], cube[face[ix][2]][1], cube[face[ix][2]][2]);
        QVector3D n3(cube[face[ix][3]][0], cube[face[ix][3]][1], cube[face[ix][3]][2]);

        QVector2D t0(tex[ix][0][0], tex[ix][0][1]);
        QVector2D t1(tex[ix][1][0], tex[ix][1][1]);
        QVector2D t2(tex[ix][2][0], tex[ix][2][1]);
        QVector2D t3(tex[ix][3][0], tex[ix][3][1]);

        n0 = n0.normalized();
        n1 = n1.normalized();
        n2 = n2.normalized();
        n3 = n3.normalized();

        QVector3D v0 = n0 * scale / 2.0f;
        QVector3D v1 = n1 * scale / 2.0f;
        QVector3D v2 = n2 * scale / 2.0f;
        QVector3D v3 = n3 * scale / 2.0f;

        vertices.append(v0, v1, v2, v3);
        normals.append(n0, n1, n2, n3);
        texCoords.append(t0, t1, t2, t3);
    }

    // Subdivide the cube.
    while (depth-- > 1) {
        QVector3DArray newVertices;
        QVector3DArray newNormals;
        QVector2DArray newTexCoords;

        int count = vertices.count();
        for (int i = 0; i < count; i+= 4) {
            QVector3D v0 = vertices.at(i);
            QVector3D v1 = vertices.at(i+1);
            QVector3D v2 = vertices.at(i+2);
            QVector3D v3 = vertices.at(i+3);

            QVector3D n0 = normals.at(i);
            QVector3D n1 = normals.at(i+1);
            QVector3D n2 = normals.at(i+2);
            QVector3D n3 = normals.at(i+3);

            QVector2D t0 = texCoords.at(i);
            QVector2D t1 = texCoords.at(i+1);
            QVector2D t2 = texCoords.at(i+2);
            QVector2D t3 = texCoords.at(i+3);

            QVector3D n01 = (v0 + v1).normalized();
            QVector3D n12 = (v1 + v2).normalized();
            QVector3D n23 = (v2 + v3).normalized();
            QVector3D n30 = (v3 + v0).normalized();
            QVector3D nc = (v0 + v1 + v2 + v3).normalized();
            QVector3D v01 = n01 * scale / 2.0f;
            QVector3D v12 = n12 * scale / 2.0f;
            QVector3D v23 = n23 * scale / 2.0f;
            QVector3D v30 = n30 * scale / 2.0f;
            QVector3D vc = nc * scale / 2.0f;

            QVector2D t01 = (t0 + t1) / 2;
            QVector2D t12 = (t1 + t2) / 2;
            QVector2D t23 = (t2 + t3) / 2;
            QVector2D t30 = (t3 + t0) / 2;
            QVector2D tc = (t2 + t0) / 2;

            newVertices.append(v0, v01, vc, v30);
            newNormals.append(n0, n01, nc, n30);
            newTexCoords.append(t0, t01, tc, t30);

            newVertices.append(v01, v1, v12, vc);
            newNormals.append(n01, n1, n12, nc);
            newTexCoords.append(t01, t1, t12, tc);

            newVertices.append(vc, v12, v2, v23);
            newNormals.append(nc, n12, n2, n23);
            newTexCoords.append(tc, t12, t2, t23);

            newVertices.append(v30, vc, v23, v3);
            newNormals.append(n30, nc, n23, n3);
            newTexCoords.append(t30, tc, t23, t3);
        }

        vertices = newVertices;
        normals = newNormals;
        texCoords = newTexCoords;
    }

    // Add the final vertices to the display list.
    QGeometryData prim;
    prim.appendVertexArray(vertices);
    prim.appendNormalArray(normals);
    prim.appendTexCoordArray(texCoords);
    list.addTriangles(prim);
    return list;
}
예제 #7
0
/*!
    \relates QGLIcoSphere

    Builds the geometry for \a sphere within the specified
    display \a list.
*/
QGLBuilder& operator<<(QGLBuilder& list, const QGLIcoSphere& sphere)
{
    qreal scale = sphere.diameter();
    int depth = sphere.subdivisionDepth();
    qreal tiny= 1.0f;
    qreal large = phi*tiny;

    float ico[12][3] = {
        { 0.0f, tiny, large },    // A - 0
        { 0.0f, tiny, -large },   // B - 1
        { 0.0f, -tiny, large },   // C - 2
        { 0.0f, -tiny, -large },  // D - 3
        { tiny, large, 0.0f },    // E - 4
        { tiny, -large, 0.0f },   // F - 5
        { -tiny, large, 0.0f },   // G - 6
        { -tiny, -large, 0.0f },  // H - 7
        { large, 0.0f, tiny},    // I - 8
        { large, 0.0f, -tiny},   // J - 9
        { -large, 0.0f, tiny},   // K - 10
        { -large, 0.0f, -tiny}   // L - 11
    };

    int face[20][3] = {
        { 4, 0, 8 },            // E-A-I
        { 6, 0, 4 },            // G-A-E
        { 6, 10, 0 },           // G-K-A
        { 11, 10, 6 },          // L-K-G
        { 0, 2, 8 },            // A-C-I
        { 10, 2, 0 },           // K-C-A
        { 10, 7, 2 },           // K-H-C
        { 11, 7, 10 },          // L-H-K
        { 2, 5, 8 },            // C-F-I
        { 7, 5, 2 },            // H-F-C
        { 7, 3, 5 },            // H-D-F
        { 11, 3, 7 },           // L-D-H
        { 5, 9, 8 },            // F-J-I
        { 3, 9, 5 },            // D-J-F
        { 3, 1, 9 },            // D-B-J
        { 11, 1, 3 },           // L-B-D
        { 9, 4, 8 },            // J-E-I
        { 1, 4, 9 },            // B-E-J
        { 1, 6, 4 },            // B-G-E
        { 11, 6, 1 }            // L-G-B
    };

    const float u0 = 0.0f;
    const float u1 = 0.173205081f;
    const float u2 = 0.346410162f;
    const float u3 = 0.519615242f;
    const float u4 = 0.692820323f;
    const float u5 = 0.866025402f;
    const float v9 = 0.0f;
    const float v8 = 0.111111111f;
    const float v7 = 0.222222222f;
    const float v6 = 0.333333333f;
    const float v5 = 0.444444444f;
    const float v4 = 0.555555555f;
    const float v3 = 0.666666666f;
    const float v2 = 0.777777777f;
    const float v1 = 0.888888888f;
    const float v0 = 1.0f;

    float tex[20][3][2] = {
        { { u0, v1 }, { u1, v2 }, { u1, v0 } }, // E-A-I
        { { u0, v3 }, { u1, v2 }, { u0, v1 } }, // G-A-E
        { { u0, v3 }, { u1, v4 }, { u1, v2 } }, // G-K-A
        { { u0, v5 }, { u1, v4 }, { u0, v3 } }, // L-K-G
        { { u1, v2 }, { u2, v3 }, { u2, v1 } }, // A-C-I
        { { u1, v4 }, { u2, v3 }, { u1, v2 } }, // K-C-A
        { { u1, v4 }, { u2, v5 }, { u2, v3 } }, // K-H-C
        { { u1, v6 }, { u2, v5 }, { u1, v4 } }, // L-H-K
        { { u2, v3 }, { u3, v4 }, { u3, v2 } }, // C-F-I
        { { u2, v5 }, { u3, v4 }, { u2, v3 } }, // H-F-C
        { { u2, v5 }, { u3, v6 }, { u3, v4 } }, // H-D-F
        { { u2, v7 }, { u3, v6 }, { u2, v5 } }, // L-D-H
        { { u3, v4 }, { u4, v5 }, { u4, v3 } }, // F-J-I
        { { u3, v6 }, { u4, v5 }, { u3, v4 } }, // D-J-F
        { { u3, v6 }, { u4, v7 }, { u4, v5 } }, // D-B-J
        { { u3, v8 }, { u4, v7 }, { u3, v6 } }, // L-B-D
        { { u4, v5 }, { u5, v6 }, { u5, v4 } }, // J-E-I
        { { u4, v7 }, { u5, v6 }, { u4, v5 } }, // B-E-J
        { { u4, v7 }, { u5, v8 }, { u5, v6 } }, // B-G-E
        { { u4, v9 }, { u5, v8 }, { u4, v7 } }  // L-G-B
    };

    // Generate the initial vertex list from a plain icosahedron.
    QVector3DArray vertices;
    QVector3DArray normals;
    QVector2DArray texCoords;
    for (int ix = 0; ix < 20; ++ix) {
        QVector3D n0(ico[face[ix][0]][0], ico[face[ix][0]][1], ico[face[ix][0]][2]);
        QVector3D n1(ico[face[ix][1]][0], ico[face[ix][1]][1], ico[face[ix][1]][2]);
        QVector3D n2(ico[face[ix][2]][0], ico[face[ix][2]][1], ico[face[ix][2]][2]);

        QVector2D t0(tex[ix][0][0], tex[ix][0][1]);
        QVector2D t1(tex[ix][1][0], tex[ix][1][1]);
        QVector2D t2(tex[ix][2][0], tex[ix][2][1]);

        n0 = n0.normalized();
        n1 = n1.normalized();
        n2 = n2.normalized();

        QVector3D v0 = n0 * scale / 2.0f;
        QVector3D v1 = n1 * scale / 2.0f;
        QVector3D v2 = n2 * scale / 2.0f;

        vertices.append(v0, v1, v2);
        normals.append(n0, n1, n2);
        texCoords.append(t0, t1, t2);
    }

    // Subdivide the icosahedron.
    while (depth-- > 1) {
        QVector3DArray newVertices;
        QVector3DArray newNormals;
        QVector2DArray newTexCoords;

        int count = vertices.count();
        for (int i = 0; i < count; i+= 3) {
            QVector3D v0 = vertices.at(i);
            QVector3D v1 = vertices.at(i+1);
            QVector3D v2 = vertices.at(i+2);

            QVector3D n0 = normals.at(i);
            QVector3D n1 = normals.at(i+1);
            QVector3D n2 = normals.at(i+2);

            QVector2D t0 = texCoords.at(i);
            QVector2D t1 = texCoords.at(i+1);
            QVector2D t2 = texCoords.at(i+2);

            QVector3D n01 = (v0 + v1).normalized();
            QVector3D n12 = (v1 + v2).normalized();
            QVector3D n20 = (v2 + v0).normalized();
            QVector3D v01 = n01 * scale / 2.0f;
            QVector3D v12 = n12 * scale / 2.0f;
            QVector3D v20 = n20 * scale / 2.0f;

            QVector2D t01 = (t0 + t1) / 2;
            QVector2D t12 = (t1 + t2) / 2;
            QVector2D t20 = (t2 + t0) / 2;

            newVertices.append(v0, v01, v20);
            newNormals.append(n0, n01, n20);
            newTexCoords.append(t0, t01, t20);

            newVertices.append(v01, v1, v12);
            newNormals.append(n01, n1, n12);
            newTexCoords.append(t01, t1, t12);

            newVertices.append(v01, v12, v20);
            newNormals.append(n01, n12, n20);
            newTexCoords.append(t01, t12, t20);

            newVertices.append(v20, v12, v2);
            newNormals.append(n20, n12, n2);
            newTexCoords.append(t20, t12, t2);
        }

        vertices = newVertices;
        normals = newNormals;
        texCoords = newTexCoords;
    }

    // Add the final vertices to the builder.
    QGeometryData prim;
    prim.appendVertexArray(vertices);
    prim.appendNormalArray(normals);
    prim.appendTexCoordArray(texCoords);
    list.addTriangles(prim);
    return list;
}