예제 #1
0
//--------------------------------------------------------- 
bool isPromotionCast(const CastExpr* CE)
{
  QualType destType = CE->getType();
  QualType srcType = CE->getSubExpr()->getType();
  return (destType->isRealFloatingType() && srcType->isRealFloatingType()) ||
         (destType->isSignedIntegerType() && srcType->isSignedIntegerType()) ||
         (destType->isUnsignedIntegerType() && srcType->isUnsignedIntegerType());
}
예제 #2
0
static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
  // Don't issue a fixit if there is already an initializer.
  if (VD->getInit())
    return;

  // Suggest possible initialization (if any).
  const char *initialization = 0;
  QualType VariableTy = VD->getType().getCanonicalType();

  if (VariableTy->isObjCObjectPointerType() ||
      VariableTy->isBlockPointerType()) {
    // Check if 'nil' is defined.
    if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil")))
      initialization = " = nil";
    else
      initialization = " = 0";
  }
  else if (VariableTy->isRealFloatingType())
    initialization = " = 0.0";
  else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus)
    initialization = " = false";
  else if (VariableTy->isEnumeralType())
    return;
  else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) {
    // Check if 'NULL' is defined.
    if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL")))
      initialization = " = NULL";
    else
      initialization = " = 0";
  }
  else if (VariableTy->isScalarType())
    initialization = " = 0";

  if (initialization) {
    SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
    S.Diag(loc, diag::note_var_fixit_add_initialization)
      << FixItHint::CreateInsertion(loc, initialization);
  }
}
예제 #3
0
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  if (!AsmString->isAscii())
    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
      << AsmString->getSourceRange());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (!Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];
    if (CheckAsmLValue(OutputExpr, *this))
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());

    if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
                            diag::err_dereference_incomplete_type))
      return StmtError();

    OutputConstraintInfos.push_back(Info);
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
                                                NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    Expr *InputExpr = Exprs[i];

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
                                                   Size))
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_invalid_input_size)
                       << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned Idx = 0;
    unsigned ConstraintIdx = 0;
    for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
      TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
      if (Idx == Piece.getOperandNo())
        break;
      ++Idx;

      if (Info.isReadWrite()) {
        if (Idx == Piece.getOperandNo())
          break;
        ++Idx;
      }
    }

    for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
      TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
      if (Idx == Piece.getOperandNo())
        break;
      ++Idx;

      if (Info.isReadWrite()) {
        if (Idx == Piece.getOperandNo())
          break;
        ++Idx;
      }
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo()
          .validateConstraintModifier(Literal->getString(), Piece.getModifier(),
                                      Size))
      Diag(Exprs[ConstraintIdx]->getLocStart(),
           diag::warn_asm_mismatched_size_modifier);
  }

  // Validate tied input operands for type mismatches.
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return NS;
}
예제 #4
0
파일: SemaStmtAsm.cpp 프로젝트: hanm/clang
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  assert(AsmString->isAscii());

  bool ValidateConstraints =
      DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (ValidateConstraints &&
        !Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(OutputExpr, *this))
      return StmtError();

    // Bitfield can't be referenced with a pointer.
    if (Info.allowsMemory() && OutputExpr->refersToBitField())
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_bitfield_in_memory_constraint)
                       << 1
                       << Info.getConstraintStr()
                       << OutputExpr->getSourceRange());

    OutputConstraintInfos.push_back(Info);

    // If this is dependent, just continue.
    if (OutputExpr->isTypeDependent())
      continue;

    Expr::isModifiableLvalueResult IsLV =
        OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
    switch (IsLV) {
    case Expr::MLV_Valid:
      // Cool, this is an lvalue.
      break;
    case Expr::MLV_ArrayType:
      // This is OK too.
      break;
    case Expr::MLV_LValueCast: {
      const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
      if (!getLangOpts().HeinousExtensions) {
        Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
            << OutputExpr->getSourceRange();
      } else {
        Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
            << OutputExpr->getSourceRange();
      }
      // Accept, even if we emitted an error diagnostic.
      break;
    }
    case Expr::MLV_IncompleteType:
    case Expr::MLV_IncompleteVoidType:
      if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();
    default:
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());
    }

    unsigned Size = Context.getTypeSize(OutputExpr->getType());
    if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
                                                    Size))
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_output_size)
                       << Info.getConstraintStr());
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (ValidateConstraints &&
        !Context.getTargetInfo().validateInputConstraint(
            OutputConstraintInfos.data(), NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    Expr *InputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(InputExpr, *this))
      return StmtError();

    // Bitfield can't be referenced with a pointer.
    if (Info.allowsMemory() && InputExpr->refersToBitField())
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_bitfield_in_memory_constraint)
                       << 0
                       << Info.getConstraintStr()
                       << InputExpr->getSourceRange());

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
      if (!InputExpr->isValueDependent()) {
        llvm::APSInt Result;
        if (!InputExpr->EvaluateAsInt(Result, Context))
           return StmtError(
               Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
                << Info.getConstraintStr() << InputExpr->getSourceRange());
         if (!Info.isValidAsmImmediate(Result))
           return StmtError(Diag(InputExpr->getLocStart(),
                                 diag::err_invalid_asm_value_for_constraint)
                            << Result.toString(10) << Info.getConstraintStr()
                            << InputExpr->getSourceRange());
      }

    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
                                                   Size))
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_invalid_input_size)
                       << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    assert(Literal->isAscii());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned ConstraintIdx = Piece.getOperandNo();
    unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();

    // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
    // modifier '+'.
    if (ConstraintIdx >= NumOperands) {
      unsigned I = 0, E = NS->getNumOutputs();

      for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
        if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
          ConstraintIdx = I;
          break;
        }

      assert(I != E && "Invalid operand number should have been caught in "
                       " AnalyzeAsmString");
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    std::string SuggestedModifier;
    if (!Context.getTargetInfo().validateConstraintModifier(
            Literal->getString(), Piece.getModifier(), Size,
            SuggestedModifier)) {
      Diag(Exprs[ConstraintIdx]->getLocStart(),
           diag::warn_asm_mismatched_size_modifier);

      if (!SuggestedModifier.empty()) {
        auto B = Diag(Piece.getRange().getBegin(),
                      diag::note_asm_missing_constraint_modifier)
                 << SuggestedModifier;
        SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
        B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
                                                    SuggestedModifier));
      }
    }
  }

  // Validate tied input operands for type mismatches.
  unsigned NumAlternatives = ~0U;
  for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U)
      NumAlternatives = AltCount;
    else if (NumAlternatives != AltCount)
      return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
                            diag::err_asm_unexpected_constraint_alternatives)
                       << NumAlternatives << AltCount);
  }
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U)
      NumAlternatives = AltCount;
    else if (NumAlternatives != AltCount)
      return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
                            diag::err_asm_unexpected_constraint_alternatives)
                       << NumAlternatives << AltCount);

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return NS;
}
예제 #5
0
bool PrintfSpecifier::fixType(QualType QT, const LangOptions &LangOpt,
                              ASTContext &Ctx, bool IsObjCLiteral) {
  // %n is different from other conversion specifiers; don't try to fix it.
  if (CS.getKind() == ConversionSpecifier::nArg)
    return false;

  // Handle Objective-C objects first. Note that while the '%@' specifier will
  // not warn for structure pointer or void pointer arguments (because that's
  // how CoreFoundation objects are implemented), we only show a fixit for '%@'
  // if we know it's an object (block, id, class, or __attribute__((NSObject))).
  if (QT->isObjCRetainableType()) {
    if (!IsObjCLiteral)
      return false;

    CS.setKind(ConversionSpecifier::ObjCObjArg);

    // Disable irrelevant flags
    HasThousandsGrouping = false;
    HasPlusPrefix = false;
    HasSpacePrefix = false;
    HasAlternativeForm = false;
    HasLeadingZeroes = false;
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    LM.setKind(LengthModifier::None);

    return true;
  }

  // Handle strings next (char *, wchar_t *)
  if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
    CS.setKind(ConversionSpecifier::sArg);

    // Disable irrelevant flags
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;

    // Set the long length modifier for wide characters
    if (QT->getPointeeType()->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);

    return true;
  }

  // If it's an enum, get its underlying type.
  if (const EnumType *ETy = QT->getAs<EnumType>())
    QT = ETy->getDecl()->getIntegerType();

  // We can only work with builtin types.
  const BuiltinType *BT = QT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Set length modifier
  switch (BT->getKind()) {
  case BuiltinType::Bool:
  case BuiltinType::WChar_U:
  case BuiltinType::WChar_S:
  case BuiltinType::Char16:
  case BuiltinType::Char32:
  case BuiltinType::UInt128:
  case BuiltinType::Int128:
  case BuiltinType::Half:
  case BuiltinType::Float128:
    // Various types which are non-trivial to correct.
    return false;

#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define SIGNED_TYPE(Id, SingletonId)
#define UNSIGNED_TYPE(Id, SingletonId)
#define FLOATING_TYPE(Id, SingletonId)
#define BUILTIN_TYPE(Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
    // Misc other stuff which doesn't make sense here.
    return false;

  case BuiltinType::UInt:
  case BuiltinType::Int:
  case BuiltinType::Float:
  case BuiltinType::Double:
    LM.setKind(LengthModifier::None);
    break;

  case BuiltinType::Char_U:
  case BuiltinType::UChar:
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    LM.setKind(LengthModifier::AsChar);
    break;

  case BuiltinType::Short:
  case BuiltinType::UShort:
    LM.setKind(LengthModifier::AsShort);
    break;

  case BuiltinType::Long:
  case BuiltinType::ULong:
    LM.setKind(LengthModifier::AsLong);
    break;

  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    LM.setKind(LengthModifier::AsLongLong);
    break;

  case BuiltinType::LongDouble:
    LM.setKind(LengthModifier::AsLongDouble);
    break;
  }

  // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
  if (isa<TypedefType>(QT) && (LangOpt.C99 || LangOpt.CPlusPlus11))
    namedTypeToLengthModifier(QT, LM);

  // If fixing the length modifier was enough, we might be done.
  if (hasValidLengthModifier(Ctx.getTargetInfo())) {
    // If we're going to offer a fix anyway, make sure the sign matches.
    switch (CS.getKind()) {
    case ConversionSpecifier::uArg:
    case ConversionSpecifier::UArg:
      if (QT->isSignedIntegerType())
        CS.setKind(clang::analyze_format_string::ConversionSpecifier::dArg);
      break;
    case ConversionSpecifier::dArg:
    case ConversionSpecifier::DArg:
    case ConversionSpecifier::iArg:
      if (QT->isUnsignedIntegerType() && !HasPlusPrefix)
        CS.setKind(clang::analyze_format_string::ConversionSpecifier::uArg);
      break;
    default:
      // Other specifiers do not have signed/unsigned variants.
      break;
    }

    const analyze_printf::ArgType &ATR = getArgType(Ctx, IsObjCLiteral);
    if (ATR.isValid() && ATR.matchesType(Ctx, QT))
      return true;
  }

  // Set conversion specifier and disable any flags which do not apply to it.
  // Let typedefs to char fall through to int, as %c is silly for uint8_t.
  if (!isa<TypedefType>(QT) && QT->isCharType()) {
    CS.setKind(ConversionSpecifier::cArg);
    LM.setKind(LengthModifier::None);
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;
    HasPlusPrefix = 0;
  }
  // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
  else if (QT->isRealFloatingType()) {
    CS.setKind(ConversionSpecifier::fArg);
  }
  else if (QT->isSignedIntegerType()) {
    CS.setKind(ConversionSpecifier::dArg);
    HasAlternativeForm = 0;
  }
  else if (QT->isUnsignedIntegerType()) {
    CS.setKind(ConversionSpecifier::uArg);
    HasAlternativeForm = 0;
    HasPlusPrefix = 0;
  } else {
    llvm_unreachable("Unexpected type");
  }

  return true;
}
예제 #6
0
bool ScanfSpecifier::fixType(QualType QT, const LangOptions &LangOpt)
{
  if (!QT->isPointerType())
    return false;

  QualType PT = QT->getPointeeType();
  const BuiltinType *BT = PT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Pointer to a character.
  if (PT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::sArg);
    if (PT->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);
    return true;
  }

  // Figure out the length modifier.
  switch (BT->getKind()) {
    // no modifier
    case BuiltinType::UInt:
    case BuiltinType::Int:
    case BuiltinType::Float:
      LM.setKind(LengthModifier::None);
      break;

    // hh
    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::Char_S:
    case BuiltinType::SChar:
      LM.setKind(LengthModifier::AsChar);
      break;

    // h
    case BuiltinType::Short:
    case BuiltinType::UShort:
      LM.setKind(LengthModifier::AsShort);
      break;

    // l
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::Double:
      LM.setKind(LengthModifier::AsLong);
      break;

    // ll
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
      LM.setKind(LengthModifier::AsLongLong);
      break;

    // L
    case BuiltinType::LongDouble:
      LM.setKind(LengthModifier::AsLongDouble);
      break;

    // Don't know.
    default:
      return false;
  }

  // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
  if (isa<TypedefType>(PT) && (LangOpt.C99 || LangOpt.CPlusPlus0x)) {
    const IdentifierInfo *Identifier = QT.getBaseTypeIdentifier();
    if (Identifier->getName() == "size_t") {
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "ssize_t") {
      // Not C99, but common in Unix.
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "intmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "uintmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "ptrdiff_t") {
      LM.setKind(LengthModifier::AsPtrDiff);
    }
  }

  // Figure out the conversion specifier.
  if (PT->isRealFloatingType())
    CS.setKind(ConversionSpecifier::fArg);
  else if (PT->isSignedIntegerType())
    CS.setKind(ConversionSpecifier::dArg);
  else if (PT->isUnsignedIntegerType()) {
    // Preserve the original formatting, e.g. 'X', 'o'.
    if (!CS.isUIntArg()) {
      CS.setKind(ConversionSpecifier::uArg);
    }
  } else
    llvm_unreachable("Unexpected type");

  return true;
}
예제 #7
0
bool PrintfSpecifier::fixType(QualType QT, const LangOptions &LangOpt) {
  // Handle strings first (char *, wchar_t *)
  if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
    CS.setKind(ConversionSpecifier::sArg);

    // Disable irrelevant flags
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;

    // Set the long length modifier for wide characters
    if (QT->getPointeeType()->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);

    return true;
  }

  // We can only work with builtin types.
  const BuiltinType *BT = QT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Set length modifier
  switch (BT->getKind()) {
  case BuiltinType::Bool:
  case BuiltinType::WChar_U:
  case BuiltinType::WChar_S:
  case BuiltinType::Char16:
  case BuiltinType::Char32:
  case BuiltinType::UInt128:
  case BuiltinType::Int128:
  case BuiltinType::Half:
    // Various types which are non-trivial to correct.
    return false;

#define SIGNED_TYPE(Id, SingletonId)
#define UNSIGNED_TYPE(Id, SingletonId)
#define FLOATING_TYPE(Id, SingletonId)
#define BUILTIN_TYPE(Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
    // Misc other stuff which doesn't make sense here.
    return false;

  case BuiltinType::UInt:
  case BuiltinType::Int:
  case BuiltinType::Float:
  case BuiltinType::Double:
    LM.setKind(LengthModifier::None);
    break;

  case BuiltinType::Char_U:
  case BuiltinType::UChar:
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    LM.setKind(LengthModifier::AsChar);
    break;

  case BuiltinType::Short:
  case BuiltinType::UShort:
    LM.setKind(LengthModifier::AsShort);
    break;

  case BuiltinType::Long:
  case BuiltinType::ULong:
    LM.setKind(LengthModifier::AsLong);
    break;

  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    LM.setKind(LengthModifier::AsLongLong);
    break;

  case BuiltinType::LongDouble:
    LM.setKind(LengthModifier::AsLongDouble);
    break;
  }

  // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
  if (isa<TypedefType>(QT) && (LangOpt.C99 || LangOpt.CPlusPlus0x)) {
    const IdentifierInfo *Identifier = QT.getBaseTypeIdentifier();
    if (Identifier->getName() == "size_t") {
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "ssize_t") {
      // Not C99, but common in Unix.
      LM.setKind(LengthModifier::AsSizeT);
    } else if (Identifier->getName() == "intmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "uintmax_t") {
      LM.setKind(LengthModifier::AsIntMax);
    } else if (Identifier->getName() == "ptrdiff_t") {
      LM.setKind(LengthModifier::AsPtrDiff);
    }
  }

  // Set conversion specifier and disable any flags which do not apply to it.
  // Let typedefs to char fall through to int, as %c is silly for uint8_t.
  if (isa<TypedefType>(QT) && QT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::cArg);
    LM.setKind(LengthModifier::None);
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;
    HasPlusPrefix = 0;
  }
  // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
  else if (QT->isRealFloatingType()) {
    CS.setKind(ConversionSpecifier::fArg);
  }
  else if (QT->isSignedIntegerType()) {
    CS.setKind(ConversionSpecifier::dArg);
    HasAlternativeForm = 0;
  }
  else if (QT->isUnsignedIntegerType()) {
    // Preserve the original formatting, e.g. 'X', 'o'.
    if (!cast<PrintfConversionSpecifier>(CS).isUIntArg())
      CS.setKind(ConversionSpecifier::uArg);
    HasAlternativeForm = 0;
    HasPlusPrefix = 0;
  } else {
    llvm_unreachable("Unexpected type");
  }

  return true;
}
예제 #8
0
bool ScanfSpecifier::fixType(QualType QT, const LangOptions &LangOpt,
                             ASTContext &Ctx) {
  if (!QT->isPointerType())
    return false;

  // %n is different from other conversion specifiers; don't try to fix it.
  if (CS.getKind() == ConversionSpecifier::nArg)
    return false;

  QualType PT = QT->getPointeeType();

  // If it's an enum, get its underlying type.
  if (const EnumType *ETy = QT->getAs<EnumType>())
    QT = ETy->getDecl()->getIntegerType();
  
  const BuiltinType *BT = PT->getAs<BuiltinType>();
  if (!BT)
    return false;

  // Pointer to a character.
  if (PT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::sArg);
    if (PT->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);
    else
      LM.setKind(LengthModifier::None);
    return true;
  }

  // Figure out the length modifier.
  switch (BT->getKind()) {
    // no modifier
    case BuiltinType::UInt:
    case BuiltinType::Int:
    case BuiltinType::Float:
      LM.setKind(LengthModifier::None);
      break;

    // hh
    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::Char_S:
    case BuiltinType::SChar:
      LM.setKind(LengthModifier::AsChar);
      break;

    // h
    case BuiltinType::Short:
    case BuiltinType::UShort:
      LM.setKind(LengthModifier::AsShort);
      break;

    // l
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::Double:
      LM.setKind(LengthModifier::AsLong);
      break;

    // ll
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
      LM.setKind(LengthModifier::AsLongLong);
      break;

    // L
    case BuiltinType::LongDouble:
      LM.setKind(LengthModifier::AsLongDouble);
      break;

    // Don't know.
    default:
      return false;
  }

  // Handle size_t, ptrdiff_t, etc. that have dedicated length modifiers in C99.
  if (isa<TypedefType>(PT) && (LangOpt.F90 || LangOpt.F90))
    namedTypeToLengthModifier(PT, LM);

  // If fixing the length modifier was enough, we are done.
  if (hasValidLengthModifier(Ctx.getTargetInfo())) {
    const analyze_scanf::ArgType &AT = getArgType(Ctx);
    if (AT.isValid() && AT.matchesType(Ctx, QT))
      return true;
  }

  // Figure out the conversion specifier.
  if (PT->isRealFloatingType())
    CS.setKind(ConversionSpecifier::fArg);
  else if (PT->isSignedIntegerType())
    CS.setKind(ConversionSpecifier::dArg);
  else if (PT->isUnsignedIntegerType())
    CS.setKind(ConversionSpecifier::uArg);
  else
    llvm_unreachable("Unexpected type");

  return true;
}
예제 #9
0
LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator *E,
          ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
                         RValue &Val) {
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();
  QualType LHSTy = E->getLHS()->getType();
  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
    LHSTy = AT->getValueType();

  BinOpInfo OpInfo;

  // Load the RHS and LHS operands.
  // __block variables need to have the rhs evaluated first, plus this should
  // improve codegen a little.
  OpInfo.Ty = E->getComputationResultType();
  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();

  // The RHS should have been converted to the computation type.
  if (E->getRHS()->getType()->isRealFloatingType()) {
    assert(
        CGF.getContext()
            .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
    OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
  } else {
    assert(CGF.getContext()
               .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
    OpInfo.RHS = Visit(E->getRHS());
  }

  LValue LHS = CGF.EmitLValue(E->getLHS());

  // Load from the l-value and convert it.
  if (LHSTy->isAnyComplexType()) {
    ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc());
    OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
  } else {
    llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc());
    // For floating point real operands we can directly pass the scalar form
    // to the binary operator emission and potentially get more efficient code.
    if (LHSTy->isRealFloatingType()) {
      if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
        LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy);
      OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
    } else {
      OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty);
    }
  }

  // Expand the binary operator.
  ComplexPairTy Result = (this->*Func)(OpInfo);

  // Truncate the result and store it into the LHS lvalue.
  if (LHSTy->isAnyComplexType()) {
    ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy);
    EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
    Val = RValue::getComplex(ResVal);
  } else {
    llvm::Value *ResVal =
        CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy);
    CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
    Val = RValue::get(ResVal);
  }

  return LHS;
}
예제 #10
0
bool PrintfSpecifier::fixType(QualType QT) {
  // Handle strings first (char *, wchar_t *)
  if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
    CS.setKind(ConversionSpecifier::sArg);

    // Disable irrelevant flags
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;

    // Set the long length modifier for wide characters
    if (QT->getPointeeType()->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);

    return true;
  }

  // We can only work with builtin types.
  if (!QT->isBuiltinType())
    return false;

  // Everything else should be a base type
  const BuiltinType *BT = QT->getAs<BuiltinType>();

  // Set length modifier
  switch (BT->getKind()) {
  default:
    // The rest of the conversions are either optional or for non-builtin types
    LM.setKind(LengthModifier::None);
    break;

  case BuiltinType::WChar:
  case BuiltinType::Long:
  case BuiltinType::ULong:
    LM.setKind(LengthModifier::AsLong);
    break;

  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    LM.setKind(LengthModifier::AsLongLong);
    break;

  case BuiltinType::LongDouble:
    LM.setKind(LengthModifier::AsLongDouble);
    break;
  }

  // Set conversion specifier and disable any flags which do not apply to it.
  if (QT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::cArg);
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;
    HasPlusPrefix = 0;
  }
  // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
  else if (QT->isRealFloatingType()) {
    CS.setKind(ConversionSpecifier::fArg);
  }
  else if (QT->isPointerType()) {
    CS.setKind(ConversionSpecifier::pArg);
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;
    HasPlusPrefix = 0;
  }
  else if (QT->isSignedIntegerType()) {
    CS.setKind(ConversionSpecifier::dArg);
    HasAlternativeForm = 0;
  }
  else if (QT->isUnsignedIntegerType()) {
    CS.setKind(ConversionSpecifier::uArg);
    HasAlternativeForm = 0;
    HasPlusPrefix = 0;
  }
  else {
    return false;
  }

  return true;
}
예제 #11
0
bool PrintfSpecifier::fixType(QualType QT) {
  // Handle strings first (char *, wchar_t *)
  if (QT->isPointerType() && (QT->getPointeeType()->isAnyCharacterType())) {
    CS.setKind(ConversionSpecifier::sArg);

    // Disable irrelevant flags
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;

    // Set the long length modifier for wide characters
    if (QT->getPointeeType()->isWideCharType())
      LM.setKind(LengthModifier::AsWideChar);

    return true;
  }

  // We can only work with builtin types.
  if (!QT->isBuiltinType())
    return false;

  // Everything else should be a base type
  const BuiltinType *BT = QT->getAs<BuiltinType>();

  // Set length modifier
  switch (BT->getKind()) {
  case BuiltinType::Bool:
  case BuiltinType::WChar_U:
  case BuiltinType::WChar_S:
  case BuiltinType::Char16:
  case BuiltinType::Char32:
  case BuiltinType::UInt128:
  case BuiltinType::Int128:
    // Integral types which are non-trivial to correct.
    return false;

  case BuiltinType::Void:
  case BuiltinType::NullPtr:
  case BuiltinType::ObjCId:
  case BuiltinType::ObjCClass:
  case BuiltinType::ObjCSel:
  case BuiltinType::Dependent:
  case BuiltinType::Overload:
  case BuiltinType::BoundMember:
  case BuiltinType::UnknownAny:
    // Misc other stuff which doesn't make sense here.
    return false;

  case BuiltinType::UInt:
  case BuiltinType::Int:
  case BuiltinType::Float:
  case BuiltinType::Double:
    LM.setKind(LengthModifier::None);
    break;

  case BuiltinType::Char_U:
  case BuiltinType::UChar:
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    LM.setKind(LengthModifier::AsChar);
    break;

  case BuiltinType::Short:
  case BuiltinType::UShort:
    LM.setKind(LengthModifier::AsShort);
    break;

  case BuiltinType::Long:
  case BuiltinType::ULong:
    LM.setKind(LengthModifier::AsLong);
    break;

  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    LM.setKind(LengthModifier::AsLongLong);
    break;

  case BuiltinType::LongDouble:
    LM.setKind(LengthModifier::AsLongDouble);
    break;
  }

  // Set conversion specifier and disable any flags which do not apply to it.
  // Let typedefs to char fall through to int, as %c is silly for uint8_t.
  if (isa<TypedefType>(QT) && QT->isAnyCharacterType()) {
    CS.setKind(ConversionSpecifier::cArg);
    LM.setKind(LengthModifier::None);
    Precision.setHowSpecified(OptionalAmount::NotSpecified);
    HasAlternativeForm = 0;
    HasLeadingZeroes = 0;
    HasPlusPrefix = 0;
  }
  // Test for Floating type first as LongDouble can pass isUnsignedIntegerType
  else if (QT->isRealFloatingType()) {
    CS.setKind(ConversionSpecifier::fArg);
  }
  else if (QT->isSignedIntegerType()) {
    CS.setKind(ConversionSpecifier::dArg);
    HasAlternativeForm = 0;
  }
  else if (QT->isUnsignedIntegerType()) {
    // Preserve the original formatting, e.g. 'X', 'o'.
    if (!cast<PrintfConversionSpecifier>(CS).isUIntArg())
      CS.setKind(ConversionSpecifier::uArg);
    HasAlternativeForm = 0;
    HasPlusPrefix = 0;
  } else {
    llvm_unreachable("Unexpected type");
  }

  return true;
}