bool CTRIANGLE::Intersect( const RAY &aRay, HITINFO &aHitInfo ) const
{
    //!TODO: precalc this, improove it
#define ku s_modulo[m_k + 1]
#define kv s_modulo[m_k + 2]

    const SFVEC3F &O = aRay.m_Origin;
    const SFVEC3F &D = aRay.m_Dir;
    const SFVEC3F &A = m_vertex[0];

    const float lnd = 1.0f / (D[m_k] + m_nu * D[ku] + m_nv * D[kv]);
    const float t = (m_nd - O[m_k] - m_nu * O[ku] - m_nv * O[kv]) * lnd;

    if( !( (aHitInfo.m_tHit > t) && (t > 0.0f) ) )
        return false;

    const float hu = O[ku] + t * D[ku] - A[ku];
    const float hv = O[kv] + t * D[kv] - A[kv];
    const float beta = hv * m_bnu + hu * m_bnv;

    if( beta < 0.0f )
        return false;

    const float gamma = hu * m_cnu + hv * m_cnv;

    if( gamma < 0 )
        return false;

    const float v = gamma;
    const float u = beta;

    if( (u + v) > 1.0f )
        return false;

    if( glm::dot( D, m_n ) > 0.0f )
        return false;

    aHitInfo.m_tHit = t;
    aHitInfo.m_HitPoint = aRay.at( t );

    // interpolate vertex normals with UVW using Gouraud's shading
    aHitInfo.m_HitNormal = glm::normalize( (1.0f - u - v) * m_normal[0] +
                                            u * m_normal[1] +
                                            v * m_normal[2] );

    m_material->PerturbeNormal( aHitInfo.m_HitNormal, aRay, aHitInfo );

    aHitInfo.pHitObject = this;

    return true;
#undef ku
#undef kv
}
bool CVCYLINDER::Intersect( const RAY &aRay, HITINFO &aHitInfo ) const
{
    // Based on:
    // http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp
    // Ray-sphere intersection: geometric
    // /////////////////////////////////////////////////////////////////////////
    const double OCx_Start = aRay.m_Origin.x - m_center.x;
    const double OCy_Start = aRay.m_Origin.y - m_center.y;

    const double p_dot_p = OCx_Start * OCx_Start + OCy_Start * OCy_Start;

    const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
                     (double)aRay.m_Dir.y * (double)aRay.m_Dir.y;
    const double b = (double)aRay.m_Dir.x * (double)OCx_Start +
                     (double)aRay.m_Dir.y * (double)OCy_Start;
    const double c = p_dot_p - m_radius_squared;

    const float delta = (float)(b * b - a * c);

    bool hitResult = false;

    if( delta > FLT_EPSILON )
    {
        const float inv_a = 1.0 / a;

        const float sdelta = sqrtf( delta );
        const float t = (-b - sdelta) * inv_a;
        const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;

        if( (z >= m_bbox.Min().z) &&
            (z <= m_bbox.Max().z) )
        {
            if( t < aHitInfo.m_tHit )
            {
                hitResult = true;
                aHitInfo.m_tHit = t;
            }
        }

        if( !hitResult )
        {
            const float t1 = (-b + sdelta) * inv_a;
            const float z1 = aRay.m_Origin.z + t1 * aRay.m_Dir.z;

            if( (z1 > m_bbox.Min().z ) &&
                (z1 < m_bbox.Max().z ) )
            {
                if( t1 < aHitInfo.m_tHit )
                {
                    hitResult = true;
                    aHitInfo.m_tHit = t1;
                }
            }
        }
    }

    if( hitResult )
    {
        aHitInfo.m_HitPoint = aRay.at( aHitInfo.m_tHit );

        const SFVEC2F hitPoint2D = SFVEC2F( aHitInfo.m_HitPoint.x,
                                            aHitInfo.m_HitPoint.y );

        aHitInfo.m_HitNormal = SFVEC3F( -(hitPoint2D.x - m_center.x) * m_inv_radius,
                                        -(hitPoint2D.y - m_center.y) * m_inv_radius,
                                        0.0f );

        m_material->PerturbeNormal( aHitInfo.m_HitNormal, aRay, aHitInfo );

        aHitInfo.pHitObject = this;
    }

    return hitResult;
}
예제 #3
0
bool CROUNDSEG::Intersect( const RAY &aRay, HITINFO &aHitInfo ) const
{
    // Top / Botton plane
    // /////////////////////////////////////////////////////////////////////////
    float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z;

    float tPlane    = ( zPlanePos - aRay.m_Origin.z) * aRay.m_InvDir.z;

    if( ( tPlane >= aHitInfo.m_tHit ) || ( tPlane < FLT_EPSILON ) )
        return false;   // Early exit

    SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane,
                             aRay.m_Origin.y + aRay.m_Dir.y * tPlane );

    float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d );

    if( dSquared <= m_radius_squared )
    {
        if( tPlane < aHitInfo.m_tHit )
        {
            aHitInfo.m_tHit = tPlane;
            //aHitInfo.m_HitPoint = SFVEC3F( planeHitPoint2d.x,
            //                               planeHitPoint2d.y,
            //                               aRay.m_Origin.z + aRay.m_Dir.z * tPlane );
            aHitInfo.m_HitNormal = SFVEC3F( 0.0f,
                                            0.0f,
                                            aRay.m_dirIsNeg[2]? 1.0f: -1.0f );
            aHitInfo.pHitObject = this;

            return true;
        }

        return false;
    }

    // Test LEFT / RIGHT plane
    // /////////////////////////////////////////////////////////////////////////
    float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir );

    if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
    {
        const float n_dot_ray_origin = glm::dot( m_plane_dir_right,
                                       m_center_right - aRay.m_Origin );
        const float t = n_dot_ray_origin / normal_dot_ray;

        if( t > 0.0f )
        {
            const SFVEC3F hitP = aRay.at( t );

            const SFVEC3F v = hitP - m_center_right;
            const float len = glm::dot( v, v );

            if( (len <= m_seglen_over_two_squared) &&
                    (hitP.z >= m_bbox.Min().z) &&
                    (hitP.z <= m_bbox.Max().z) )
            {
                if( t < aHitInfo.m_tHit )
                {
                    aHitInfo.m_tHit = t;
                    //aHitInfo.m_HitPoint = hitP;
                    aHitInfo.m_HitNormal = SFVEC3F( m_plane_dir_right.x,
                                                    m_plane_dir_right.y,
                                                    0.0f );
                    aHitInfo.pHitObject = this;

                    return true;
                }

                return false;
            }
        }
    }
    else
    {
        normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir );

        if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
        {
            const float n_dot_ray_origin = glm::dot( m_plane_dir_left,
                                           m_center_left - aRay.m_Origin );
            const float t = n_dot_ray_origin / normal_dot_ray;

            if( t > 0.0f )
            {
                const SFVEC3F hitP = aRay.at( t );

                const SFVEC3F v = hitP - m_center_left;
                const float len = glm::dot( v, v );

                if( (len <= m_seglen_over_two_squared) &&
                        (hitP.z >= m_bbox.Min().z) &&
                        (hitP.z <= m_bbox.Max().z) )
                {
                    if( t < aHitInfo.m_tHit )
                    {
                        aHitInfo.m_tHit = t;
                        //aHitInfo.m_HitPoint = hitP;
                        aHitInfo.m_HitNormal = SFVEC3F( m_plane_dir_left.x,
                                                        m_plane_dir_left.y,
                                                        0.0f );
                        aHitInfo.pHitObject = this;

                        return true;
                    }

                    return false;
                }
            }
        }
    }

    // Based on:
    // http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp

    // Ray-sphere intersection: geometric
    // /////////////////////////////////////////////////////////////////////////

    const double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x;
    const double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y;

    const double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start;

    const double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
                     (double)aRay.m_Dir.y * (double)aRay.m_Dir.y;

    const double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start +
                           (double)aRay.m_Dir.y * (double)OCy_Start;

    const double c_Start = p_dot_p_Start - m_radius_squared;

    const float delta_Start = (float)(b_Start * b_Start - a * c_Start);

    if( delta_Start > FLT_EPSILON )
    {
        const float sdelta = sqrtf( delta_Start );
        const float t = (-b_Start - sdelta) / a;
        const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;

        if( (z >= m_bbox.Min().z) &&
                (z <= m_bbox.Max().z) )
        {
            if( t < aHitInfo.m_tHit )
            {
                aHitInfo.m_tHit = t;
                SFVEC2F hitPoint2D = aRay.at2D( t );
                //aHitInfo.m_HitPoint = aRay.at( t );
                aHitInfo.m_HitNormal = SFVEC3F(
                                           (hitPoint2D.x - m_segment.m_Start.x) * m_inv_radius,
                                           (hitPoint2D.y - m_segment.m_Start.y) * m_inv_radius,
                                           0.0f );
                aHitInfo.pHitObject = this;

                return true;
            }

            return false;
        }
    }

    const double OCx_End = aRay.m_Origin.x - m_segment.m_End.x;
    const double OCy_End = aRay.m_Origin.y - m_segment.m_End.y;

    const double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End;

    const double b_End = (double)aRay.m_Dir.x * (double)OCx_End +
                         (double)aRay.m_Dir.y * (double)OCy_End;

    const double c_End = p_dot_p_End - m_radius_squared;

    const float delta_End = (float)(b_End * b_End - a * c_End);

    if( delta_End > FLT_EPSILON )
    {
        const float sdelta = sqrtf( delta_End );
        const float t = (-b_End - sdelta) / a;
        const float z = aRay.m_Origin.z + t * aRay.m_Dir.z;

        if( (z >= m_bbox.Min().z) &&
                (z <= m_bbox.Max().z) )
        {
            if( t < aHitInfo.m_tHit )
            {
                aHitInfo.m_tHit = t;
                //aHitInfo.m_HitPoint = aRay.at( t );
                const SFVEC2F hitPoint2D = aRay.at2D( t );

                aHitInfo.m_HitNormal = SFVEC3F(
                                           (hitPoint2D.x - m_segment.m_End.x) * m_inv_radius,
                                           (hitPoint2D.y - m_segment.m_End.y) * m_inv_radius,
                                           0.0f );
                aHitInfo.pHitObject = this;

                return true;
            }

            return false;
        }
    }

    return false;
}
예제 #4
0
bool CROUNDSEG::IntersectP( const RAY &aRay, float aMaxDistance ) const
{
    // Top / Botton plane
    // /////////////////////////////////////////////////////////////////////////
    const float zPlanePos = aRay.m_dirIsNeg[2]? m_bbox.Max().z : m_bbox.Min().z;

    const float tPlane    = ( zPlanePos - aRay.m_Origin.z) * aRay.m_InvDir.z;

    if( ( tPlane >= aMaxDistance) || ( tPlane < FLT_EPSILON ) )
        return false;   // Early exit

    const SFVEC2F planeHitPoint2d( aRay.m_Origin.x + aRay.m_Dir.x * tPlane,
                                   aRay.m_Origin.y + aRay.m_Dir.y * tPlane );

    const float dSquared = m_segment.DistanceToPointSquared( planeHitPoint2d );

    if( dSquared <= m_radius_squared )
    {
        if( tPlane < aMaxDistance )
            return true;

        return false;
    }

    // Since the IntersectP is used for shadows, we are simplifying the test
    // intersection and only consider the top/bottom plane of the segment
    return false;
#if 0
    // Test LEFT / RIGHT plane
    // /////////////////////////////////////////////////////////////////////////
    float normal_dot_ray = glm::dot( m_plane_dir_right, aRay.m_Dir );

    if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
    {
        float n_dot_ray_origin = glm::dot( m_plane_dir_right,
                                           m_center_right - aRay.m_Origin );
        float t = n_dot_ray_origin / normal_dot_ray;

        if( t > 0.0f )
        {
            SFVEC3F hitP = aRay.at( t );

            SFVEC3F v = hitP - m_center_right;
            float len = glm::dot( v, v );

            if( (len <= m_seglen_over_two_squared) &&
                    (hitP.z >= m_bbox.Min().z) && (hitP.z <= m_bbox.Max().z) )
            {
                if( t < aMaxDistance )
                    return true;

                return false;
            }
        }
    }
    else
    {
        normal_dot_ray = glm::dot( m_plane_dir_left, aRay.m_Dir );

        if( normal_dot_ray < 0.0f ) // If the dot is neg, the it hits the plane
        {
            const float n_dot_ray_origin = glm::dot( m_plane_dir_left,
                                           m_center_left - aRay.m_Origin );
            const float t = n_dot_ray_origin / normal_dot_ray;

            if( t > 0.0f )
            {
                SFVEC3F hitP = aRay.at( t );

                SFVEC3F v = hitP - m_center_left;
                float len = glm::dot( v, v );

                if( (len <= m_seglen_over_two_squared) &&
                        (hitP.z >= m_bbox.Min().z) && (hitP.z <= m_bbox.Max().z) )
                {
                    if( t < aMaxDistance )
                        return true;

                    return false;
                }
            }
        }
    }

    // Based on:
    // http://www.cs.utah.edu/~lha/Code%206620%20/Ray4/Cylinder.cpp

    // Ray-sphere intersection: geometric
    // /////////////////////////////////////////////////////////////////////////

    double OCx_Start = aRay.m_Origin.x - m_segment.m_Start.x;
    double OCy_Start = aRay.m_Origin.y - m_segment.m_Start.y;

    double p_dot_p_Start = OCx_Start * OCx_Start + OCy_Start * OCy_Start;

    double a = (double)aRay.m_Dir.x * (double)aRay.m_Dir.x +
               (double)aRay.m_Dir.y * (double)aRay.m_Dir.y;

    double b_Start = (double)aRay.m_Dir.x * (double)OCx_Start +
                     (double)aRay.m_Dir.y * (double)OCy_Start;

    double c_Start = p_dot_p_Start - m_radius_squared;

    float delta_Start = (float)(b_Start * b_Start - a * c_Start);

    if( delta_Start > FLT_EPSILON )
    {
        float sdelta = sqrtf( delta_Start );
        float t = (-b_Start - sdelta) / a;
        float z = aRay.m_Origin.z + t * aRay.m_Dir.z;

        if( (z >= m_bbox.Min().z) &&
                (z <= m_bbox.Max().z) )
        {
            if( t < aMaxDistance )
                return true;

            return false;
        }
    }

    double OCx_End = aRay.m_Origin.x - m_segment.m_End.x;
    double OCy_End = aRay.m_Origin.y - m_segment.m_End.y;

    double p_dot_p_End = OCx_End * OCx_End + OCy_End * OCy_End;


    double b_End = (double)aRay.m_Dir.x * (double)OCx_End +
                   (double)aRay.m_Dir.y * (double)OCy_End;

    double c_End = p_dot_p_End - m_radius_squared;

    float delta_End = (float)(b_End * b_End - a * c_End);

    if( delta_End > FLT_EPSILON )
    {
        float sdelta = sqrtf( delta_End );
        float t = (-b_End - sdelta) / a;
        float z = aRay.m_Origin.z + t * aRay.m_Dir.z;

        if( (z >= m_bbox.Min().z) &&
                (z <= m_bbox.Max().z) )
        {
            if( t < aMaxDistance )
                return true;

            return false;
        }
    }

    return false;
#endif
}