예제 #1
0
void RS_GraphicView::zoomAutoY(bool axis) {
	if (container) {
		double visibleHeight = 0.0;
		double minY = RS_MAXDOUBLE;
		double maxY = RS_MINDOUBLE;
		bool noChange = false;

		for(auto e: *container){

			if (e->rtti()==RS2::EntityLine) {
				RS_Line* l = (RS_Line*)e;
				double x1, x2;
				x1 = toGuiX(l->getStartpoint().x);
				x2 = toGuiX(l->getEndpoint().x);

				if (	((x1 > 0.0) && (x1 < (double) getWidth())) ||
						((x2 > 0.0) && (x2 < (double) getWidth())))
				{
					minY = std::min(minY, l->getStartpoint().y);
					minY = std::min(minY, l->getEndpoint().y);
					maxY = std::max(maxY, l->getStartpoint().y);
					maxY = std::max(maxY, l->getEndpoint().y);
				}
			}
		}

		if (axis) {
			visibleHeight = std::max(maxY, 0.0) - std::min(minY, 0.0);
		} else {
			visibleHeight = maxY-minY;
		}

		if (visibleHeight<1.0) {
			noChange = true;
		}

		double fy = 1.0;
		if (visibleHeight>1.0e-6) {
			fy = (getHeight()-borderTop-borderBottom)
					/ visibleHeight;
			if (factor.y<0.000001) {
				noChange = true;
			}
		}

		if (noChange==false) {
			setFactorY(fy);
			//centerOffsetY();
			offsetY = (int)((getHeight()-borderTop-borderBottom
							 - (visibleHeight*factor.y))/2.0
							- (minY*factor.y)) + borderBottom;
			adjustOffsetControls();
			adjustZoomControls();
			//    updateGrid();

		}
		RS_DEBUG->print("Auto zoom y ok");
	}
}
예제 #2
0
/**
 * Creates an entity parallel to the given entity e through the given
 * 'coord'.
 *
 * @param coord Coordinate to define the distance / side (typically a
 *              mouse coordinate).
 * @param number Number of parallels.
 * @param e Original entity.
 *
 * @return Pointer to the first created parallel or nullptr if no
 *    parallel has been created.
 */
RS_Entity* RS_Creation::createParallelThrough(const RS_Vector& coord,
                                              int number,
                                              RS_Entity* e) {
	if (!e) {
		return nullptr;
    }

    double dist;

    if (e->rtti()==RS2::EntityLine) {
        RS_Line* l = (RS_Line*)e;
		RS_ConstructionLine cl(nullptr,
                               RS_ConstructionLineData(l->getStartpoint(),
                                                       l->getEndpoint()));
        dist = cl.getDistanceToPoint(coord);
    } else {
        dist = e->getDistanceToPoint(coord);
    }

    if (dist<RS_MAXDOUBLE) {
        return createParallel(coord, dist, number, e);
    } else {
		return nullptr;
    }
}
예제 #3
0
RS_Vector RS_Ellipse::getNearestOrthTan(const RS_Vector& coord,
                                        const RS_Line& normal,
                                        bool onEntity )
{
    if ( !coord.valid ) {
        return RS_Vector(false);
    }
    RS_Vector direction=normal.getEndpoint() - normal.getStartpoint();
    if (direction.squared()< RS_TOLERANCE*RS_TOLERANCE) {
        //undefined direction
        return RS_Vector(false);
    }
    //scale to ellipse angle
    RS_Vector aV(-getAngle());
    direction.rotate(aV);
    double angle=direction.scale(RS_Vector(1.,getRatio())).angle();
    double ra(getMajorRadius());
    direction.set(ra*cos(angle),getRatio()*ra*sin(angle));//relative to center
    QList<RS_Vector> sol;
    for(int i=0;i<2;i++){
        if(!onEntity ||
                RS_Math::isAngleBetween(angle,getAngle1(),getAngle2(),isReversed())) {
            if(i){
                sol.append(- direction);
            }else{
                sol.append(direction);
            }
        }
        angle=RS_Math::correctAngle(angle+M_PI);
    }
    if(sol.size()<1) return RS_Vector(false);
    aV.y*=-1.;
    for(int i=0;i<sol.size();i++) sol[i].rotate(aV);
    RS_Vector vp;
    switch(sol.count()) {
    case 0:
        return RS_Vector(false);
    case 2:
        if( RS_Vector::dotP(sol[1],coord-getCenter())>0.) {
            vp=sol[1];
            break;
        }
    default:
        vp=sol[0];
    }
    return getCenter() + vp;
}
예제 #4
0
/**
 * Checks if the given coordinate is inside the given contour.
 *
 * @param point Coordinate to check.
 * @param contour One or more entities which shape a contour.
 *         If the given contour is not closed, the result is undefined.
 *         The entities don't need to be in a specific order.
 * @param onContour Will be set to true if the given point it exactly
 *         on the contour.
 */
bool RS_Information::isPointInsideContour(const RS_Vector& point,
        RS_EntityContainer* contour, bool* onContour) {

    if (contour==NULL) {
        RS_DEBUG->print(RS_Debug::D_WARNING,
                        "RS_Information::isPointInsideContour: contour is NULL");
        return false;
    }

    if (point.x < contour->getMin().x || point.x > contour->getMax().x ||
            point.y < contour->getMin().y || point.y > contour->getMax().y) {
        return false;
    }

    double width = contour->getSize().x+1.0;

    bool sure;
    int counter;
    int tries = 0;
    double rayAngle = 0.0;
    do {
        sure = true;

        // create ray:
        RS_Vector v;
        v.setPolar(width*10.0, rayAngle);
        RS_Line ray(NULL, RS_LineData(point, point+v));
        counter = 0;
        RS_VectorSolutions sol;

        if (onContour!=NULL) {
            *onContour = false;
        }

        for (RS_Entity* e = contour->firstEntity(RS2::ResolveAll);
                e!=NULL;
                e = contour->nextEntity(RS2::ResolveAll)) {

            // intersection(s) from ray with contour entity:
            sol = RS_Information::getIntersection(&ray, e, true);

            for (int i=0; i<=1; ++i) {
                RS_Vector p = sol.get(i);

                if (p.valid) {
                    // point is on the contour itself
                    if (p.distanceTo(point)<1.0e-5) {
                        if (onContour!=NULL) {
                            *onContour = true;
                        }
                    } else {
                        if (e->rtti()==RS2::EntityLine) {
                            RS_Line* line = (RS_Line*)e;

                            // ray goes through startpoint of line:
                            if (p.distanceTo(line->getStartpoint())<1.0e-4) {
                                if (RS_Math::correctAngle(line->getAngle1())<M_PI) {
                                    counter++;
                                    sure = false;
                                }
                            }

                            // ray goes through endpoint of line:
                            else if (p.distanceTo(line->getEndpoint())<1.0e-4) {
                                if (RS_Math::correctAngle(line->getAngle2())<M_PI) {
                                    counter++;
                                    sure = false;
                                }
                            }
                            // ray goes through the line:


                            else {
                                counter++;
                            }
                        } else if (e->rtti()==RS2::EntityArc) {
                            RS_Arc* arc = (RS_Arc*)e;

                            if (p.distanceTo(arc->getStartpoint())<1.0e-4) {
                                double dir = arc->getDirection1();
                                if ((dir<M_PI && dir>=1.0e-5) ||
                                        ((dir>2*M_PI-1.0e-5 || dir<1.0e-5) &&
                                         arc->getCenter().y>p.y)) {
                                    counter++;
                                    sure = false;
                                }
                            }
                            else if (p.distanceTo(arc->getEndpoint())<1.0e-4) {
                                double dir = arc->getDirection2();
                                if ((dir<M_PI && dir>=1.0e-5) ||
                                        ((dir>2*M_PI-1.0e-5 || dir<1.0e-5) &&
                                         arc->getCenter().y>p.y)) {
                                    counter++;
                                    sure = false;
                                }
                            } else {
                                counter++;
                            }
                        } else if (e->rtti()==RS2::EntityCircle) {
                            // tangent:
                            if (i==0 && sol.get(1).valid==false) {
                                if (!sol.isTangent()) {
                                    counter++;
                                } else {
                                    sure = false;
                                }
                            } else if (i==1 || sol.get(1).valid==true) {
                                counter++;
                            }
                        }
                    }
                }
            }
        }

        rayAngle+=0.02;
        tries++;
    }
    while (!sure && rayAngle<2*M_PI && tries<6);

    // remove double intersections:
    /*
       QList<RS_Vector> is2;
       bool done;
    RS_Vector* av;
       do {
           done = true;
           double minDist = RS_MAXDOUBLE;
           double dist;
    	av = NULL;
           for (RS_Vector* v = is.first(); v!=NULL; v = is.next()) {
               dist = point.distanceTo(*v);
               if (dist<minDist) {
                   minDist = dist;
                   done = false;
    			av = v;
               }
           }

    	if (!done && av!=NULL) {
    		is2.append(*av);
    	}
       } while (!done);
    */

    return ((counter%2)==1);
}
예제 #5
0
/**
 * Updates the Hatch. Called when the
 * hatch or it's data, position, alignment, .. changes.
 */
void RS_Hatch::update() {
        RS_DEBUG->print("RS_Hatch::update");
        RS_DEBUG->print("RS_Hatch::update: contour has %d loops", count());

    updateError = HATCH_OK;
    if (updateRunning) {
        return;
    }

    if (updateEnabled==false) {
        return;
    }

    if (data.solid==true) {
        calculateBorders();
        return;
    }

    RS_DEBUG->print("RS_Hatch::update");
    updateRunning = true;

    // delete old hatch:
    if (hatch) {
        removeEntity(hatch);
		hatch = nullptr;
    }

    if (isUndone()) {
        updateRunning = false;
        return;
    }

    if (!validate()) {
        RS_DEBUG->print(RS_Debug::D_WARNING,
                        "RS_Hatch::update: invalid contour in hatch found");
        updateRunning = false;
        updateError = HATCH_INVALID_CONTOUR;
        return;
    }

    // search pattern:
    RS_DEBUG->print("RS_Hatch::update: requesting pattern");
    RS_Pattern* pat = RS_PATTERNLIST->requestPattern(data.pattern);
	if (!pat) {
        updateRunning = false;
        RS_DEBUG->print("RS_Hatch::update: requesting pattern: not found");
        updateError = HATCH_PATTERN_NOT_FOUND;
        return;
    }
    RS_DEBUG->print("RS_Hatch::update: requesting pattern: OK");

    RS_DEBUG->print("RS_Hatch::update: cloning pattern");
    pat = (RS_Pattern*)pat->clone();
    RS_DEBUG->print("RS_Hatch::update: cloning pattern: OK");

    // scale pattern
    RS_DEBUG->print("RS_Hatch::update: scaling pattern");
    pat->scale(RS_Vector(0.0,0.0), RS_Vector(data.scale, data.scale));
    pat->calculateBorders();
    forcedCalculateBorders();
    RS_DEBUG->print("RS_Hatch::update: scaling pattern: OK");

    // find out how many pattern-instances we need in x/y:
    int px1, py1, px2, py2;
    double f;
    RS_Hatch* copy = (RS_Hatch*)this->clone();
    copy->rotate(RS_Vector(0.0,0.0), -data.angle);
    copy->forcedCalculateBorders();

    // create a pattern over the whole contour.
    RS_Vector pSize = pat->getSize();
    RS_Vector rot_center=pat->getMin();
//    RS_Vector cPos = getMin();
    RS_Vector cSize = getSize();


    RS_DEBUG->print("RS_Hatch::update: pattern size: %f/%f", pSize.x, pSize.y);
    RS_DEBUG->print("RS_Hatch::update: contour size: %f/%f", cSize.x, cSize.y);

    if (cSize.x<1.0e-6 || cSize.y<1.0e-6 ||
            pSize.x<1.0e-6 || pSize.y<1.0e-6 ||
            cSize.x>RS_MAXDOUBLE-1 || cSize.y>RS_MAXDOUBLE-1 ||
            pSize.x>RS_MAXDOUBLE-1 || pSize.y>RS_MAXDOUBLE-1) {
        delete pat;
        delete copy;
        updateRunning = false;
        RS_DEBUG->print("RS_Hatch::update: contour size or pattern size too small");
        updateError = HATCH_TOO_SMALL;
        return;
    }

    // avoid huge memory consumption:
    else if ( cSize.x* cSize.y/(pSize.x*pSize.y)>1e4) {
        RS_DEBUG->print("RS_Hatch::update: contour size too large or pattern size too small");
        delete pat;
        delete copy;
        updateError = HATCH_AREA_TOO_BIG;
        return;
    }

    f = copy->getMin().x/pSize.x;
    px1 = (int)floor(f);
    f = copy->getMin().y/pSize.y;
    py1 = (int)floor(f);
    f = copy->getMax().x/pSize.x;
    px2 = (int)ceil(f);
    f = copy->getMax().y/pSize.y;
    py2 = (int)ceil(f);
    RS_Vector dvx=RS_Vector(data.angle)*pSize.x;
    RS_Vector dvy=RS_Vector(data.angle+M_PI*0.5)*pSize.y;
    pat->rotate(rot_center, data.angle);
    pat->move(-rot_center);


    RS_EntityContainer tmp;   // container for untrimmed lines

    // adding array of patterns to tmp:
    RS_DEBUG->print("RS_Hatch::update: creating pattern carpet");

    for (int px=px1; px<px2; px++) {
		for (int py=py1; py<py2; py++) {
			for(auto e: *pat){
                RS_Entity* te=e->clone();
                te->move(dvx*px + dvy*py);
                tmp.addEntity(te);
            }
        }
    }

    delete pat;
    pat = nullptr;
    delete copy;
    copy = nullptr;
    RS_DEBUG->print("RS_Hatch::update: creating pattern carpet: OK");


    RS_DEBUG->print("RS_Hatch::update: cutting pattern carpet");
    // cut pattern to contour shape:
    RS_EntityContainer tmp2;   // container for small cut lines
	RS_Line* line = nullptr;
	RS_Arc* arc = nullptr;
	RS_Circle* circle = nullptr;
	RS_Ellipse* ellipse = nullptr;
	for(auto e: tmp){

		line = nullptr;
		arc = nullptr;
		circle = nullptr;
		ellipse = nullptr;

        RS_Vector startPoint;
        RS_Vector endPoint;
        RS_Vector center = RS_Vector(false);
        bool reversed=false;

        switch(e->rtti()){
        case RS2::EntityLine:
            line=static_cast<RS_Line*>(e);
            startPoint = line->getStartpoint();
            endPoint = line->getEndpoint();
            break;
        case RS2::EntityArc:
            arc=static_cast<RS_Arc*>(e);
            startPoint = arc->getStartpoint();
            endPoint = arc->getEndpoint();
            center = arc->getCenter();
            reversed = arc->isReversed();
            break;
        case RS2::EntityCircle:
            circle=static_cast<RS_Circle*>(e);
            startPoint = circle->getCenter()
                    + RS_Vector(circle->getRadius(), 0.0);
            endPoint = startPoint;
            center = circle->getCenter();
            break;
        case RS2::EntityEllipse:
            ellipse = static_cast<RS_Ellipse*>(e);
            startPoint = ellipse->getStartpoint();
            endPoint = ellipse->getEndpoint();
            center = ellipse->getCenter();
            reversed = ellipse->isReversed();
            break;
        default:
            continue;
        }

        // getting all intersections of this pattern line with the contour:
        QList<std::shared_ptr<RS_Vector> > is;

		for(auto loop: entities){

            if (loop->isContainer()) {
				for(auto p: * static_cast<RS_EntityContainer*>(loop)){

                    RS_VectorSolutions sol =
                        RS_Information::getIntersection(e, p, true);

					for (const RS_Vector& vp: sol){
						if (vp.valid) {
							is.append(std::shared_ptr<RS_Vector>(
										  new RS_Vector(vp)
										  ));
							RS_DEBUG->print("  pattern line intersection: %f/%f",
											vp.x, vp.y);
						}
					}
				}
			}
		}


        QList<std::shared_ptr<RS_Vector> > is2;//to be filled with sorted intersections
        is2.append(std::shared_ptr<RS_Vector>(new RS_Vector(startPoint)));

        // sort the intersection points into is2 (only if there are intersections):
        if(is.size() == 1)
        {//only one intersection
            is2.append(is.first());
        }
        else if(is.size() > 1)
        {
            RS_Vector sp = startPoint;
            double sa = center.angleTo(sp);
			if(ellipse ) sa=ellipse->getEllipseAngle(sp);
            bool done;
            double minDist;
            double dist = 0.0;
            std::shared_ptr<RS_Vector> av;
            std::shared_ptr<RS_Vector> v;
            RS_Vector last = RS_Vector(false);
            do {
                done = true;
                minDist = RS_MAXDOUBLE;
                av.reset();
                for (int i = 0; i < is.size(); ++i) {
                    v = is.at(i);
                    double a;
                    switch(e->rtti()){
                    case RS2::EntityLine:
                        dist = sp.distanceTo(*v);
                        break;
                    case RS2::EntityArc:
                    case RS2::EntityCircle:
                        a = center.angleTo(*v);
                        dist = reversed?
                                    fmod(sa - a + 2.*M_PI,2.*M_PI):
                                    fmod(a - sa + 2.*M_PI,2.*M_PI);
                        break;
                    case RS2::EntityEllipse:
                        a = ellipse->getEllipseAngle(*v);
                        dist = reversed?
                                    fmod(sa - a + 2.*M_PI,2.*M_PI):
                                    fmod(a - sa + 2.*M_PI,2.*M_PI);
                        break;
                    default:
                        break;

                    }

                    if (dist<minDist) {
                        minDist = dist;
                        done = false;
                        av = v;
                    }
                }

                // copy to sorted list, removing double points
                if (!done && av.get()) {
                    if (last.valid==false || last.distanceTo(*av)>RS_TOLERANCE) {
                        is2.append(std::shared_ptr<RS_Vector>(new RS_Vector(*av)));
                        last = *av;
                    }
#if QT_VERSION < 0x040400
                    emu_qt44_removeOne(is, av);
#else
                    is.removeOne(av);
#endif

                    av.reset();
                }
            } while(!done);
        }

is2.append(std::shared_ptr<RS_Vector>(new RS_Vector(endPoint)));

        // add small cut lines / arcs to tmp2:
            for (int i = 1; i < is2.size(); ++i) {
                auto v1 = is2.at(i-1);
                auto v2 = is2.at(i);


                if (line) {

					tmp2.addEntity(new RS_Line{&tmp2, *v1, *v2});
                } else if (arc || circle) {
                    if(fabs(center.angleTo(*v2)-center.angleTo(*v1)) > RS_TOLERANCE_ANGLE)
                    {//don't create an arc with a too small angle
                        tmp2.addEntity(new RS_Arc(&tmp2,
                                                  RS_ArcData(center,
                                                             center.distanceTo(*v1),
                                                             center.angleTo(*v1),
                                                             center.angleTo(*v2),
                                                             reversed)));
                    }

                }
            }

    }

    // updating hatch / adding entities that are inside
    RS_DEBUG->print("RS_Hatch::update: cutting pattern carpet: OK");

    //RS_EntityContainer* rubbish = new RS_EntityContainer(getGraphic());

    // the hatch pattern entities:
    hatch = new RS_EntityContainer(this);
    hatch->setPen(RS_Pen(RS2::FlagInvalid));
	hatch->setLayer(nullptr);
    hatch->setFlag(RS2::FlagTemp);

    //calculateBorders();

	for(auto e: tmp2){

        RS_Vector middlePoint;
        RS_Vector middlePoint2;
        if (e->rtti()==RS2::EntityLine) {
			RS_Line* line = static_cast<RS_Line*>(e);
            middlePoint = line->getMiddlePoint();
            middlePoint2 = line->getNearestDist(line->getLength()/2.1,
                                                line->getStartpoint());
        } else if (e->rtti()==RS2::EntityArc) {
			RS_Arc* arc = static_cast<RS_Arc*>(e);
            middlePoint = arc->getMiddlePoint();
            middlePoint2 = arc->getNearestDist(arc->getLength()/2.1,
                                               arc->getStartpoint());
        } else {
			middlePoint = RS_Vector{false};
			middlePoint2 = RS_Vector{false};
        }

        if (middlePoint.valid) {
            bool onContour=false;

            if (RS_Information::isPointInsideContour(
                        middlePoint,
                        this, &onContour) ||
                    RS_Information::isPointInsideContour(middlePoint2, this)) {

                RS_Entity* te = e->clone();
				te->setPen(RS2::FlagInvalid);
				te->setLayer(nullptr);
                te->reparent(hatch);
                hatch->addEntity(te);
            }
        }
    }

    addEntity(hatch);
    //getGraphic()->addEntity(rubbish);

    forcedCalculateBorders();

    // deactivate contour:
    activateContour(false);

    updateRunning = false;

    RS_DEBUG->print("RS_Hatch::update: OK");
}
예제 #6
0
/**
 * Testing function.
 */
void LC_SimpleTests::slotTestDumpEntities(RS_EntityContainer* d){

	int level = 0;
	std::ofstream dumpFile;
	if (d) {
		dumpFile.open("debug_entities.html", std::ios::app);
		++level;
	} else {
		d = QC_ApplicationWindow::getAppWindow()->getDocument();
		dumpFile.open("debug_entities.html");
		level = 0;
	}

	if (d) {
		if (level==0) {
			dumpFile << "<html>\n";
			dumpFile << "<body>\n";
		}

		for(auto e: *d){

			dumpFile << "<table border=\"1\">\n";
			dumpFile << "<tr><td>Entity: " << e->getId()
					 << "</td></tr>\n";

			dumpFile
					<< "<tr><td><table><tr>"
					<< "<td>VIS:" << e->isVisible() << "</td>"
					<< "<td>UND:" << e->isUndone() << "</td>"
					<< "<td>SEL:" << e->isSelected() << "</td>"
					<< "<td>TMP:" << e->getFlag(RS2::FlagTemp) << "</td>";
			QString lay = "NULL";
			if (e->getLayer()) {
				lay = e->getLayer()->getName();
			}
			dumpFile
					<< "<td>Layer: " << lay.toLatin1().data() << "</td>"
					<< "<td>Width: " << (int)e->getPen(false).getWidth() << "</td>"
					<< "<td>Parent: " << e->getParent()->getId() << "</td>"
					<< "</tr></table>";

			dumpFile
					<< "<tr><td>\n";

			switch (e->rtti()) {
			case RS2::EntityPoint: {
				RS_Point* p = (RS_Point*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Point:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>"
						<< p->getPos()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityLine: {
				RS_Line* l = (RS_Line*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Line:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>"
						<< l->getStartpoint()
						<< "</td>"
						<< "<td>"
						<< l->getEndpoint()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityArc: {
				RS_Arc* a = (RS_Arc*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Arc:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>Center: "
						<< a->getCenter()
						<< "</td>"
						<< "<td>Radius: "
						<< a->getRadius()
						<< "</td>"
						<< "<td>Angle 1: "
						<< a->getAngle1()
						<< "</td>"
						<< "<td>Angle 2: "
						<< a->getAngle2()
						<< "</td>"
						<< "<td>Startpoint: "
						<< a->getStartpoint()
						<< "</td>"
						<< "<td>Endpoint: "
						<< a->getEndpoint()
						<< "</td>"
						<< "<td>reversed: "
						<< (int)a->isReversed()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityCircle: {
				RS_Circle* c = (RS_Circle*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Circle:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>Center: "
						<< c->getCenter()
						<< "</td>"
						<< "<td>Radius: "
						<< c->getRadius()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityDimAligned: {
				RS_DimAligned* d = (RS_DimAligned*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Dimension / Aligned:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>"
						<< d->getDefinitionPoint()
						<< "</td>"
						<< "<td>"
						<< d->getExtensionPoint1()
						<< "</td>"
						<< "<td>"
						<< d->getExtensionPoint2()
						<< "</td>"
						<< "<td>Text: "
						<< d->getText().toLatin1().data()
						<< "</td>"
						<< "<td>Label: "
						<< d->getLabel().toLatin1().data()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityDimLinear: {
				RS_DimLinear* d = (RS_DimLinear*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Dimension / Linear:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>"
						<< d->getDefinitionPoint()
						<< "</td>"
						<< "<td>"
						<< d->getExtensionPoint1()
						<< "</td>"
						<< "<td>"
						<< d->getExtensionPoint2()
						<< "</td>"
						<< "<td>Text: "
						<< d->getText().toLatin1().data()
						<< "</td>"
						<< "<td>Label: "
						<< d->getLabel().toLatin1().data()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityInsert: {
				RS_Insert* i = (RS_Insert*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Insert:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>Insertion point:"
						<< i->getInsertionPoint()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityMText: {
				RS_MText* t = (RS_MText*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Text:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>Text:"
						<< t->getText().toLatin1().data()
						<< "</td>"
						<< "<td>Height:"
						<< t->getHeight()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityText: {
				RS_Text* t = (RS_Text*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Text:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>Text:"
						<< t->getText().toLatin1().data()
						<< "</td>"
						<< "<td>Height:"
						<< t->getHeight()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			case RS2::EntityHatch: {
				RS_Hatch* h = (RS_Hatch*)e;
				dumpFile
						<< "<table><tr><td>"
						<< "<b>Hatch:</b>"
						<< "</td></tr>";
				dumpFile
						<< "<tr>"
						<< "<td>Pattern:"
						<< h->getPattern().toLatin1().data()
						<< "</td>"
						<< "<td>Scale:"
						<< h->getScale()
						<< "</td>"
						<< "<td>Solid:"
						<< (int)h->isSolid()
						<< "</td>"
						<< "</tr></table>";
			}
				break;

			default:
				dumpFile
						<< "<tr><td>"
						<< "<b>Unknown Entity: " << e->rtti() << "</b>"
						<< "</td></tr>";
				break;
			}

			if (e->isContainer() || e->rtti()==RS2::EntityHatch) {
				RS_EntityContainer* ec = (RS_EntityContainer*)e;
				dumpFile << "<table><tr><td valign=\"top\">&nbsp;&nbsp;&nbsp;&nbsp;Contents:</td><td>\n";
				dumpFile.close();
				slotTestDumpEntities(ec);
				dumpFile.open("debug_entities.html", std::ios::app);
				dumpFile << "</td></tr></table>\n";
			}

			dumpFile
					<< "</td></tr>"
					<< "</table>\n"
					<< "<br><br>";
		}

		if (level==0) {
			dumpFile << "</body>\n";
			dumpFile << "</html>\n";
		} else {
			level--;
		}
	}
	RS_DEBUG->print("%s\n: end\n", __func__);
}
예제 #7
0
/**
 * Updates the Hatch. Called when the
 * hatch or it's data, position, alignment, .. changes.
 */
void RS_Hatch::update() {
        RS_DEBUG->print("RS_Hatch::update");
        RS_DEBUG->print("RS_Hatch::update: contour has %d loops", count());

    if (updateRunning) {
        return;
    }

    if (updateEnabled==false) {
        return;
    }

    if (data.solid==true) {
        calculateBorders();
        return;
    }

    RS_DEBUG->print("RS_Hatch::update");
    updateRunning = true;

    // delete old hatch:
    if (hatch!=NULL) {
        removeEntity(hatch);
        hatch = NULL;
    }

    if (isUndone()) {
        updateRunning = false;
        return;
    }

        if (!validate()) {
                RS_DEBUG->print(RS_Debug::D_WARNING,
                        "RS_Hatch::update: invalid contour in hatch found");
        updateRunning = false;
                return;
        }

    // search pattern:
    RS_DEBUG->print("RS_Hatch::update: requesting pattern");
    RS_Pattern* pat = RS_PATTERNLIST->requestPattern(data.pattern);
    if (pat==NULL) {
        updateRunning = false;
        RS_DEBUG->print("RS_Hatch::update: requesting pattern: not found");
        return;
    }
    RS_DEBUG->print("RS_Hatch::update: requesting pattern: OK");

    RS_DEBUG->print("RS_Hatch::update: cloning pattern");
    pat = (RS_Pattern*)pat->clone();
    RS_DEBUG->print("RS_Hatch::update: cloning pattern: OK");

    // scale pattern
    RS_DEBUG->print("RS_Hatch::update: scaling pattern");
    pat->scale(RS_Vector(0.0,0.0), RS_Vector(data.scale, data.scale));
    pat->calculateBorders();
    forcedCalculateBorders();
    RS_DEBUG->print("RS_Hatch::update: scaling pattern: OK");

    // find out how many pattern-instances we need in x/y:
    int px1, py1, px2, py2;
    double f;
    RS_Hatch* copy = (RS_Hatch*)this->clone();
    copy->rotate(RS_Vector(0.0,0.0), -data.angle);
    copy->forcedCalculateBorders();

    // create a pattern over the whole contour.
    RS_Vector pSize = pat->getSize();
//    RS_Vector cPos = getMin();
    RS_Vector cSize = getSize();


    RS_DEBUG->print("RS_Hatch::update: pattern size: %f/%f", pSize.x, pSize.y);
    RS_DEBUG->print("RS_Hatch::update: contour size: %f/%f", cSize.x, cSize.y);

    if (cSize.x<1.0e-6 || cSize.y<1.0e-6 ||
            pSize.x<1.0e-6 || pSize.y<1.0e-6 ||
            cSize.x>RS_MAXDOUBLE-1 || cSize.y>RS_MAXDOUBLE-1 ||
            pSize.x>RS_MAXDOUBLE-1 || pSize.y>RS_MAXDOUBLE-1) {
        delete pat;
        delete copy;
        updateRunning = false;
        RS_DEBUG->print("RS_Hatch::update: contour size or pattern size too small");
        return;
    }

    // avoid huge memory consumption:
    else if (cSize.x/pSize.x>100 || cSize.y/pSize.y>100) {
        RS_DEBUG->print("RS_Hatch::update: contour size too large or pattern size too small");
        return;
    }

    f = copy->getMin().x/pat->getSize().x;
    px1 = (int)floor(f);
    f = copy->getMin().y/pat->getSize().y;
    py1 = (int)floor(f);
    f = copy->getMax().x/pat->getSize().x;
    px2 = (int)ceil(f) - 1;
    f = copy->getMax().y/pat->getSize().y;
    py2 = (int)ceil(f) - 1;

    RS_EntityContainer tmp;   // container for untrimmed lines

    // adding array of patterns to tmp:
    RS_DEBUG->print("RS_Hatch::update: creating pattern carpet");

    for (int px=px1; px<=px2; px++) {
        for (int py=py1; py<=py2; py++) {
            for (RS_Entity* e=pat->firstEntity(); e!=NULL;
                    e=pat->nextEntity()) {

                RS_Entity* te = e->clone();
                te->rotate(RS_Vector(0.0,0.0), data.angle);
                RS_Vector v1, v2;
                v1.setPolar(px*pSize.x, data.angle);
                v2.setPolar(py*pSize.y, data.angle+M_PI/2.0);
                te->move(v1+v2);
                tmp.addEntity(te);
            }
        }
    }

    delete pat;
    pat = NULL;
    RS_DEBUG->print("RS_Hatch::update: creating pattern carpet: OK");


    RS_DEBUG->print("RS_Hatch::update: cutting pattern carpet");
    // cut pattern to contour shape:
    RS_EntityContainer tmp2;   // container for small cut lines
    RS_Line* line = NULL;
    RS_Arc* arc = NULL;
    RS_Circle* circle = NULL;
    RS_Ellipse* ellipse = NULL;
    for (RS_Entity* e=tmp.firstEntity(); e!=NULL;
            e=tmp.nextEntity()) {

        RS_Vector startPoint;
        RS_Vector endPoint;
        RS_Vector center = RS_Vector(false);
        bool reversed;

        switch(e->rtti()){
        case RS2::EntityLine:
            line=static_cast<RS_Line*>(e);
            startPoint = line->getStartpoint();
            endPoint = line->getEndpoint();
            break;
        case RS2::EntityArc:
            arc=static_cast<RS_Arc*>(e);
            startPoint = arc->getStartpoint();
            endPoint = arc->getEndpoint();
            center = arc->getCenter();
            reversed = arc->isReversed();
            break;
        case RS2::EntityCircle:
            circle=static_cast<RS_Circle*>(e);
            startPoint = circle->getCenter()
                    + RS_Vector(circle->getRadius(), 0.0);
            endPoint = startPoint;
            center = circle->getCenter();
            break;
        case RS2::EntityEllipse:
            ellipse = static_cast<RS_Ellipse*>(e);
            startPoint = ellipse->getStartpoint();
            endPoint = ellipse->getEndpoint();
            center = ellipse->getCenter();
            reversed = ellipse->isReversed();
            break;
        default:
            continue;
        }

        // getting all intersections of this pattern line with the contour:
        QList<std::shared_ptr<RS_Vector> > is;
        is.append(std::shared_ptr<RS_Vector>(new RS_Vector(startPoint)));

        for (RS_Entity* loop=firstEntity(); loop!=NULL;
                loop=nextEntity()) {

            if (loop->isContainer()) {
                for (RS_Entity* p=((RS_EntityContainer*)loop)->firstEntity();
                        p!=NULL;
                        p=((RS_EntityContainer*)loop)->nextEntity()) {

                    RS_VectorSolutions sol =
                        RS_Information::getIntersection(e, p, true);

                    for (int i=0; i<=1; ++i) {
                        if (sol.get(i).valid) {
                            is.append(std::shared_ptr<RS_Vector>(
                                          new RS_Vector(sol.get(i))
                                                        ));
                            RS_DEBUG->print("  pattern line intersection: %f/%f",
                                            sol.get(i).x, sol.get(i).y);
                        }
                    }
                }
            }
        }

        is.append(std::shared_ptr<RS_Vector>(new RS_Vector(endPoint)));

        // sort the intersection points into is2:
        RS_Vector sp = startPoint;
        double sa = center.angleTo(sp);
        if(ellipse != NULL) sa=ellipse->getEllipseAngle(sp);
        QList<std::shared_ptr<RS_Vector> > is2;
        bool done;
        double minDist;
        double dist = 0.0;
        std::shared_ptr<RS_Vector> av;
        std::shared_ptr<RS_Vector> v;
        RS_Vector last = RS_Vector(false);
        do {
            done = true;
            minDist = RS_MAXDOUBLE;
            av.reset();
            for (int i = 0; i < is.size(); ++i) {
                v = is.at(i);
                double a;
                switch(e->rtti()){
                case RS2::EntityLine:
                    dist = sp.distanceTo(*v);
                    break;
                case RS2::EntityArc:
                case RS2::EntityCircle:
                    a = center.angleTo(*v);
                    dist = reversed?
                                fmod(sa - a + 2.*M_PI,2.*M_PI):
                                fmod(a - sa + 2.*M_PI,2.*M_PI);
                    break;
                case RS2::EntityEllipse:
                    a = ellipse->getEllipseAngle(*v);
                    dist = reversed?
                                fmod(sa - a + 2.*M_PI,2.*M_PI):
                                fmod(a - sa + 2.*M_PI,2.*M_PI);
                    break;
                default:
                    break;

                }

                if (dist<minDist) {
                    minDist = dist;
                    done = false;
                    av = v;
                }
            }

            // copy to sorted list, removing double points
            if (!done && av.get()!=NULL) {
                if (last.valid==false || last.distanceTo(*av)>RS_TOLERANCE) {
                    is2.append(std::shared_ptr<RS_Vector>(new RS_Vector(*av)));
                    last = *av;
                }
#if QT_VERSION < 0x040400
                emu_qt44_removeOne(is, av);
#else
                is.removeOne(av);
#endif

                av.reset();
            }
        } while(!done);

        // add small cut lines / arcs to tmp2:
            for (int i = 1; i < is2.size(); ++i) {
                auto v1 = is2.at(i-1);
                auto v2 = is2.at(i);

                if (line!=NULL) {
                    tmp2.addEntity(new RS_Line(&tmp2,
                                               RS_LineData(*v1, *v2)));
                } else if (arc!=NULL || circle!=NULL) {
                    tmp2.addEntity(new RS_Arc(&tmp2,
                                              RS_ArcData(center,
                                                         center.distanceTo(*v1),
                                                         center.angleTo(*v1),
                                                         center.angleTo(*v2),
                                                         reversed)));
                }
            }

    }

    // updating hatch / adding entities that are inside
    RS_DEBUG->print("RS_Hatch::update: cutting pattern carpet: OK");

    //RS_EntityContainer* rubbish = new RS_EntityContainer(getGraphic());

    // the hatch pattern entities:
    hatch = new RS_EntityContainer(this);
    hatch->setPen(RS_Pen(RS2::FlagInvalid));
    hatch->setLayer(NULL);
    hatch->setFlag(RS2::FlagTemp);

    //calculateBorders();

    for (RS_Entity* e=tmp2.firstEntity(); e!=NULL;
            e=tmp2.nextEntity()) {

        RS_Vector middlePoint;
        RS_Vector middlePoint2;
        if (e->rtti()==RS2::EntityLine) {
            RS_Line* line = (RS_Line*)e;
            middlePoint = line->getMiddlePoint();
            middlePoint2 = line->getNearestDist(line->getLength()/2.1,
                                                line->getStartpoint());
        } else if (e->rtti()==RS2::EntityArc) {
            RS_Arc* arc = (RS_Arc*)e;
            middlePoint = arc->getMiddlePoint();
            middlePoint2 = arc->getNearestDist(arc->getLength()/2.1,
                                               arc->getStartpoint());
        } else {
            middlePoint = RS_Vector(false);
            middlePoint2 = RS_Vector(false);
        }

        if (middlePoint.valid) {
            bool onContour=false;

            if (RS_Information::isPointInsideContour(
                        middlePoint,
                        this, &onContour) ||
                    RS_Information::isPointInsideContour(middlePoint2, this)) {

                RS_Entity* te = e->clone();
                te->setPen(RS_Pen(RS2::FlagInvalid));
                te->setLayer(NULL);
                te->reparent(hatch);
                hatch->addEntity(te);
            }
        }
    }

    addEntity(hatch);
    //getGraphic()->addEntity(rubbish);

    forcedCalculateBorders();

    // deactivate contour:
    activateContour(false);

    updateRunning = false;

    RS_DEBUG->print("RS_Hatch::update: OK");
}
예제 #8
0
/**
 * Implementation of the method used for RS_Export to communicate
 * with this filter.
 *
 * @param file Full path to the LFF file that will be written.
 */
bool RS_FilterLFF::fileExport(RS_Graphic& g, const QString& file, RS2::FormatType /*type*/) {

    RS_DEBUG->print("LFF Filter: exporting file '%s'...", file.toLatin1().data());
    RS_DEBUG->print("RS_FilterLFF::fileExport: open");

    QFile f(file);
    QTextStream ts(&f);
    ts.setCodec("UTF-8");
    if (f.open(QIODevice::WriteOnly | QIODevice::Truncate)) {


        RS_DEBUG->print("RS_FilterLFF::fileExport: open: OK");

        RS_DEBUG->print("RS_FilterLFF::fileExport: header");

        // header:
        ts << "# Format:            LibreCAD Font 1\n";
        ts << QString("# Creator:           %1\n").arg(RS_SYSTEM->getAppName());
        ts << QString("# Version:           %1\n").arg(RS_SYSTEM->getAppVersion());

        QString ns = g.getVariableString("Names", "");
        if (!ns.isEmpty()) {
            QStringList names = ns.split(',');
            RS_DEBUG->print("002");
            for (int i = 0; i < names.size(); ++i) {
                ts << QString("# Name:              %1\n").arg(names.at(i));
            }
        }

        QString es = g.getVariableString("Encoding", "");
        ts << QString("# Encoding:          UTF-8\n");
        ts << QString("# LetterSpacing:     %1\n").arg(
                  g.getVariableDouble("LetterSpacing", 3.0));
        ts << QString("# WordSpacing:       %1\n").arg(
                  g.getVariableDouble("WordSpacing", 6.75));
        ts << QString("# LineSpacingFactor: %1\n").arg(
                  g.getVariableDouble("LineSpacingFactor", 1.0));
        QString dateline = QDate::currentDate().toString ("yyyy-MM-dd");
        ts << QString("# Created:           %1\n").arg(
                  g.getVariableString("Created", dateline));
        ts << QString("# Last modified:     %1\n").arg(dateline);

        QString sa = g.getVariableString("Authors", "");
        RS_DEBUG->print("authors: %s", sa.toLocal8Bit().data());
        if (!sa.isEmpty()) {
            QStringList authors = sa.split(',');
            RS_DEBUG->print("count: %d", authors.count());

            QString a;
            for (int i = 0; i < authors.size(); ++i) {
                ts << QString("# Author:            %1\n").arg(authors.at(i));
            }
        }
        es = g.getVariableString("License", "");
        if (!es.isEmpty()) {
            ts << QString("# License:           %1\n").arg(es);
        } else
            ts << "# License:           unknown\n";

        RS_DEBUG->print("RS_FilterLFF::fileExport: header: OK");

        // iterate through blocks (=letters of font)
        for (uint i=0; i<g.countBlocks(); ++i) {
            RS_Block* blk = g.blockAt(i);

            RS_DEBUG->print("block: %d", i);

            if (blk!=NULL) {
                RS_DEBUG->print("002a: %s",
                                (blk->getName().toLocal8Bit().data()));

                ts << QString("\n%1\n").arg(blk->getName());

                // iterate through entities of this letter:
                for (RS_Entity* e=blk->firstEntity(RS2::ResolveNone);
                     e!=NULL;
                     e=blk->nextEntity(RS2::ResolveNone)) {

                    if (!e->isUndone()) {

                        // lines:
                        if (e->rtti()==RS2::EntityLine) {
                            RS_Line* l = (RS_Line*)e;
                            ts << clearZeros(l->getStartpoint().x, 5) << ',';
                            ts << clearZeros(l->getStartpoint().y, 5) << ';';
                            ts << clearZeros(l->getEndpoint().x, 5) << ',';
                            ts << clearZeros(l->getEndpoint().y, 5) << '\n';
                        }
                        // arcs:
                        else if (e->rtti()==RS2::EntityArc) {
                            RS_Arc* a = (RS_Arc*)e;
                            ts << clearZeros(a->getStartpoint().x, 5) << ',';
                            ts << clearZeros(a->getStartpoint().y, 5) << ';';
                            ts << clearZeros(a->getEndpoint().x, 5) << ',';
                            ts << clearZeros(a->getEndpoint().y, 5) << ",A";
                            ts << clearZeros(a->getBulge(), 5) << '\n';
                        }
                        else if (e->rtti()==RS2::EntityBlock) {
                            RS_Block* b = (RS_Block*)e;
                            QString uCode;
                            uCode.setNum(b->getName().at(0).unicode(), 16);
                            if (uCode.length()<4) {
                                uCode = uCode.rightJustified(4, '0');
                            }
                            ts << QString("C%1\n").arg(uCode);
                        }
                        else if (e->rtti()==RS2::EntityPolyline) {
                            RS_Polyline* p = (RS_Polyline*)e;
                            ts << clearZeros(p->getStartpoint().x, 5) << ',';
                            ts << clearZeros(p->getStartpoint().y, 5);
                            for (RS_Entity* e2=p->firstEntity(RS2::ResolveNone);
                                 e2!=NULL;
                                 e2=p->nextEntity(RS2::ResolveNone)) {
                                if (e2->rtti()==RS2::EntityLine){
                                    RS_Line* l = (RS_Line*)e2;
                                    ts << ';' << clearZeros(l->getEndpoint().x, 5) << ',';
                                    ts << clearZeros(l->getEndpoint().y, 5);
                                } else if (e2->rtti()==RS2::EntityArc){
                                    RS_Arc* a = (RS_Arc*)e2;
                                    ts << ';' << clearZeros(a->getEndpoint().x, 5) << ',';
                                    ts << clearZeros(a->getEndpoint().y, 5) <<",A";
                                    ts << clearZeros(a->getBulge(), 5);
                                }
                            }
                            ts<<'\n';
                        }
                        // Ignore entities other than arcs / lines
                        else {}
                    }

                }
            }
        }
        f.close();
        RS_DEBUG->print("LFF Filter: exporting file: OK");
        return true;
    }
    else {
        RS_DEBUG->print("LFF Filter: exporting file failed");
    }

    return false;
}