TEST (RANSAC, SampleConsensusModelSphere) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; cloud.points.resize (10); cloud.points[0].x = 1.7068f; cloud.points[0].y = 1.0684f; cloud.points[0].z = 2.2147f; cloud.points[1].x = 2.4708f; cloud.points[1].y = 2.3081f; cloud.points[1].z = 1.1736f; cloud.points[2].x = 2.7609f; cloud.points[2].y = 1.9095f; cloud.points[2].z = 1.3574f; cloud.points[3].x = 2.8016f; cloud.points[3].y = 1.6704f; cloud.points[3].z = 1.5009f; cloud.points[4].x = 1.8517f; cloud.points[4].y = 2.0276f; cloud.points[4].z = 1.0112f; cloud.points[5].x = 1.8726f; cloud.points[5].y = 1.3539f; cloud.points[5].z = 2.7523f; cloud.points[6].x = 2.5179f; cloud.points[6].y = 2.3218f; cloud.points[6].z = 1.2074f; cloud.points[7].x = 2.4026f; cloud.points[7].y = 2.5114f; cloud.points[7].z = 2.7588f; cloud.points[8].x = 2.6999f; cloud.points[8].y = 2.5606f; cloud.points[8].z = 1.5571f; cloud.points[9].x = 0.0f; cloud.points[9].y = 0.0f; cloud.points[9].z = 0.0f; // Create a shared sphere model pointer directly SampleConsensusModelSpherePtr model (new SampleConsensusModelSphere<PointXYZ> (cloud.makeShared ())); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.03); // Algorithm tests bool result = sac.computeModel (); ASSERT_EQ (result, true); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (int (sample.size ()), 4); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (int (inliers.size ()), 9); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (int (coeff.size ()), 4); EXPECT_NEAR (coeff[0]/coeff[3], 2, 1e-2); EXPECT_NEAR (coeff[1]/coeff[3], 2, 1e-2); EXPECT_NEAR (coeff[2]/coeff[3], 2, 1e-2); Eigen::VectorXf coeff_refined; model->optimizeModelCoefficients (inliers, coeff, coeff_refined); EXPECT_EQ (int (coeff_refined.size ()), 4); EXPECT_NEAR (coeff_refined[0]/coeff_refined[3], 2, 1e-2); EXPECT_NEAR (coeff_refined[1]/coeff_refined[3], 2, 1e-2); EXPECT_NEAR (coeff_refined[2]/coeff_refined[3], 2, 1e-2); }
TEST (SampleConsensusModelLine, OnGroundPlane) { PointCloud<PointXYZ> cloud; cloud.points.resize (10); // All the points are on the ground plane (z=0). // The line is parallel to the x axis, so all the inlier points have the same z and y coordinates. cloud.points[0].getVector3fMap () << 0.0f, 0.0f, 0.0f; cloud.points[1].getVector3fMap () << 1.0f, 0.0f, 0.0f; cloud.points[2].getVector3fMap () << 2.0f, 0.0f, 0.0f; cloud.points[3].getVector3fMap () << 3.0f, 0.0f, 0.0f; cloud.points[4].getVector3fMap () << 4.0f, 0.0f, 0.0f; cloud.points[5].getVector3fMap () << 5.0f, 0.0f, 0.0f; // Outliers cloud.points[6].getVector3fMap () << 2.1f, 2.0f, 0.0f; cloud.points[7].getVector3fMap () << 5.0f, 4.1f, 0.0f; cloud.points[8].getVector3fMap () << 0.4f, 1.3f, 0.0f; cloud.points[9].getVector3fMap () << 3.3f, 0.1f, 0.0f; // Create a shared line model pointer directly SampleConsensusModelLinePtr model (new SampleConsensusModelLine<PointXYZ> (cloud.makeShared ())); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.001); // Algorithm tests bool result = sac.computeModel (); ASSERT_TRUE (result); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (6, inliers.size ()); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (6, coeff.size ()); EXPECT_NE (0, coeff[3]); EXPECT_NEAR (0, coeff[4], 1e-4); EXPECT_NEAR (0, coeff[5], 1e-4); }
TEST (SampleConsensusModelNormalParallelPlane, RANSAC) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; PointCloud<Normal> normals; cloud.points.resize (10); normals.resize (10); for (unsigned idx = 0; idx < cloud.size (); ++idx) { cloud.points[idx].x = static_cast<float> ((rand () % 200) - 100); cloud.points[idx].y = static_cast<float> ((rand () % 200) - 100); cloud.points[idx].z = 0.0f; normals.points[idx].normal_x = 0.0f; normals.points[idx].normal_y = 0.0f; normals.points[idx].normal_z = 1.0f; } // Create a shared plane model pointer directly SampleConsensusModelNormalParallelPlanePtr model (new SampleConsensusModelNormalParallelPlane<PointXYZ, Normal> (cloud.makeShared ())); model->setInputNormals (normals.makeShared ()); const float max_angle_rad = 0.01f; const float angle_eps = 0.001f; model->setEpsAngle (max_angle_rad); // Test true axis { model->setAxis (Eigen::Vector3f (0, 0, 1)); RandomSampleConsensus<PointXYZ> sac (model, 0.03); sac.computeModel(); std::vector<int> inliers; sac.getInliers (inliers); ASSERT_EQ (cloud.size (), inliers.size ()); } // test axis slightly in valid range { model->setAxis (Eigen::Vector3f (0, sin (max_angle_rad * (1 - angle_eps)), cos (max_angle_rad * (1 - angle_eps)))); RandomSampleConsensus<PointXYZ> sac (model, 0.03); sac.computeModel (); std::vector<int> inliers; sac.getInliers (inliers); ASSERT_EQ (cloud.size (), inliers.size ()); } // test axis slightly out of valid range { model->setAxis (Eigen::Vector3f (0, sin (max_angle_rad * (1 + angle_eps)), cos (max_angle_rad * (1 + angle_eps)))); RandomSampleConsensus<PointXYZ> sac (model, 0.03); sac.computeModel (); std::vector<int> inliers; sac.getInliers (inliers); ASSERT_EQ (0, inliers.size ()); } }
TEST (RANSAC, SampleConsensusModelLine) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; cloud.points.resize (10); cloud.points[0].x = 1.0f; cloud.points[0].y = 2.0f; cloud.points[0].z = 3.0f; cloud.points[1].x = 4.0f; cloud.points[1].y = 5.0f; cloud.points[1].z = 6.0f; cloud.points[2].x = 7.0f; cloud.points[2].y = 8.0f; cloud.points[2].z = 9.0f; cloud.points[3].x = 10.0f; cloud.points[3].y = 11.0f; cloud.points[3].z = 12.0f; cloud.points[4].x = 13.0f; cloud.points[4].y = 14.0f; cloud.points[4].z = 15.0f; cloud.points[5].x = 16.0f; cloud.points[5].y = 17.0f; cloud.points[5].z = 18.0f; cloud.points[6].x = 19.0f; cloud.points[6].y = 20.0f; cloud.points[6].z = 21.0f; cloud.points[7].x = 22.0f; cloud.points[7].y = 23.0f; cloud.points[7].z = 24.0f; cloud.points[8].x = -5.0f; cloud.points[8].y = 1.57f; cloud.points[8].z = 0.75f; cloud.points[9].x = 4.0f; cloud.points[9].y = 2.0f; cloud.points[9].z = 3.0f; // Create a shared line model pointer directly SampleConsensusModelLinePtr model (new SampleConsensusModelLine<PointXYZ> (cloud.makeShared ())); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.001); // Algorithm tests bool result = sac.computeModel (); ASSERT_EQ (result, true); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (int (sample.size ()), 2); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (int (inliers.size ()), 8); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (int (coeff.size ()), 6); EXPECT_NEAR (coeff[4]/coeff[3], 1, 1e-4); EXPECT_NEAR (coeff[5]/coeff[3], 1, 1e-4); Eigen::VectorXf coeff_refined; model->optimizeModelCoefficients (inliers, coeff, coeff_refined); EXPECT_EQ (int (coeff_refined.size ()), 6); EXPECT_NEAR (coeff[4]/coeff[3], 1, 1e-4); EXPECT_NEAR (coeff[5]/coeff[3], 1, 1e-4); // Projection tests PointCloud<PointXYZ> proj_points; model->projectPoints (inliers, coeff_refined, proj_points); EXPECT_NEAR (proj_points.points[2].x, 7.0, 1e-4); EXPECT_NEAR (proj_points.points[2].y, 8.0, 1e-4); EXPECT_NEAR (proj_points.points[2].z, 9.0, 1e-4); EXPECT_NEAR (proj_points.points[3].x, 10.0, 1e-4); EXPECT_NEAR (proj_points.points[3].y, 11.0, 1e-4); EXPECT_NEAR (proj_points.points[3].z, 12.0, 1e-4); EXPECT_NEAR (proj_points.points[5].x, 16.0, 1e-4); EXPECT_NEAR (proj_points.points[5].y, 17.0, 1e-4); EXPECT_NEAR (proj_points.points[5].z, 18.0, 1e-4); }
TEST (RANSAC, SampleConsensusModelCircle3D) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; cloud.points.resize (20); cloud.points[0].x = 1.0f; cloud.points[0].y = 5.0f; cloud.points[0].z = -2.9000001f; cloud.points[1].x = 1.034202f; cloud.points[1].y = 5.0f; cloud.points[1].z = -2.9060307f; cloud.points[2].x = 1.0642787f; cloud.points[2].y = 5.0f; cloud.points[2].z = -2.9233956f; cloud.points[3].x = 1.0866026f; cloud.points[3].y = 5.0f; cloud.points[3].z = -2.95f; cloud.points[4].x = 1.0984808f; cloud.points[4].y = 5.0f; cloud.points[4].z = -2.9826353f; cloud.points[5].x = 1.0984808f; cloud.points[5].y = 5.0f; cloud.points[5].z = -3.0173647f; cloud.points[6].x = 1.0866026f; cloud.points[6].y = 5.0f; cloud.points[6].z = -3.05f; cloud.points[7].x = 1.0642787f; cloud.points[7].y = 5.0f; cloud.points[7].z = -3.0766044f; cloud.points[8].x = 1.034202f; cloud.points[8].y = 5.0f; cloud.points[8].z = -3.0939693f; cloud.points[9].x = 1.0f; cloud.points[9].y = 5.0f; cloud.points[9].z = -3.0999999f; cloud.points[10].x = 0.96579796f; cloud.points[10].y = 5.0f; cloud.points[10].z = -3.0939693f; cloud.points[11].x = 0.93572122f; cloud.points[11].y = 5.0f; cloud.points[11].z = -3.0766044f; cloud.points[12].x = 0.91339743f; cloud.points[12].y = 5.0f; cloud.points[12].z = -3.05f; cloud.points[13].x = 0.90151924f; cloud.points[13].y = 5.0f; cloud.points[13].z = -3.0173647f; cloud.points[14].x = 0.90151924f; cloud.points[14].y = 5.0f; cloud.points[14].z = -2.9826353f; cloud.points[15].x = 0.91339743f; cloud.points[15].y = 5.0f; cloud.points[15].z = -2.95f; cloud.points[16].x = 0.93572122f; cloud.points[16].y = 5.0f; cloud.points[16].z = -2.9233956f; cloud.points[17].x = 0.96579796f; cloud.points[17].y = 5.0; cloud.points[17].z = -2.9060307f; cloud.points[18].x = 0.85000002f; cloud.points[18].y = 4.8499999f; cloud.points[18].z = -3.1500001f; cloud.points[19].x = 1.15f; cloud.points[19].y = 5.1500001f; cloud.points[19].z = -2.8499999f; // Create a shared 3d circle model pointer directly SampleConsensusModelCircle3DPtr model (new SampleConsensusModelCircle3D<PointXYZ> (cloud.makeShared ())); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.03); // Algorithm tests bool result = sac.computeModel (); ASSERT_EQ (result, true); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (int (sample.size ()), 3); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (int (inliers.size ()), 18); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (int (coeff.size ()), 7); EXPECT_NEAR (coeff[0], 1, 1e-3); EXPECT_NEAR (coeff[1], 5, 1e-3); EXPECT_NEAR (coeff[2], -3, 1e-3); EXPECT_NEAR (coeff[3],0.1, 1e-3); EXPECT_NEAR (coeff[4], 0, 1e-3); EXPECT_NEAR (coeff[5], -1, 1e-3); EXPECT_NEAR (coeff[6], 0, 1e-3); Eigen::VectorXf coeff_refined; model->optimizeModelCoefficients (inliers, coeff, coeff_refined); EXPECT_EQ (int (coeff_refined.size ()), 7); EXPECT_NEAR (coeff_refined[0], 1, 1e-3); EXPECT_NEAR (coeff_refined[1], 5, 1e-3); EXPECT_NEAR (coeff_refined[2], -3, 1e-3); EXPECT_NEAR (coeff_refined[3],0.1, 1e-3); EXPECT_NEAR (coeff_refined[4], 0, 1e-3); EXPECT_NEAR (coeff_refined[5], -1, 1e-3); EXPECT_NEAR (coeff_refined[6], 0, 1e-3); }
TEST (RANSAC, SampleConsensusModelCylinder) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; PointCloud<Normal> normals; cloud.points.resize (20); normals.points.resize (20); cloud.points[0].x = -0.499902f; cloud.points[0].y = 2.199701f; cloud.points[0].z = 0.000008f; cloud.points[1].x = -0.875397f; cloud.points[1].y = 2.030177f; cloud.points[1].z = 0.050104f; cloud.points[2].x = -0.995875f; cloud.points[2].y = 1.635973f; cloud.points[2].z = 0.099846f; cloud.points[3].x = -0.779523f; cloud.points[3].y = 1.285527f; cloud.points[3].z = 0.149961f; cloud.points[4].x = -0.373285f; cloud.points[4].y = 1.216488f; cloud.points[4].z = 0.199959f; cloud.points[5].x = -0.052893f; cloud.points[5].y = 1.475973f; cloud.points[5].z = 0.250101f; cloud.points[6].x = -0.036558f; cloud.points[6].y = 1.887591f; cloud.points[6].z = 0.299839f; cloud.points[7].x = -0.335048f; cloud.points[7].y = 2.171994f; cloud.points[7].z = 0.350001f; cloud.points[8].x = -0.745456f; cloud.points[8].y = 2.135528f; cloud.points[8].z = 0.400072f; cloud.points[9].x = -0.989282f; cloud.points[9].y = 1.803311f; cloud.points[9].z = 0.449983f; cloud.points[10].x = -0.900651f; cloud.points[10].y = 1.400701f; cloud.points[10].z = 0.500126f; cloud.points[11].x = -0.539658f; cloud.points[11].y = 1.201468f; cloud.points[11].z = 0.550079f; cloud.points[12].x = -0.151875f; cloud.points[12].y = 1.340951f; cloud.points[12].z = 0.599983f; cloud.points[13].x = -0.000724f; cloud.points[13].y = 1.724373f; cloud.points[13].z = 0.649882f; cloud.points[14].x = -0.188573f; cloud.points[14].y = 2.090983f; cloud.points[14].z = 0.699854f; cloud.points[15].x = -0.587925f; cloud.points[15].y = 2.192257f; cloud.points[15].z = 0.749956f; cloud.points[16].x = -0.927724f; cloud.points[16].y = 1.958846f; cloud.points[16].z = 0.800008f; cloud.points[17].x = -0.976888f; cloud.points[17].y = 1.549655f; cloud.points[17].z = 0.849970f; cloud.points[18].x = -0.702003f; cloud.points[18].y = 1.242707f; cloud.points[18].z = 0.899954f; cloud.points[19].x = -0.289916f; cloud.points[19].y = 1.246296f; cloud.points[19].z = 0.950075f; normals.points[0].normal[0] = 0.000098f; normals.points[0].normal[1] = 1.000098f; normals.points[0].normal[2] = 0.000008f; normals.points[1].normal[0] = -0.750891f; normals.points[1].normal[1] = 0.660413f; normals.points[1].normal[2] = 0.000104f; normals.points[2].normal[0] = -0.991765f; normals.points[2].normal[1] = -0.127949f; normals.points[2].normal[2] = -0.000154f; normals.points[3].normal[0] = -0.558918f; normals.points[3].normal[1] = -0.829439f; normals.points[3].normal[2] = -0.000039f; normals.points[4].normal[0] = 0.253627f; normals.points[4].normal[1] = -0.967447f; normals.points[4].normal[2] = -0.000041f; normals.points[5].normal[0] = 0.894105f; normals.points[5].normal[1] = -0.447965f; normals.points[5].normal[2] = 0.000101f; normals.points[6].normal[0] = 0.926852f; normals.points[6].normal[1] = 0.375543f; normals.points[6].normal[2] = -0.000161f; normals.points[7].normal[0] = 0.329948f; normals.points[7].normal[1] = 0.943941f; normals.points[7].normal[2] = 0.000001f; normals.points[8].normal[0] = -0.490966f; normals.points[8].normal[1] = 0.871203f; normals.points[8].normal[2] = 0.000072f; normals.points[9].normal[0] = -0.978507f; normals.points[9].normal[1] = 0.206425f; normals.points[9].normal[2] = -0.000017f; normals.points[10].normal[0] = -0.801227f; normals.points[10].normal[1] = -0.598534f; normals.points[10].normal[2] = 0.000126f; normals.points[11].normal[0] = -0.079447f; normals.points[11].normal[1] = -0.996697f; normals.points[11].normal[2] = 0.000079f; normals.points[12].normal[0] = 0.696154f; normals.points[12].normal[1] = -0.717889f; normals.points[12].normal[2] = -0.000017f; normals.points[13].normal[0] = 0.998685f; normals.points[13].normal[1] = 0.048502f; normals.points[13].normal[2] = -0.000118f; normals.points[14].normal[0] = 0.622933f; normals.points[14].normal[1] = 0.782133f; normals.points[14].normal[2] = -0.000146f; normals.points[15].normal[0] = -0.175948f; normals.points[15].normal[1] = 0.984480f; normals.points[15].normal[2] = -0.000044f; normals.points[16].normal[0] = -0.855476f; normals.points[16].normal[1] = 0.517824f; normals.points[16].normal[2] = 0.000008f; normals.points[17].normal[0] = -0.953769f; normals.points[17].normal[1] = -0.300571f; normals.points[17].normal[2] = -0.000030f; normals.points[18].normal[0] = -0.404035f; normals.points[18].normal[1] = -0.914700f; normals.points[18].normal[2] = -0.000046f; normals.points[19].normal[0] = 0.420154f; normals.points[19].normal[1] = -0.907445f; normals.points[19].normal[2] = 0.000075f; // Create a shared cylinder model pointer directly SampleConsensusModelCylinderPtr model (new SampleConsensusModelCylinder<PointXYZ, Normal> (cloud.makeShared ())); model->setInputNormals (normals.makeShared ()); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.03); // Algorithm tests bool result = sac.computeModel (); ASSERT_EQ (result, true); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (int (sample.size ()), 2); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (int (inliers.size ()), 20); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (int (coeff.size ()), 7); EXPECT_NEAR (coeff[0], -0.5, 1e-3); EXPECT_NEAR (coeff[1], 1.7, 1e-3); EXPECT_NEAR (coeff[6], 0.5, 1e-3); Eigen::VectorXf coeff_refined; model->optimizeModelCoefficients (inliers, coeff, coeff_refined); EXPECT_EQ (int (coeff_refined.size ()), 7); EXPECT_NEAR (coeff_refined[6], 0.5, 1e-3); }
TEST (RANSAC, SampleConsensusModelCone) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; PointCloud<Normal> normals; cloud.points.resize (31); normals.points.resize (31); cloud.points[0].x = -0.011247f; cloud.points[0].y = 0.200000f; cloud.points[0].z = 0.965384f; cloud.points[1].x = 0.000000f; cloud.points[1].y = 0.200000f; cloud.points[1].z = 0.963603f; cloud.points[2].x = 0.011247f; cloud.points[2].y = 0.200000f; cloud.points[2].z = 0.965384f; cloud.points[3].x = -0.016045f; cloud.points[3].y = 0.175000f; cloud.points[3].z = 0.977916f; cloud.points[4].x = -0.008435f; cloud.points[4].y = 0.175000f; cloud.points[4].z = 0.974038f; cloud.points[5].x = 0.004218f; cloud.points[5].y = 0.175000f; cloud.points[5].z = 0.973370f; cloud.points[6].x = 0.016045f; cloud.points[6].y = 0.175000f; cloud.points[6].z = 0.977916f; cloud.points[7].x = -0.025420f; cloud.points[7].y = 0.200000f; cloud.points[7].z = 0.974580f; cloud.points[8].x = 0.025420f; cloud.points[8].y = 0.200000f; cloud.points[8].z = 0.974580f; cloud.points[9].x = -0.012710f; cloud.points[9].y = 0.150000f; cloud.points[9].z = 0.987290f; cloud.points[10].x = -0.005624f; cloud.points[10].y = 0.150000f; cloud.points[10].z = 0.982692f; cloud.points[11].x = 0.002812f; cloud.points[11].y = 0.150000f; cloud.points[11].z = 0.982247f; cloud.points[12].x = 0.012710f; cloud.points[12].y = 0.150000f; cloud.points[12].z = 0.987290f; cloud.points[13].x = -0.022084f; cloud.points[13].y = 0.175000f; cloud.points[13].z = 0.983955f; cloud.points[14].x = 0.022084f; cloud.points[14].y = 0.175000f; cloud.points[14].z = 0.983955f; cloud.points[15].x = -0.034616f; cloud.points[15].y = 0.200000f; cloud.points[15].z = 0.988753f; cloud.points[16].x = 0.034616f; cloud.points[16].y = 0.200000f; cloud.points[16].z = 0.988753f; cloud.points[17].x = -0.006044f; cloud.points[17].y = 0.125000f; cloud.points[17].z = 0.993956f; cloud.points[18].x = 0.004835f; cloud.points[18].y = 0.125000f; cloud.points[18].z = 0.993345f; cloud.points[19].x = -0.017308f; cloud.points[19].y = 0.150000f; cloud.points[19].z = 0.994376f; cloud.points[20].x = 0.017308f; cloud.points[20].y = 0.150000f; cloud.points[20].z = 0.994376f; cloud.points[21].x = -0.025962f; cloud.points[21].y = 0.175000f; cloud.points[21].z = 0.991565f; cloud.points[22].x = 0.025962f; cloud.points[22].y = 0.175000f; cloud.points[22].z = 0.991565f; cloud.points[23].x = -0.009099f; cloud.points[23].y = 0.125000f; cloud.points[23].z = 1.000000f; cloud.points[24].x = 0.009099f; cloud.points[24].y = 0.125000f; cloud.points[24].z = 1.000000f; cloud.points[25].x = -0.018199f; cloud.points[25].y = 0.150000f; cloud.points[25].z = 1.000000f; cloud.points[26].x = 0.018199f; cloud.points[26].y = 0.150000f; cloud.points[26].z = 1.000000f; cloud.points[27].x = -0.027298f; cloud.points[27].y = 0.175000f; cloud.points[27].z = 1.000000f; cloud.points[28].x = 0.027298f; cloud.points[28].y = 0.175000f; cloud.points[28].z = 1.000000f; cloud.points[29].x = -0.036397f; cloud.points[29].y = 0.200000f; cloud.points[29].z = 1.000000f; cloud.points[30].x = 0.036397f; cloud.points[30].y = 0.200000f; cloud.points[30].z = 1.000000f; normals.points[0].normal[0] = -0.290381f; normals.points[0].normal[1] = -0.342020f; normals.points[0].normal[2] = -0.893701f; normals.points[1].normal[0] = 0.000000f; normals.points[1].normal[1] = -0.342020f; normals.points[1].normal[2] = -0.939693f; normals.points[2].normal[0] = 0.290381f; normals.points[2].normal[1] = -0.342020f; normals.points[2].normal[2] = -0.893701f; normals.points[3].normal[0] = -0.552338f; normals.points[3].normal[1] = -0.342020f; normals.points[3].normal[2] = -0.760227f; normals.points[4].normal[0] = -0.290381f; normals.points[4].normal[1] = -0.342020f; normals.points[4].normal[2] = -0.893701f; normals.points[5].normal[0] = 0.145191f; normals.points[5].normal[1] = -0.342020f; normals.points[5].normal[2] = -0.916697f; normals.points[6].normal[0] = 0.552337f; normals.points[6].normal[1] = -0.342020f; normals.points[6].normal[2] = -0.760227f; normals.points[7].normal[0] = -0.656282f; normals.points[7].normal[1] = -0.342020f; normals.points[7].normal[2] = -0.656283f; normals.points[8].normal[0] = 0.656282f; normals.points[8].normal[1] = -0.342020f; normals.points[8].normal[2] = -0.656283f; normals.points[9].normal[0] = -0.656283f; normals.points[9].normal[1] = -0.342020f; normals.points[9].normal[2] = -0.656282f; normals.points[10].normal[0] = -0.290381f; normals.points[10].normal[1] = -0.342020f; normals.points[10].normal[2] = -0.893701f; normals.points[11].normal[0] = 0.145191f; normals.points[11].normal[1] = -0.342020f; normals.points[11].normal[2] = -0.916697f; normals.points[12].normal[0] = 0.656282f; normals.points[12].normal[1] = -0.342020f; normals.points[12].normal[2] = -0.656282f; normals.points[13].normal[0] = -0.760228f; normals.points[13].normal[1] = -0.342020f; normals.points[13].normal[2] = -0.552337f; normals.points[14].normal[0] = 0.760228f; normals.points[14].normal[1] = -0.342020f; normals.points[14].normal[2] = -0.552337f; normals.points[15].normal[0] = -0.893701f; normals.points[15].normal[1] = -0.342020f; normals.points[15].normal[2] = -0.290380f; normals.points[16].normal[0] = 0.893701f; normals.points[16].normal[1] = -0.342020f; normals.points[16].normal[2] = -0.290380f; normals.points[17].normal[0] = -0.624162f; normals.points[17].normal[1] = -0.342020f; normals.points[17].normal[2] = -0.624162f; normals.points[18].normal[0] = 0.499329f; normals.points[18].normal[1] = -0.342020f; normals.points[18].normal[2] = -0.687268f; normals.points[19].normal[0] = -0.893701f; normals.points[19].normal[1] = -0.342020f; normals.points[19].normal[2] = -0.290380f; normals.points[20].normal[0] = 0.893701f; normals.points[20].normal[1] = -0.342020f; normals.points[20].normal[2] = -0.290380f; normals.points[21].normal[0] = -0.893701f; normals.points[21].normal[1] = -0.342020f; normals.points[21].normal[2] = -0.290381f; normals.points[22].normal[0] = 0.893701f; normals.points[22].normal[1] = -0.342020f; normals.points[22].normal[2] = -0.290381f; normals.points[23].normal[0] = -0.939693f; normals.points[23].normal[1] = -0.342020f; normals.points[23].normal[2] = 0.000000f; normals.points[24].normal[0] = 0.939693f; normals.points[24].normal[1] = -0.342020f; normals.points[24].normal[2] = 0.000000f; normals.points[25].normal[0] = -0.939693f; normals.points[25].normal[1] = -0.342020f; normals.points[25].normal[2] = 0.000000f; normals.points[26].normal[0] = 0.939693f; normals.points[26].normal[1] = -0.342020f; normals.points[26].normal[2] = 0.000000f; normals.points[27].normal[0] = -0.939693f; normals.points[27].normal[1] = -0.342020f; normals.points[27].normal[2] = 0.000000f; normals.points[28].normal[0] = 0.939693f; normals.points[28].normal[1] = -0.342020f; normals.points[28].normal[2] = 0.000000f; normals.points[29].normal[0] = -0.939693f; normals.points[29].normal[1] = -0.342020f; normals.points[29].normal[2] = 0.000000f; normals.points[30].normal[0] = 0.939693f; normals.points[30].normal[1] = -0.342020f; normals.points[30].normal[2] = 0.000000f; // Create a shared cylinder model pointer directly SampleConsensusModelConePtr model (new SampleConsensusModelCone<PointXYZ, Normal> (cloud.makeShared ())); model->setInputNormals (normals.makeShared ()); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.03); // Algorithm tests bool result = sac.computeModel (); ASSERT_EQ (result, true); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (int (sample.size ()), 3); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (int (inliers.size ()), 31); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (int (coeff.size ()), 7); EXPECT_NEAR (coeff[0], 0, 1e-2); EXPECT_NEAR (coeff[1], 0.1, 1e-2); EXPECT_NEAR (coeff[6], 0.349066, 1e-2); Eigen::VectorXf coeff_refined; model->optimizeModelCoefficients (inliers, coeff, coeff_refined); EXPECT_EQ (int (coeff_refined.size ()), 7); EXPECT_NEAR (coeff_refined[6], 0.349066 , 1e-2); }
TEST (RANSAC, SampleConsensusModelNormalSphere) { srand (0); // Use a custom point cloud for these tests until we need something better PointCloud<PointXYZ> cloud; PointCloud<Normal> normals; cloud.points.resize (27); normals.points.resize (27); cloud.points[0].x = -0.014695f; cloud.points[0].y = 0.009549f; cloud.points[0].z = 0.954775f; cloud.points[1].x = 0.014695f; cloud.points[1].y = 0.009549f; cloud.points[1].z = 0.954775f; cloud.points[2].x = -0.014695f; cloud.points[2].y = 0.040451f; cloud.points[2].z = 0.954775f; cloud.points[3].x = 0.014695f; cloud.points[3].y = 0.040451f; cloud.points[3].z = 0.954775f; cloud.points[4].x = -0.009082f; cloud.points[4].y = -0.015451f; cloud.points[4].z = 0.972049f; cloud.points[5].x = 0.009082f; cloud.points[5].y = -0.015451f; cloud.points[5].z = 0.972049f; cloud.points[6].x = -0.038471f; cloud.points[6].y = 0.009549f; cloud.points[6].z = 0.972049f; cloud.points[7].x = 0.038471f; cloud.points[7].y = 0.009549f; cloud.points[7].z = 0.972049f; cloud.points[8].x = -0.038471f; cloud.points[8].y = 0.040451f; cloud.points[8].z = 0.972049f; cloud.points[9].x = 0.038471f; cloud.points[9].y = 0.040451f; cloud.points[9].z = 0.972049f; cloud.points[10].x = -0.009082f; cloud.points[10].y = 0.065451f; cloud.points[10].z = 0.972049f; cloud.points[11].x = 0.009082f; cloud.points[11].y = 0.065451f; cloud.points[11].z = 0.972049f; cloud.points[12].x = -0.023776f; cloud.points[12].y = -0.015451f; cloud.points[12].z = 0.982725f; cloud.points[13].x = 0.023776f; cloud.points[13].y = -0.015451f; cloud.points[13].z = 0.982725f; cloud.points[14].x = -0.023776f; cloud.points[14].y = 0.065451f; cloud.points[14].z = 0.982725f; cloud.points[15].x = 0.023776f; cloud.points[15].y = 0.065451f; cloud.points[15].z = 0.982725f; cloud.points[16].x = -0.000000f; cloud.points[16].y = -0.025000f; cloud.points[16].z = 1.000000f; cloud.points[17].x = 0.000000f; cloud.points[17].y = -0.025000f; cloud.points[17].z = 1.000000f; cloud.points[18].x = -0.029389f; cloud.points[18].y = -0.015451f; cloud.points[18].z = 1.000000f; cloud.points[19].x = 0.029389f; cloud.points[19].y = -0.015451f; cloud.points[19].z = 1.000000f; cloud.points[20].x = -0.047553f; cloud.points[20].y = 0.009549f; cloud.points[20].z = 1.000000f; cloud.points[21].x = 0.047553f; cloud.points[21].y = 0.009549f; cloud.points[21].z = 1.000000f; cloud.points[22].x = -0.047553f; cloud.points[22].y = 0.040451f; cloud.points[22].z = 1.000000f; cloud.points[23].x = 0.047553f; cloud.points[23].y = 0.040451f; cloud.points[23].z = 1.000000f; cloud.points[24].x = -0.029389f; cloud.points[24].y = 0.065451f; cloud.points[24].z = 1.000000f; cloud.points[25].x = 0.029389f; cloud.points[25].y = 0.065451f; cloud.points[25].z = 1.000000f; cloud.points[26].x = 0.000000f; cloud.points[26].y = 0.075000f; cloud.points[26].z = 1.000000f; normals.points[0].normal[0] = -0.293893f; normals.points[0].normal[1] = -0.309017f; normals.points[0].normal[2] = -0.904509f; normals.points[1].normal[0] = 0.293893f; normals.points[1].normal[1] = -0.309017f; normals.points[1].normal[2] = -0.904508f; normals.points[2].normal[0] = -0.293893f; normals.points[2].normal[1] = 0.309017f; normals.points[2].normal[2] = -0.904509f; normals.points[3].normal[0] = 0.293893f; normals.points[3].normal[1] = 0.309017f; normals.points[3].normal[2] = -0.904508f; normals.points[4].normal[0] = -0.181636f; normals.points[4].normal[1] = -0.809017f; normals.points[4].normal[2] = -0.559017f; normals.points[5].normal[0] = 0.181636f; normals.points[5].normal[1] = -0.809017f; normals.points[5].normal[2] = -0.559017f; normals.points[6].normal[0] = -0.769421f; normals.points[6].normal[1] = -0.309017f; normals.points[6].normal[2] = -0.559017f; normals.points[7].normal[0] = 0.769421f; normals.points[7].normal[1] = -0.309017f; normals.points[7].normal[2] = -0.559017f; normals.points[8].normal[0] = -0.769421f; normals.points[8].normal[1] = 0.309017f; normals.points[8].normal[2] = -0.559017f; normals.points[9].normal[0] = 0.769421f; normals.points[9].normal[1] = 0.309017f; normals.points[9].normal[2] = -0.559017f; normals.points[10].normal[0] = -0.181636f; normals.points[10].normal[1] = 0.809017f; normals.points[10].normal[2] = -0.559017f; normals.points[11].normal[0] = 0.181636f; normals.points[11].normal[1] = 0.809017f; normals.points[11].normal[2] = -0.559017f; normals.points[12].normal[0] = -0.475528f; normals.points[12].normal[1] = -0.809017f; normals.points[12].normal[2] = -0.345491f; normals.points[13].normal[0] = 0.475528f; normals.points[13].normal[1] = -0.809017f; normals.points[13].normal[2] = -0.345491f; normals.points[14].normal[0] = -0.475528f; normals.points[14].normal[1] = 0.809017f; normals.points[14].normal[2] = -0.345491f; normals.points[15].normal[0] = 0.475528f; normals.points[15].normal[1] = 0.809017f; normals.points[15].normal[2] = -0.345491f; normals.points[16].normal[0] = -0.000000f; normals.points[16].normal[1] = -1.000000f; normals.points[16].normal[2] = 0.000000f; normals.points[17].normal[0] = 0.000000f; normals.points[17].normal[1] = -1.000000f; normals.points[17].normal[2] = 0.000000f; normals.points[18].normal[0] = -0.587785f; normals.points[18].normal[1] = -0.809017f; normals.points[18].normal[2] = 0.000000f; normals.points[19].normal[0] = 0.587785f; normals.points[19].normal[1] = -0.809017f; normals.points[19].normal[2] = 0.000000f; normals.points[20].normal[0] = -0.951057f; normals.points[20].normal[1] = -0.309017f; normals.points[20].normal[2] = 0.000000f; normals.points[21].normal[0] = 0.951057f; normals.points[21].normal[1] = -0.309017f; normals.points[21].normal[2] = 0.000000f; normals.points[22].normal[0] = -0.951057f; normals.points[22].normal[1] = 0.309017f; normals.points[22].normal[2] = 0.000000f; normals.points[23].normal[0] = 0.951057f; normals.points[23].normal[1] = 0.309017f; normals.points[23].normal[2] = 0.000000f; normals.points[24].normal[0] = -0.587785f; normals.points[24].normal[1] = 0.809017f; normals.points[24].normal[2] = 0.000000f; normals.points[25].normal[0] = 0.587785f; normals.points[25].normal[1] = 0.809017f; normals.points[25].normal[2] = 0.000000f; normals.points[26].normal[0] = 0.000000f; normals.points[26].normal[1] = 1.000000f; normals.points[26].normal[2] = 0.000000f; // Create a shared sphere model pointer directly SampleConsensusModelNormalSpherePtr model (new SampleConsensusModelNormalSphere<PointXYZ, Normal> (cloud.makeShared ())); model->setInputNormals(normals.makeShared ()); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.03); // Algorithm tests bool result = sac.computeModel (); ASSERT_EQ (result, true); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (int (sample.size ()), 4); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (int (inliers.size ()), 27); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (int (coeff.size ()), 4); EXPECT_NEAR (coeff[0], 0.0, 1e-2); EXPECT_NEAR (coeff[1], 0.025, 1e-2); EXPECT_NEAR (coeff[2], 1.0, 1e-2); EXPECT_NEAR (coeff[3], 0.05, 1e-2); Eigen::VectorXf coeff_refined; model->optimizeModelCoefficients (inliers, coeff, coeff_refined); EXPECT_EQ (int (coeff_refined.size ()), 4); EXPECT_NEAR (coeff_refined[0], 0.0, 1e-2); EXPECT_NEAR (coeff_refined[1], 0.025, 1e-2); EXPECT_NEAR (coeff_refined[2], 1.0, 1e-2); EXPECT_NEAR (coeff_refined[3], 0.05, 1e-2); }
template <typename PointSource, typename PointTarget> void pcl::IterativeClosestPoint<PointSource, PointTarget>::computeTransformation (PointCloudSource &output, const Eigen::Matrix4f &guess) { // Allocate enough space to hold the results std::vector<int> nn_indices (1); std::vector<float> nn_dists (1); // Point cloud containing the correspondences of each point in <input, indices> PointCloudTarget input_corresp; input_corresp.points.resize (indices_->size ()); nr_iterations_ = 0; converged_ = false; double dist_threshold = corr_dist_threshold_ * corr_dist_threshold_; // If the guessed transformation is non identity if (guess != Eigen::Matrix4f::Identity ()) { // Initialise final transformation to the guessed one final_transformation_ = guess; // Apply guessed transformation prior to search for neighbours transformPointCloud (output, output, guess); } // Resize the vector of distances between correspondences std::vector<float> previous_correspondence_distances (indices_->size ()); correspondence_distances_.resize (indices_->size ()); while (!converged_) // repeat until convergence { // Save the previously estimated transformation previous_transformation_ = transformation_; // And the previous set of distances previous_correspondence_distances = correspondence_distances_; int cnt = 0; std::vector<int> source_indices (indices_->size ()); std::vector<int> target_indices (indices_->size ()); // Iterating over the entire index vector and find all correspondences for (size_t idx = 0; idx < indices_->size (); ++idx) { if (!this->searchForNeighbors (output, (*indices_)[idx], nn_indices, nn_dists)) { PCL_ERROR ("[pcl::%s::computeTransformation] Unable to find a nearest neighbor in the target dataset for point %d in the source!\n", getClassName ().c_str (), (*indices_)[idx]); return; } // Check if the distance to the nearest neighbor is smaller than the user imposed threshold if (nn_dists[0] < dist_threshold) { source_indices[cnt] = (*indices_)[idx]; target_indices[cnt] = nn_indices[0]; cnt++; } // Save the nn_dists[0] to a global vector of distances correspondence_distances_[(*indices_)[idx]] = std::min (nn_dists[0], static_cast<float> (dist_threshold)); } if (cnt < min_number_correspondences_) { PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ()); converged_ = false; return; } // Resize to the actual number of valid correspondences source_indices.resize (cnt); target_indices.resize (cnt); std::vector<int> source_indices_good; std::vector<int> target_indices_good; { // From the set of correspondences found, attempt to remove outliers // Create the registration model typedef typename SampleConsensusModelRegistration<PointSource>::Ptr SampleConsensusModelRegistrationPtr; SampleConsensusModelRegistrationPtr model; model.reset (new SampleConsensusModelRegistration<PointSource> (output.makeShared (), source_indices)); // Pass the target_indices model->setInputTarget (target_, target_indices); // Create a RANSAC model RandomSampleConsensus<PointSource> sac (model, inlier_threshold_); sac.setMaxIterations (ransac_iterations_); // Compute the set of inliers if (!sac.computeModel ()) { source_indices_good = source_indices; target_indices_good = target_indices; } else { std::vector<int> inliers; // Get the inliers sac.getInliers (inliers); source_indices_good.resize (inliers.size ()); target_indices_good.resize (inliers.size ()); boost::unordered_map<int, int> source_to_target; for (unsigned int i = 0; i < source_indices.size(); ++i) source_to_target[source_indices[i]] = target_indices[i]; // Copy just the inliers std::copy(inliers.begin(), inliers.end(), source_indices_good.begin()); for (size_t i = 0; i < inliers.size (); ++i) target_indices_good[i] = source_to_target[inliers[i]]; } } // Check whether we have enough correspondences cnt = static_cast<int> (source_indices_good.size ()); if (cnt < min_number_correspondences_) { PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ()); converged_ = false; return; } PCL_DEBUG ("[pcl::%s::computeTransformation] Number of correspondences %d [%f%%] out of %zu points [100.0%%], RANSAC rejected: %zu [%f%%].\n", getClassName ().c_str (), cnt, (static_cast<float> (cnt) * 100.0f) / static_cast<float> (indices_->size ()), indices_->size (), source_indices.size () - cnt, static_cast<float> (source_indices.size () - cnt) * 100.0f / static_cast<float> (source_indices.size ())); // Estimate the transform //rigid_transformation_estimation_(output, source_indices_good, *target_, target_indices_good, transformation_); transformation_estimation_->estimateRigidTransformation (output, source_indices_good, *target_, target_indices_good, transformation_); // Tranform the data transformPointCloud (output, output, transformation_); // Obtain the final transformation final_transformation_ = transformation_ * final_transformation_; nr_iterations_++; // Update the vizualization of icp convergence if (update_visualizer_ != 0) update_visualizer_(output, source_indices_good, *target_, target_indices_good ); // Various/Different convergence termination criteria // 1. Number of iterations has reached the maximum user imposed number of iterations (via // setMaximumIterations) // 2. The epsilon (difference) between the previous transformation and the current estimated transformation // is smaller than an user imposed value (via setTransformationEpsilon) // 3. The sum of Euclidean squared errors is smaller than a user defined threshold (via // setEuclideanFitnessEpsilon) if (nr_iterations_ >= max_iterations_ || (transformation_ - previous_transformation_).array ().abs ().sum () < transformation_epsilon_ || fabs (this->getFitnessScore (correspondence_distances_, previous_correspondence_distances)) <= euclidean_fitness_epsilon_ ) { converged_ = true; PCL_DEBUG ("[pcl::%s::computeTransformation] Convergence reached. Number of iterations: %d out of %d. Transformation difference: %f\n", getClassName ().c_str (), nr_iterations_, max_iterations_, (transformation_ - previous_transformation_).array ().abs ().sum ()); PCL_DEBUG ("nr_iterations_ (%d) >= max_iterations_ (%d)\n", nr_iterations_, max_iterations_); PCL_DEBUG ("(transformation_ - previous_transformation_).array ().abs ().sum () (%f) < transformation_epsilon_ (%f)\n", (transformation_ - previous_transformation_).array ().abs ().sum (), transformation_epsilon_); PCL_DEBUG ("fabs (getFitnessScore (correspondence_distances_, previous_correspondence_distances)) (%f) <= euclidean_fitness_epsilon_ (%f)\n", fabs (this->getFitnessScore (correspondence_distances_, previous_correspondence_distances)), euclidean_fitness_epsilon_); } } }
void compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output, int max_iterations = 1000, double threshold = 0.05, bool negative = false) { // Convert data to PointCloud<T> PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>); fromROSMsg (*input, *xyz); // Estimate TicToc tt; print_highlight (stderr, "Computing "); tt.tic (); // Refine the plane indices typedef SampleConsensusModelPlane<PointXYZ>::Ptr SampleConsensusModelPlanePtr; SampleConsensusModelPlanePtr model (new SampleConsensusModelPlane<PointXYZ> (xyz)); RandomSampleConsensus<PointXYZ> sac (model, threshold); sac.setMaxIterations (max_iterations); bool res = sac.computeModel (); vector<int> inliers; sac.getInliers (inliers); Eigen::VectorXf coefficients; sac.getModelCoefficients (coefficients); if (!res || inliers.empty ()) { PCL_ERROR ("No planar model found. Relax thresholds and continue.\n"); return; } sac.refineModel (2, 50); sac.getInliers (inliers); sac.getModelCoefficients (coefficients); print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms, plane has : "); print_value ("%zu", inliers.size ()); print_info (" points]\n"); print_info ("Model coefficients: ["); print_value ("%g %g %g %g", coefficients[0], coefficients[1], coefficients[2], coefficients[3]); print_info ("]\n"); // Instead of returning the planar model as a set of inliers, return the outliers, but perform a cluster segmentation first if (negative) { // Remove the plane indices from the data PointIndices::Ptr everything_but_the_plane (new PointIndices); std::vector<int> indices_fullset (xyz->size ()); for (int p_it = 0; p_it < static_cast<int> (indices_fullset.size ()); ++p_it) indices_fullset[p_it] = p_it; std::sort (inliers.begin (), inliers.end ()); set_difference (indices_fullset.begin (), indices_fullset.end (), inliers.begin (), inliers.end (), inserter (everything_but_the_plane->indices, everything_but_the_plane->indices.begin ())); // Extract largest cluster minus the plane vector<PointIndices> cluster_indices; EuclideanClusterExtraction<PointXYZ> ec; ec.setClusterTolerance (0.02); // 2cm ec.setMinClusterSize (100); ec.setInputCloud (xyz); ec.setIndices (everything_but_the_plane); ec.extract (cluster_indices); // Convert data back copyPointCloud (*input, cluster_indices[0].indices, output); } else { // Convert data back PointCloud<PointXYZ> output_inliers; copyPointCloud (*input, inliers, output); } }
TEST (SampleConsensusModelParallelLine, RANSAC) { PointCloud<PointXYZ> cloud (16, 1); // Line 1 cloud.points[0].getVector3fMap () << 1.0f, 2.00f, 3.00f; cloud.points[1].getVector3fMap () << 4.0f, 5.00f, 6.00f; cloud.points[2].getVector3fMap () << 7.0f, 8.00f, 9.00f; cloud.points[3].getVector3fMap () << 10.0f, 11.00f, 12.00f; cloud.points[4].getVector3fMap () << 13.0f, 14.00f, 15.00f; cloud.points[5].getVector3fMap () << 16.0f, 17.00f, 18.00f; cloud.points[6].getVector3fMap () << 19.0f, 20.00f, 21.00f; cloud.points[7].getVector3fMap () << 22.0f, 23.00f, 24.00f; // Random points cloud.points[8].getVector3fMap () << -5.0f, 1.57f, 0.75f; cloud.points[9].getVector3fMap () << 4.0f, 2.00f, 3.00f; // Line 2 (parallel to the Z axis) cloud.points[10].getVector3fMap () << -1.00f, 5.00f, 0.0f; cloud.points[11].getVector3fMap () << -1.05f, 5.01f, 1.0f; cloud.points[12].getVector3fMap () << -1.01f, 5.05f, 2.0f; cloud.points[13].getVector3fMap () << -1.05f, 5.01f, 3.0f; cloud.points[14].getVector3fMap () << -1.01f, 5.05f, 4.0f; cloud.points[15].getVector3fMap () << -1.05f, 5.01f, 5.0f; // Create a shared line model pointer directly const double eps = 0.1; //angle eps in radians const Eigen::Vector3f axis (0, 0, 1); SampleConsensusModelParallelLinePtr model (new SampleConsensusModelParallelLine<PointXYZ> (cloud.makeShared ())); model->setAxis (axis); model->setEpsAngle (eps); // Create the RANSAC object RandomSampleConsensus<PointXYZ> sac (model, 0.1); // Algorithm tests bool result = sac.computeModel (); ASSERT_TRUE (result); std::vector<int> sample; sac.getModel (sample); EXPECT_EQ (2, sample.size ()); std::vector<int> inliers; sac.getInliers (inliers); EXPECT_EQ (6, inliers.size ()); Eigen::VectorXf coeff; sac.getModelCoefficients (coeff); EXPECT_EQ (6, coeff.size ()); // Make sure the returned direction respects the angular constraint double angle_diff = getAngle3D (axis, coeff.tail<3> ()); angle_diff = std::min (angle_diff, M_PI - angle_diff); EXPECT_GT (eps, angle_diff); // Projection tests PointCloud<PointXYZ> proj_points; model->projectPoints (inliers, coeff, proj_points); EXPECT_XYZ_NEAR (PointXYZ (-1.05, 5.05, 3.0), proj_points.points[13], 0.1); EXPECT_XYZ_NEAR (PointXYZ (-1.05, 5.05, 4.0), proj_points.points[14], 0.1); }