예제 #1
0
void splitws(string inFolderName, double mass, string channel) {
  cout << "Splitting workspace in " << channel << endl;

  int flatInterpCode = 4;
  int shapeInterpCode = 4;

  bool do2011 = 0;

  if (inFolderName.find("2011") != string::npos) do2011 = 1;

  bool conditionalAsimov = 0;
  bool doData = 1;
  //if (inFolderName.find("_blind_") != string::npos) {
    //conditionalAsimov = 0;
  //}
  //else {
    //conditionalAsimov = 1;
  //}

  set<string> channelNames;

  if (channel == "01j") {
    channelNames.insert("em_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));

    channelNames.insert("em_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
  }
  else if (channel == "0j") {
    channelNames.insert("em_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));
  }
  else if (channel == "1j") {
    channelNames.insert("em_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
  }
  else if (channel == "OF01j") {
    channelNames.insert("em_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_sscr_0j"+string(!do2011?"_2012":""));

    channelNames.insert("em_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_sscr_1j"+string(!do2011?"_2012":""));
  }
  else if (channel == "OF0j") {
    channelNames.insert("em_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_sscr_0j"+string(!do2011?"_2012":""));
  }
  else if (channel == "OF1j") {
    channelNames.insert("em_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_sscr_1j"+string(!do2011?"_2012":""));
  }
  else if (channel == "SF01j") {
    channelNames.insert("SF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));

    channelNames.insert("SF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
  }
  else if (channel == "SF0j") {
    channelNames.insert("SF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));
  }
  else if (channel == "SF1j") {
    channelNames.insert("SF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));
  }
  else if (channel == "2j") {
    channelNames.insert("em_signalLike1_2j"+string(!do2011?"_2012":""));
    channelNames.insert("ee_signalLike1_2j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_topbox_2j"+string(!do2011?"_2012":""));
  }
  else if (channel == "OF2j") {
    channelNames.insert("em_signalLike1_2j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_topbox_2j"+string(!do2011?"_2012":""));
  }
  else if (channel == "SF2j") {
    channelNames.insert("ee_signalLike1_2j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_topbox_2j"+string(!do2011?"_2012":""));
  }
  else if (channel == "OF") {
    channelNames.insert("em_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_0j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));

    channelNames.insert("em_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("em_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike1_1j"+string(!do2011?"_2012":""));
    channelNames.insert("me_signalLike2_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));

    channelNames.insert("em_signalLike1_2j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_topbox_2j"+string(!do2011?"_2012":""));
  }
  else if (channel == "SF") {
    channelNames.insert("SF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_0j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_0j"+string(!do2011?"_2012":""));

    channelNames.insert("SF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_AfrecSR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_ASR_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CfrecZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_CZpeak_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_mainControl_1j"+string(!do2011?"_2012":""));
    channelNames.insert("OF_topbox_1j"+string(!do2011?"_2012":""));

    channelNames.insert("ee_signalLike1_2j"+string(!do2011?"_2012":""));
    channelNames.insert("SF_topbox_2j"+string(!do2011?"_2012":""));
  }
  else {
    cout << "Channel " << channel << " not defined. Please check!" << endl;
    exit(1);
  }

  // bool fix = 1;
  stringstream inFileName;

  inFileName << "workspaces/" << inFolderName << "/" << mass << ".root";
  TFile f(inFileName.str().c_str());
  
  RooWorkspace* w = (RooWorkspace*)f.Get("combWS");
  if (!w) w = (RooWorkspace*)f.Get("combined");
  
  RooDataSet* data = (RooDataSet*)w->data("combData");
  if (!data) data = (RooDataSet*)w->data("obsData");
  
  ModelConfig* mc = (ModelConfig*)w->obj("ModelConfig");
  
  RooRealVar* weightVar = w->var("weightVar");
  
  RooRealVar* mu = (RooRealVar*)mc->GetParametersOfInterest()->first();
  if (!mu) mu = w->var("SigXsecOverSM");

  const RooArgSet* mc_obs = mc->GetObservables();
  const RooArgSet* mc_nuis = mc->GetNuisanceParameters();
  const RooArgSet* mc_globs = mc->GetGlobalObservables();
  const RooArgSet* mc_poi = mc->GetParametersOfInterest();

  RooArgSet nuis = *mc_nuis;
  RooArgSet antiNuis = *mc_nuis;

  RooArgSet globs = *mc_globs;
  RooArgSet antiGlobs = *mc_globs;

  RooArgSet allParams;

  RooSimultaneous* simPdf = (RooSimultaneous*)mc->GetPdf();
  RooCategory* cat = (RooCategory*)&simPdf->indexCat();

  RooArgSet nuis_tmp = nuis;
  RooArgSet fullConstraints = *simPdf->getAllConstraints(*mc_obs,nuis_tmp,false);

  vector<string> foundChannels;
  vector<string> skippedChannels;  

  cout << "Getting constraints" << endl;
  map<string, RooDataSet*> data_map;
  map<string, RooAbsPdf*> pdf_map;
  RooCategory* decCat = new RooCategory("dec_channel","dec_channel");
  // int i = 0;
  TIterator* catItr = cat->typeIterator();
  RooCatType* type;
  RooArgSet allConstraints;
  while ((type = (RooCatType*)catItr->Next())) {
    RooAbsPdf* pdf =  simPdf->getPdf(type->GetName());

    string typeName(type->GetName());
    if (channelNames.size() && channelNames.find(typeName) == channelNames.end())  {
      skippedChannels.push_back(typeName);
      continue;
    }
    cout << "On channel " << type->GetName() << endl;
    foundChannels.push_back(typeName);

    decCat->defineType(type->GetName());
    // pdf->getParameters(*data)->Print("v");

    RooArgSet nuis_tmp1 = nuis;
    RooArgSet nuis_tmp2 = nuis;
    RooArgSet* constraints = pdf->getAllConstraints(*mc_obs, nuis_tmp1, true);
    constraints->Print();
    allConstraints.add(*constraints);
  }

  catItr->Reset();

  while ((type = (RooCatType*)catItr->Next())) {
    RooAbsPdf* pdf =  simPdf->getPdf(type->GetName());

    string typeName(type->GetName());
    cout << "Considering type " << typeName << endl;
    if (channelNames.size() && channelNames.find(typeName) == channelNames.end()) continue;
    cout << "On channel " << type->GetName() << endl;

    RooArgSet nuis_tmp1 = nuis;
    RooArgSet nuis_tmp2 = nuis;
    RooArgSet* constraints = pdf->getAllConstraints(*mc_obs, nuis_tmp1, true);

    cout << "Adding pdf to map: " << typeName << " = " << pdf->GetName() << endl;
    pdf_map[typeName] = pdf;

    RooProdPdf prod("prod","prod",*constraints);

    RooArgSet* params = pdf->getParameters(*data);
    antiNuis.remove(*params);
    antiGlobs.remove(*params);

    allParams.add(*params);
    // cout << type->GetName() << endl;
  }
  // return;

  RooArgSet decNuis;
  TIterator* nuiItr = mc_nuis->createIterator();
  TIterator* parItr = allParams.createIterator();
  RooAbsArg* nui, *par;
  while ((par = (RooAbsArg*)parItr->Next())) {
    nuiItr->Reset();
    while ((nui = (RooAbsArg*)nuiItr->Next())) {
      if (par == nui) decNuis.add(*nui);
    }
  }

  RooArgSet decGlobs;
  TIterator* globItr = mc_globs->createIterator();
  parItr->Reset();
  RooAbsArg* glob;
  while ((par = (RooAbsArg*)parItr->Next())) {
    globItr->Reset();
    while ((glob = (RooAbsArg*)globItr->Next())) {
      if (par == glob) decGlobs.add(*glob);
    }
  }

  // antiNuis.Print();

  // nuis.Print();
  // globs.Print();

  // i = 0;
  TList* datalist = data->split(*cat, true);
  TIterator* dataItr = datalist->MakeIterator();
  RooAbsData* ds;
  while ((ds = (RooAbsData*)dataItr->Next())) {
    string typeName(ds->GetName());
    if (channelNames.size() && channelNames.find(typeName) == channelNames.end()) continue;

    cout << "Adding dataset to map: " << ds->GetName() << endl;
    data_map[string(ds->GetName())] = (RooDataSet*)ds;

    cout << ds->GetName() << endl;
  }

  RooSimultaneous* decPdf = new RooSimultaneous("decPdf","decPdf",pdf_map,*decCat); 
  RooArgSet decObs = *decPdf->getObservables(data);
  // decObs.add(*(RooAbsArg*)weightVar);
  decObs.add(*(RooAbsArg*)decCat);
  decObs.Print();

  nuis.remove(antiNuis);
  globs.remove(antiGlobs);
  // nuis.Print("v");

  RooDataSet* decData = new RooDataSet("obsData","obsData",RooArgSet(decObs,*(RooAbsArg*)weightVar),Index(*decCat),Import(data_map),WeightVar(*weightVar));

  decData->Print();

  RooArgSet poi(*(RooAbsArg*)mu);
  RooWorkspace decWS("combined");
  ModelConfig decMC("ModelConfig",&decWS);
  decMC.SetPdf(*decPdf);
  decMC.SetObservables(decObs);
  decMC.SetNuisanceParameters(decNuis);
  decMC.SetGlobalObservables(decGlobs);
  decMC.SetParametersOfInterest(poi);

  decMC.Print();
  decWS.import(*decPdf);
  decWS.import(decMC);
  decWS.import(*decData);
  // decWS.Print();

  ModelConfig* mcInWs = (ModelConfig*)decWS.obj("ModelConfig");
  decPdf = (RooSimultaneous*)mcInWs->GetPdf();

  // setup(mcInWs);
  // return;

  mcInWs->GetNuisanceParameters()->Print("v");
  mcInWs->GetGlobalObservables()->Print("v");
  // decData->tree()->Scan("*");

  // Make asimov data
  RooArgSet funcs = decWS.allFunctions();
  TIterator* it = funcs.createIterator();
  TObject* tempObj = 0;
  while((tempObj=it->Next()))
  {
    FlexibleInterpVar* flex = dynamic_cast<FlexibleInterpVar*>(tempObj);
    if(flex) {
      flex->setAllInterpCodes(flatInterpCode);
    }
    PiecewiseInterpolation* piece = dynamic_cast<PiecewiseInterpolation*>(tempObj);
    if(piece) {
      piece->setAllInterpCodes(shapeInterpCode);
    }
  }

  RooDataSet* dataInWs = (RooDataSet*)decWS.data("obsData");
  makeAsimovData(mcInWs, conditionalAsimov && doData, &decWS, mcInWs->GetPdf(), dataInWs, 0);
  makeAsimovData(mcInWs, conditionalAsimov && doData, &decWS, mcInWs->GetPdf(), dataInWs, 1);
  makeAsimovData(mcInWs, conditionalAsimov && doData, &decWS, mcInWs->GetPdf(), dataInWs, 2);

  system(("mkdir -vp workspaces/"+inFolderName+"_"+channel).c_str());
  stringstream outFileName;
  outFileName << "workspaces/" << inFolderName << "_" << channel << "/" << mass << ".root";
  cout << "Exporting" << endl;

  decWS.writeToFile(outFileName.str().c_str());

  cout << "\nIncluded the following channels: " << endl;
  for (int i=0;i<(int)foundChannels.size();i++) {
    cout << "-> " << foundChannels[i] << endl;
  }

  cout << "\nSkipping the following channels: " << endl;
  
  for (int i=0;i<(int)skippedChannels.size();i++) {
    cout << "-> " << skippedChannels[i] << endl;
  }

  cout << "Done" << endl;

  // decPdf->fitTo(*decData, Hesse(0), Minos(0), PrintLevel(0));
}
void OneSidedFrequentistUpperLimitWithBands(const char* infile = "",
                                            const char* workspaceName = "combined",
                                            const char* modelConfigName = "ModelConfig",
                                            const char* dataName = "obsData") {



   double confidenceLevel=0.95;
   int nPointsToScan = 20;
   int nToyMC = 200;

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


   // -------------------------------------------------------
   // Now get the data and workspace

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // Now get the POI for convenience
   // you may want to adjust the range of your POI

   RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
   /*  firstPOI->setMin(0);*/
   /*  firstPOI->setMax(10);*/

   // --------------------------------------------
   // Create and use the FeldmanCousins tool
   // to find and plot the 95% confidence interval
   // on the parameter of interest as specified
   // in the model config
   // REMEMBER, we will change the test statistic
   // so this is NOT a Feldman-Cousins interval
   FeldmanCousins fc(*data,*mc);
   fc.SetConfidenceLevel(confidenceLevel);
   /*  fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt*/
   /*  fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expected limits*/
   fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
   fc.CreateConfBelt(true); // save the information in the belt for plotting

   // -------------------------------------------------------
   // Feldman-Cousins is a unified limit by definition
   // but the tool takes care of a few things for us like which values
   // of the nuisance parameters should be used to generate toys.
   // so let's just change the test statistic and realize this is
   // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
   /*  ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/
   /*  fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/
   /* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */
   ToyMCSampler*  toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
   ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
   testStat->SetOneSided(true);

   // Since this tool needs to throw toy MC the PDF needs to be
   // extended or the tool needs to know how many entries in a dataset
   // per pseudo experiment.
   // In the 'number counting form' where the entries in the dataset
   // are counts, and not values of discriminating variables, the
   // datasets typically only have one entry and the PDF is not
   // extended.
   if(!mc->GetPdf()->canBeExtended()){
      if(data->numEntries()==1)
         fc.FluctuateNumDataEntries(false);
      else
         cout <<"Not sure what to do about this model" <<endl;
   }

   // We can use PROOF to speed things along in parallel
   // However, the test statistic has to be installed on the workers
   // so either turn off PROOF or include the modified test statistic
   // in your `$ROOTSYS/roofit/roostats/inc` directory,
   // add the additional line to the LinkDef.h file,
   // and recompile root.
   if (useProof) {
      ProofConfig pc(*w, nworkers, "", false);
      toymcsampler->SetProofConfig(&pc); // enable proof
   }

   if(mc->GetGlobalObservables()){
      cout << "will use global observables for unconditional ensemble"<<endl;
      mc->GetGlobalObservables()->Print();
      toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
   }


   // Now get the interval
   PointSetInterval* interval = fc.GetInterval();
   ConfidenceBelt* belt = fc.GetConfidenceBelt();

   // print out the interval on the first Parameter of Interest
   cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
      interval->LowerLimit(*firstPOI) << ", "<<
      interval->UpperLimit(*firstPOI) <<"] "<<endl;

   // get observed UL and value of test statistic evaluated there
   RooArgSet tmpPOI(*firstPOI);
   double observedUL = interval->UpperLimit(*firstPOI);
   firstPOI->setVal(observedUL);
   double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);


   // Ask the calculator which points were scanned
   RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
   RooArgSet* tmpPoint;

   // make a histogram of parameter vs. threshold
   TH1F* histOfThresholds = new TH1F("histOfThresholds","",
                                       parameterScan->numEntries(),
                                       firstPOI->getMin(),
                                       firstPOI->getMax());
   histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
   histOfThresholds->GetYaxis()->SetTitle("Threshold");

   // loop through the points that were tested and ask confidence belt
   // what the upper/lower thresholds were.
   // For FeldmanCousins, the lower cut off is always 0
   for(Int_t i=0; i<parameterScan->numEntries(); ++i){
      tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
      //cout <<"get threshold"<<endl;
      double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
      double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ;
      histOfThresholds->Fill(poiVal,arMax);
   }
   TCanvas* c1 = new TCanvas();
   c1->Divide(2);
   c1->cd(1);
   histOfThresholds->SetMinimum(0);
   histOfThresholds->Draw();
   c1->cd(2);

   // -------------------------------------------------------
   // Now we generate the expected bands and power-constraint

   // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
   RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
   RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
   firstPOI->setVal(0.);
   profile->getVal(); // this will do fit and set nuisance parameters to profiled values
   RooArgSet* poiAndNuisance = new RooArgSet();
   if(mc->GetNuisanceParameters())
      poiAndNuisance->add(*mc->GetNuisanceParameters());
   poiAndNuisance->add(*mc->GetParametersOfInterest());
   w->saveSnapshot("paramsToGenerateData",*poiAndNuisance);
   RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot();
   cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl;
   paramsToGenerateData->Print("v");


   RooArgSet unconditionalObs;
   unconditionalObs.add(*mc->GetObservables());
   unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble

   double CLb=0;
   double CLbinclusive=0;

   // Now we generate background only and find distribution of upper limits
   TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax());
   histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)");
   histOfUL->GetYaxis()->SetTitle("Entries");
   for(int imc=0; imc<nToyMC; ++imc){

      // set parameters back to values for generating pseudo data
      //    cout << "\n get current nuis, set vals, print again" << endl;
      w->loadSnapshot("paramsToGenerateData");
      //    poiAndNuisance->Print("v");

      RooDataSet* toyData = 0;
      // now generate a toy dataset
      if(!mc->GetPdf()->canBeExtended()){
         if(data->numEntries()==1)
            toyData = mc->GetPdf()->generate(*mc->GetObservables(),1);
         else
            cout <<"Not sure what to do about this model" <<endl;
      } else{
         //      cout << "generating extended dataset"<<endl;
         toyData = mc->GetPdf()->generate(*mc->GetObservables(),Extended());
      }

      // generate global observables
      // need to be careful for simpdf
      //    RooDataSet* globalData = mc->GetPdf()->generate(*mc->GetGlobalObservables(),1);

      RooSimultaneous* simPdf = dynamic_cast<RooSimultaneous*>(mc->GetPdf());
      if(!simPdf){
         RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1);
         const RooArgSet *values = one->get();
         RooArgSet *allVars = mc->GetPdf()->getVariables();
         *allVars = *values;
         delete allVars;
         delete values;
         delete one;
      } else {

         //try fix for sim pdf
         TIterator* iter = simPdf->indexCat().typeIterator() ;
         RooCatType* tt = NULL;
         while((tt=(RooCatType*) iter->Next())) {

            // Get pdf associated with state from simpdf
            RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;

            // Generate only global variables defined by the pdf associated with this state
            RooArgSet* globtmp = pdftmp->getObservables(*mc->GetGlobalObservables()) ;
            RooDataSet* tmp = pdftmp->generate(*globtmp,1) ;

            // Transfer values to output placeholder
            *globtmp = *tmp->get(0) ;

            // Cleanup
            delete globtmp ;
            delete tmp ;
         }
      }

      //    globalData->Print("v");
      //    unconditionalObs = *globalData->get();
      //    mc->GetGlobalObservables()->Print("v");
      //    delete globalData;
      //    cout << "toy data = " << endl;
      //    toyData->get()->Print("v");

      // get test stat at observed UL in observed data
      firstPOI->setVal(observedUL);
      double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);
      //    toyData->get()->Print("v");
      //    cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl;
      if(obsTSatObsUL < toyTSatObsUL) // not sure about <= part yet
         CLb+= (1.)/nToyMC;
      if(obsTSatObsUL <= toyTSatObsUL) // not sure about <= part yet
         CLbinclusive+= (1.)/nToyMC;


      // loop over points in belt to find upper limit for this toy data
      double thisUL = 0;
      for(Int_t i=0; i<parameterScan->numEntries(); ++i){
         tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
         double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
         firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
         //   double thisTS = profile->getVal();
         double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

         //   cout << "poi = " << firstPOI->getVal()
         // << " max is " << arMax << " this profile = " << thisTS << endl;
         //      cout << "thisTS = " << thisTS<<endl;
         if(thisTS<=arMax){
            thisUL = firstPOI->getVal();
         } else{
            break;
         }
      }



      /*
      // loop over points in belt to find upper limit for this toy data
      double thisUL = 0;
      for(Int_t i=0; i<histOfThresholds->GetNbinsX(); ++i){
         tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
         cout <<"----------------  "<<i<<endl;
         tmpPoint->Print("v");
         cout << "from hist " << histOfThresholds->GetBinCenter(i+1) <<endl;
         double arMax = histOfThresholds->GetBinContent(i+1);
         // cout << " threhold from Hist = aMax " << arMax<<endl;
         // double arMax2 = belt->GetAcceptanceRegionMax(*tmpPoint);
         // cout << "from scan arMax2 = "<< arMax2 << endl; // not the same due to TH1F not TH1D
         // cout << "scan - hist" << arMax2-arMax << endl;
         firstPOI->setVal( histOfThresholds->GetBinCenter(i+1));
         //   double thisTS = profile->getVal();
         double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

         //   cout << "poi = " << firstPOI->getVal()
         // << " max is " << arMax << " this profile = " << thisTS << endl;
         //      cout << "thisTS = " << thisTS<<endl;

         // NOTE: need to add a small epsilon term for single precision vs. double precision
         if(thisTS<=arMax + 1e-7){
            thisUL = firstPOI->getVal();
         } else{
            break;
         }
      }
      */

      histOfUL->Fill(thisUL);

      // for few events, data is often the same, and UL is often the same
      //    cout << "thisUL = " << thisUL<<endl;

      delete toyData;
   }
   histOfUL->Draw();
   c1->SaveAs("one-sided_upper_limit_output.pdf");

   // if you want to see a plot of the sampling distribution for a particular scan point:
   /*
   SamplingDistPlot sampPlot;
   int indexInScan = 0;
   tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp");
   firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
   toymcsampler->SetParametersForTestStat(tmpPOI);
   SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint);
   sampPlot.AddSamplingDistribution(samp);
   sampPlot.Draw();
      */

   // Now find bands and power constraint
   Double_t* bins = histOfUL->GetIntegral();
   TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative");
   cumulative->SetContent(bins);
   double band2sigDown, band1sigDown, bandMedian, band1sigUp,band2sigUp;
   for(int i=1; i<=cumulative->GetNbinsX(); ++i){
      if(bins[i]<RooStats::SignificanceToPValue(2))
         band2sigDown=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(1))
         band1sigDown=cumulative->GetBinCenter(i);
      if(bins[i]<0.5)
         bandMedian=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(-1))
         band1sigUp=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(-2))
         band2sigUp=cumulative->GetBinCenter(i);
   }
   cout << "-2 sigma  band " << band2sigDown << endl;
   cout << "-1 sigma  band " << band1sigDown << " [Power Constraint)]" << endl;
   cout << "median of band " << bandMedian << endl;
   cout << "+1 sigma  band " << band1sigUp << endl;
   cout << "+2 sigma  band " << band2sigUp << endl;

   // print out the interval on the first Parameter of Interest
   cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl;
   cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl;
   cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl;

   delete profile;
   delete nll;

}
예제 #3
0
void PlotAll(TString wsname)
{
	char* binLabels[19] = {"60","70","80","90","100","110","120","130","140","150","160","170","180","190","200","250","300","400","1000"};	

	//get the stuff from the workspace:
	
	TFile* file=TFile::Open(wsname);
	RooWorkspace* ws = (RooWorkspace*)file->Get("combined");
	ModelConfig  *mc = (ModelConfig*)ws->obj("ModelConfig");
	RooAbsData   *data = ws->data("obsData");
	RooSimultaneous* simPdf=(RooSimultaneous*)(mc->GetPdf());
	RooAbsReal* nll=simPdf->createNLL(*data);

	// FPT 0 **************************************	
	// EM channel
	
	RooCategory* chanCat = (RooCategory*) (&simPdf->indexCat());
        TIterator* iterat = chanCat->typeIterator() ;
        RooCatType* ttype = (RooCatType*)iterat->Next();

	RooAbsPdf  *pdf_stateEM  = simPdf->getPdf(ttype->GetName()) ;
	RooArgSet  *obstmpEM  = pdf_stateEM->getObservables( *mc->GetObservables() ) ;
	
	// get EM data
       	RooAbsData *dataEM = data->reduce(Form("%s==%s::%s",chanCat->GetName(),chanCat->GetName(),ttype->GetName()));
		
	RooRealVar *obsEM     = ((RooRealVar*) obstmpEM->first());
	TString chanName1(ttype->GetName());

	// create data histogram
	TH1* hdataEM = dataEM->createHistogram("Data "+chanName1,*obsEM);
	// set errors to gaussian
        for (int ib=0 ; ib<hdataEM->GetNbinsX()+1 ; ib++) hdataEM->SetBinError(ib, sqrt(hdataEM->GetBinContent(ib)));

	double EMnorm = pdf_stateEM->expectedEvents(*obsEM);
	
	//****************************
	// ME channel
	ttype = (RooCatType*)iterat->Next();
	RooAbsPdf* pdf_stateME  = simPdf->getPdf(ttype->GetName()) ;
        RooArgSet* obstmpME  = pdf_stateME->getObservables( *mc->GetObservables() ) ;

	// get ME data
	RooAbsData *dataME = data->reduce(Form("%s==%s::%s",chanCat->GetName(),chanCat->GetName(),ttype->GetName()));	
	RooRealVar* obsME = ((RooRealVar*) obstmpME->first());
	TString chanName2(ttype->GetName());

        // create data histogram
        TH1* hdataME = dataME->createHistogram("Data "+chanName2,*obsME);
        // set errors to gaussian
        for (int ib=0 ; ib<hdataME->GetNbinsX()+1 ; ib++) hdataME->SetBinError(ib, sqrt(hdataME->GetBinContent(ib)));
        
	
	// get initial BG histogram
	//TH1* h_initial_BG_EM = pdf_stateEM->createHistogram("initial_BG_EM",*obsEM);
	//TH1* h_initial_BG_ME = pdf_stateME->createHistogram("initial_BG_ME",*obsME);
	
	double MEnorm = pdf_stateME->expectedEvents(*obsME);
	cout << "EM expected events = " << EMnorm << ", ME expected events = " << MEnorm << "." << endl;
	//h_initial_BG_EM->Scale(EMnorm);
	//h_initial_BG_ME->Scale(MEnorm);	

	// get initial gammas
	int nbins = hdataEM->GetNbinsX();
        double InitGamma[nbins];
        for (int i=0; i<nbins; i++)
        {
               	TString varname = "gamma_B0_l1pt0_bin_"+NumberToString(i);
               	InitGamma[i] = ws->var(varname)->getVal();
               	cout << "initial gamma"+NumberToString(i)+" = " << InitGamma[i] << endl;
        }
        double InitFpt = ws->var("fl1pt_l1pt0")->getVal();
        cout << "initial fpt_l1pt0 = " << InitFpt <<  endl;


	// DO THE GLOBAL FIT
	
	minimize(nll);	
       
	// get final BG histograms
	TH1* h_final_BG_EM = pdf_stateEM->createHistogram("final_BG_EM",*obsEM);
        TH1* h_final_BG_ME = pdf_stateME->createHistogram("final_BG_ME",*obsME); 
	h_final_BG_EM->Scale(EMnorm);
	h_final_BG_ME->Scale(MEnorm);
	
	// uncertainty bands
	TH1D* BuncertaintyEM = new TH1D("BuncertaintyEM","BuncertaintyEM",nbins,0,nbins);
	TH1D* BuncertaintyME = new TH1D("BuncertaintyME","BuncertaintyME",nbins,0,nbins);
	for (int i=1; i<=nbins; i++){
		double sigbEM = h_final_BG_EM->GetBinError(i);
		double bEM = h_final_BG_EM->GetBinContent(i);
		BuncertaintyEM->SetBinError(i,sigbEM); BuncertaintyEM->SetBinContent(i,bEM);
		double sigbME = h_final_BG_ME->GetBinError(i);
                double bME = h_final_BG_ME->GetBinContent(i);
                BuncertaintyME->SetBinError(i,sigbME); BuncertaintyME->SetBinContent(i,bME);
	}
	//BuncertaintyEM->SetFillStyle(3004); 
	BuncertaintyEM->SetFillColor(kGreen-9);
	BuncertaintyEM->SetLineColor(kBlack); BuncertaintyEM->SetLineStyle(2);
	//BuncertaintyME->SetFillStyle(3004); 
	BuncertaintyME->SetFillColor(kBlue-9);
        BuncertaintyME->SetLineColor(kBlack); BuncertaintyME->SetLineStyle(2);

	// get gammas after fit
	double FinalGamma[nbins];
	//TH1* h_initBG_times_gamma = (TH1*)h_initial_BG_EM->Clone("initBGEM_times_gamma");
	for (int i=0; i<nbins; i++)
       	{
               	TString varname = "gamma_B0_l1pt0_bin_"+NumberToString(i);
               	FinalGamma[i] = ws->var(varname)->getVal();
               	cout << "Final gamma in bin "+NumberToString(i)+" = " << FinalGamma[i] << endl;
       	//	h_initBG_times_gamma->SetBinContent(i+1,h_initial_BG_EM->GetBinContent(i+1)*FinalGamma[i]);
	}
	//double FinalFpt = ws->var("fl1pt_l1pt0")->getVal();
	
	// get final alpha (pull)
	RooRealVar* alphaVar = ws->var("alpha_l1ptsys_l1pt0");
	double alpha, alphaErr;
	if (alphaVar != NULL) {
		alpha = ws->var("alpha_l1ptsys_l1pt0")->getVal();
		alphaErr = ws->var("alpha_l1ptsys_l1pt0")->getError();
	}

	//FOR UNCONSTRAINED FPT - get final fpts
	double FinalFpt[5];
	double FinalFptErr[5];
	for (int k=0; k<5; k++){
		TString varname = "fl1pt_l1pt"+NumberToString(k);
		FinalFpt[k] = ws->var(varname)->getVal();
		FinalFptErr[k] =  ws->var(varname)->getError();
		cout << varname << " = "  << FinalFpt[k] << " +- " << FinalFptErr[k] << endl;
	}
	
	// get POI value
	double mu = ws->var("mu_BR_htm")->getVal();
	double muErr = ws->var("mu_BR_htm")->getError();
	
	// Draw
	TCanvas* c1 = new TCanvas("BG and Data "+chanName1+" "+chanName2,"BG and Data "+chanName1+" "+chanName2,600,600);
	BuncertaintyEM->Draw("E3 sames"); BuncertaintyME->Draw("E3 sames");
	//h_initial_BG_EM->SetLineColor(kGreen+2); h_initial_BG_EM->SetLineStyle(2); h_initial_BG_EM->Draw("sames");
	hdataEM->SetLineColor(kGreen+2); hdataEM->SetMarkerStyle(20); hdataEM->SetMarkerColor(kGreen+2);
	hdataEM->Draw("e1 sames");
	//h_initial_BG_ME->SetLineColor(kBlue); h_initial_BG_ME->SetLineStyle(2); h_initial_BG_ME->Draw("sames");
        hdataME->SetLineColor(kBlue); hdataME->SetMarkerStyle(20);  hdataME->SetMarkerColor(kBlue);
	hdataME->Draw("e1 sames");

	h_final_BG_EM->SetLineColor(kGreen+2); h_final_BG_EM->SetLineWidth(2); h_final_BG_EM->Draw("sames");
	h_final_BG_ME->SetLineColor(kBlue); h_final_BG_ME->SetLineWidth(2); h_final_BG_ME->Draw("sames");

	TLegend* leg = new TLegend(0.5,0.45,0.85,0.65);
        leg->SetFillColor(kWhite); leg->SetBorderSize(1); leg->SetLineColor(0); //leg->SetTextFont(14);
        leg->SetTextSize(.03);

	leg->AddEntry(hdataME,"DATA #mue","lep");
	leg->AddEntry(hdataEM,"DATA e#mu","lep");
	//leg->AddEntry(h_initial_BG_ME,"Initial #mue PDF","l");
	//leg->AddEntry(h_initial_BG_EM,"Initial e#mu PDF","l");
	leg->AddEntry(h_final_BG_ME,"#mue PDF = #gamma_{i}B_{i} + #muS_{i}","l");
	leg->AddEntry(h_final_BG_EM,"e#mu PDF = f(1+#alpha#sigma)(#gamma_{i}B_{i}+#muW_{i})","l");
	leg->Draw();

	cout << " ********************* Fit Values **************************** " <<  endl;
	if (alphaVar != NULL){cout << "alpha = " << alpha << " +- " << alphaErr << endl;}
	cout << "mu    = " << mu << " +- " << muErr << endl;

	TString WriteDownAlphaValue;
	TString WriteDownMuValue;
	WriteDownAlphaValue = "Fpt0 = ";
	WriteDownMuValue = "#mu = ";
	WriteDownAlphaValue += Form("%4.4f",FinalFpt[0]);
	WriteDownAlphaValue += "#pm";
	WriteDownAlphaValue += Form("%4.4f",FinalFptErr[0]);
	WriteDownMuValue += Form("%4.4f",mu);
        WriteDownMuValue += "#pm";
        WriteDownMuValue += Form("%4.4f",muErr);

	TLatex *texl = new TLatex(12,25,WriteDownAlphaValue);
   	texl->SetTextAlign(22); texl->SetTextSize(0.03); 
   	TLatex *texl2 = new TLatex(12,23,WriteDownMuValue);
        texl2->SetTextAlign(22); texl2->SetTextSize(0.03);
	texl->Draw(); 
	texl2->Draw();



	//FPT 1 ***********************************
	ttype = (RooCatType*)iterat->Next();

        RooAbsPdf  *pdf_stateEM1  = simPdf->getPdf(ttype->GetName()) ;
        RooArgSet  *obstmpEM1  = pdf_stateEM1->getObservables( *mc->GetObservables() ) ;
	RooAbsData *dataEM1 = data->reduce(Form("%s==%s::%s",chanCat->GetName(),chanCat->GetName(),ttype->GetName()));

        RooRealVar *obsEM1     = ((RooRealVar*) obstmpEM1->first());
        TString chanName11(ttype->GetName());	
	TH1* hdataEM1 = dataEM1->createHistogram("Data "+chanName11,*obsEM1);
	for (int ib=0 ; ib<hdataEM1->GetNbinsX()+1 ; ib++) hdataEM1->SetBinError(ib, sqrt(hdataEM1->GetBinContent(ib)));

        double EMnorm1 = pdf_stateEM1->expectedEvents(*obsEM1);
	ttype = (RooCatType*)iterat->Next();
        RooAbsPdf* pdf_stateME1  = simPdf->getPdf(ttype->GetName()) ;
        RooArgSet* obstmpME1  = pdf_stateME1->getObservables( *mc->GetObservables() ) ;
	RooAbsData *dataME1 = data->reduce(Form("%s==%s::%s",chanCat->GetName(),chanCat->GetName(),ttype->GetName()));
        RooRealVar* obsME1 = ((RooRealVar*) obstmpME1->first());
        TString chanName21(ttype->GetName());
	TH1* hdataME1 = dataME1->createHistogram("Data "+chanName21,*obsME1);

	for (int ib=0 ; ib<hdataME1->GetNbinsX()+1 ; ib++) hdataME1->SetBinError(ib, sqrt(hdataME1->GetBinContent(ib)));
	double MEnorm1 = pdf_stateME1->expectedEvents(*obsME1);
	TH1* h_final_BG_EM1 = pdf_stateEM1->createHistogram("final_BG_EM1",*obsEM1);
        TH1* h_final_BG_ME1 = pdf_stateME1->createHistogram("final_BG_ME1",*obsME1);
        h_final_BG_EM1->Scale(EMnorm1);
        h_final_BG_ME1->Scale(MEnorm1);
	TH1D* BuncertaintyEM1 = new TH1D("BuncertaintyEM1","BuncertaintyEM1",nbins,0,nbins);
        TH1D* BuncertaintyME1 = new TH1D("BuncertaintyME1","BuncertaintyME1",nbins,0,nbins);
        for (int i=1; i<=nbins; i++){
                double sigbEM = h_final_BG_EM1->GetBinError(i);
                double bEM = h_final_BG_EM1->GetBinContent(i);
                BuncertaintyEM1->SetBinError(i,sigbEM); BuncertaintyEM1->SetBinContent(i,bEM);
                double sigbME = h_final_BG_ME1->GetBinError(i);
                double bME = h_final_BG_ME1->GetBinContent(i);
                BuncertaintyME1->SetBinError(i,sigbME); BuncertaintyME1->SetBinContent(i,bME);
        }
	BuncertaintyEM1->SetFillColor(kGreen-9);
        BuncertaintyEM1->SetLineColor(kBlack); BuncertaintyEM1->SetLineStyle(2);
	BuncertaintyME1->SetFillColor(kBlue-9);
        BuncertaintyME1->SetLineColor(kBlack); BuncertaintyME1->SetLineStyle(2);
	double FinalGamma1[nbins];
        for (int i=0; i<nbins; i++)
        {
                TString varname = "gamma_B0_l1pt1_bin_"+NumberToString(i);
                FinalGamma1[i] = ws->var(varname)->getVal();
                cout << "Final gamma in bin "+NumberToString(i)+" = " << FinalGamma1[i] << endl;
        }
	TCanvas* c2 = new TCanvas("BG and Data "+chanName11+" "+chanName21,"BG and Data "+chanName11+" "+chanName21,600,600);
        BuncertaintyEM1->Draw("E3 sames"); BuncertaintyME1->Draw("E3 sames");
        hdataEM1->SetLineColor(kGreen+2); hdataEM1->SetMarkerStyle(20); hdataEM1->SetMarkerColor(kGreen+2);
        hdataEM1->Draw("e1 sames");
        hdataME1->SetLineColor(kBlue); hdataME1->SetMarkerStyle(20);  hdataME1->SetMarkerColor(kBlue);
        hdataME1->Draw("e1 sames");

        h_final_BG_EM1->SetLineColor(kGreen+2); h_final_BG_EM1->SetLineWidth(2); h_final_BG_EM1->Draw("sames");
        h_final_BG_ME1->SetLineColor(kBlue); h_final_BG_ME1->SetLineWidth(2); h_final_BG_ME1->Draw("sames");

        leg->Draw();

        cout << " ********************* Fit Values **************************** " <<  endl;
        cout << "mu    = " << mu << " +- " << muErr << endl;
	TString WriteDownAlphaValue1;
        WriteDownAlphaValue1 = "Fpt1 = ";
        WriteDownAlphaValue1 += Form("%4.4f",FinalFpt[1]);
        WriteDownAlphaValue1 += "#pm";
        WriteDownAlphaValue1 += Form("%4.4f",FinalFptErr[1]);

        TLatex *texl11 = new TLatex(12,25,WriteDownAlphaValue1);
        texl11->SetTextAlign(22); texl11->SetTextSize(0.03);
        texl11->Draw(); 
        texl2->Draw();

}
예제 #4
0
void Plot_BG(TString wsname)
{
	//get the stuff from the workspace:
	
	TFile* file=TFile::Open(wsname);
	RooWorkspace* ws = (RooWorkspace*)file->Get("combined");
	mc = (ModelConfig*)ws->obj("ModelConfig");
	data = ws->data("obsData");
	RooSimultaneous* simPdf=(RooSimultaneous*)(mc->GetPdf());
	RooAbsReal* nll=simPdf->createNLL(*data);
	
	//run on channels
	
	RooCategory* chanCat = (RooCategory*) (&simPdf->indexCat());
        TIterator* iterat = chanCat->typeIterator() ;
        RooCatType* ttype;
	bool stop = kFALSE;
	while ((ttype = (RooCatType*) iterat->Next())&&!stop)
	{
		// bool toggle to run on one channel or all	
		stop = kTRUE;
		RooAbsPdf  *pdf_state  = simPdf->getPdf(ttype->GetName()) ;
		RooArgSet  *obstmp  = pdf_state->getObservables( *mc->GetObservables() ) ;
        	RooAbsData *datatmp = data->reduce(Form("%s==%s::%s",chanCat->GetName(),chanCat->GetName(),ttype->GetName()));
		RooRealVar *obs     = ((RooRealVar*) obstmp->first());
		TString chanName(ttype->GetName());

		// get data
		TH1* hdata = datatmp->createHistogram("Data "+chanName,*obs);
		// set errors to gaussian
        	for (int ib=0 ; ib<hdata->GetNbinsX()+1 ; ib++) hdata->SetBinError(ib, sqrt(hdata->GetBinContent(ib)));
		
		// get initial BG
		TH1* h_initial_BG = pdf_state->createHistogram("initial_BG_"+chanName,*obs);
	
		// get initial gammas
		int nbins = h_initial_BG->GetNbinsX();
        	double InitGamma[nbins];
        	for (int i=0; i<nbins; i++)
        	{
                	TString varname = "gamma_B0_0j_l1pt0_bin_"+NumberToString(i);
                	InitGamma[i] = ws->var(varname)->getVal();
                	cout << "initial gamma"+NumberToString(i)+" = " << InitGamma[i] << endl;
        	}
        	double InitFpt = ws->var("fl1pt_l1pt0")->getVal();
        	cout << "initial fpt_l1pt0 = " << InitFpt <<  endl;

		TCanvas* c1 = new TCanvas("BG and Data "+chanName,"BG and Data "+chanName,600,600);
		h_initial_BG->Draw();
		//hdata->DrawNormalized("sames E1");

		// DO THE GLOBAL FIT
		
		RooMinimizer minim(*nll);
        	//set some options:
        	minim.setPrintLevel(0);
        	minim.optimizeConst(1);
        	minim.setOffsetting(true);
        	minim.setMinimizerType("Minuit2");
        	minim.minimize("Minuit2");
        	minim.setStrategy(3); //0-3 where 0 is the fastest
        	minim.migrad();
        
		// get gammas after fit
		double FinalGamma[nbins];
		TH1* h_initBG_times_gamma = (TH1*)h_initial_BG->Clone("initBG_times_gamma");
		for (int i=0; i<nbins; i++)
        	{
                	TString varname = "gamma_B0_0j_l1pt0_bin_"+NumberToString(i);
                	FinalGamma[i] = ws->var(varname)->getVal();
                	cout << "Final gamma in bin "+NumberToString(i)+" = " << FinalGamma[i] << endl;
        		h_initBG_times_gamma->SetBinContent(i+1,h_initial_BG->GetBinContent(i+1)*FinalGamma[i]);
		}
		double FinalFpt = ws->var("fl1pt_l1pt0")->getVal();
		cout << "initial fpt_l1pt0 = " << InitFpt <<  endl;
		cout << "final fpt_l1pt0 = " << FinalFpt <<  endl;
	
		TH1* h_final_BG = pdf_state->createHistogram("final_BG_"+chanName,*obs);
        	//TCanvas* cf = new TCanvas("final BG","final BG",600,600);
		h_final_BG->Draw("sames");
		h_initBG_times_gamma->Draw("sames");
		TH1* h_ratio = (TH1*)h_initial_BG->Clone("h_ratio");
		h_ratio->Divide(h_final_BG);
		//h_ratio->Draw();
		cout << "channel name = " << chanName << endl;	
		for ( int j=1; j<=nbins; j++)
		{
			double init = h_initial_BG->GetBinContent(j);
			double fina = h_final_BG->GetBinContent(j);
			double r = (fina)/init;
			cout << "in bin " << j << ", initial B = " << init << ", final B = " << fina << ", ratio = " << r << ", Gamma = " << FinalGamma[j-1] << endl;
		}	
	}


}
void StandardHistFactoryPlotsWithCategories(const char* infile = "",
                                            const char* workspaceName = "combined",
                                            const char* modelConfigName = "ModelConfig",
                                            const char* dataName = "obsData"){


   double nSigmaToVary=5.;
   double muVal=0;
   bool doFit=false;

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
                                                           // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }

   // -------------------------------------------------------
   // Tutorial starts here
   // -------------------------------------------------------

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // now use the profile inspector

   RooRealVar* obs = (RooRealVar*)mc->GetObservables()->first();
   TList* list = new TList();


   RooRealVar * firstPOI = dynamic_cast<RooRealVar*>(mc->GetParametersOfInterest()->first());

   firstPOI->setVal(muVal);
   //  firstPOI->setConstant();
   if(doFit){
      mc->GetPdf()->fitTo(*data);
   }

   // -------------------------------------------------------


   mc->GetNuisanceParameters()->Print("v");
   int  nPlotsMax = 1000;
   cout <<" check expectedData by category"<<endl;
   RooDataSet* simData=NULL;
   RooSimultaneous* simPdf = NULL;
   if(strcmp(mc->GetPdf()->ClassName(),"RooSimultaneous")==0){
      cout <<"Is a simultaneous PDF"<<endl;
      simPdf = (RooSimultaneous *)(mc->GetPdf());
   } else {
      cout <<"Is not a simultaneous PDF"<<endl;
   }



   if(doFit) {
      RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
      TIterator* iter = channelCat->typeIterator() ;
      RooCatType* tt = NULL;
      tt=(RooCatType*) iter->Next();
      RooAbsPdf* pdftmp = ((RooSimultaneous*)mc->GetPdf())->getPdf(tt->GetName()) ;
      RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
      obs = ((RooRealVar*)obstmp->first());
      RooPlot* frame = obs->frame();
      cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
      cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
      data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));

      Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;

      pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;
      frame->Draw();
      cout <<"expected events = " << mc->GetPdf()->expectedEvents(*data->get()) <<endl;
      return;
   }



   int nPlots=0;
   if(!simPdf){

      TIterator* it = mc->GetNuisanceParameters()->createIterator();
      RooRealVar* var = NULL;
      while( (var = (RooRealVar*) it->Next()) != NULL){
         RooPlot* frame = obs->frame();
         frame->SetYTitle(var->GetName());
         data->plotOn(frame,MarkerSize(1));
         var->setVal(0);
         mc->GetPdf()->plotOn(frame,LineWidth(1.));
         var->setVal(1);
         mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(1));
         var->setVal(-1);
         mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(1));
         list->Add(frame);
         var->setVal(0);
      }


   } else {
      RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
      //    TIterator* iter = simPdf->indexCat().typeIterator() ;
      TIterator* iter = channelCat->typeIterator() ;
      RooCatType* tt = NULL;
      while(nPlots<nPlotsMax && (tt=(RooCatType*) iter->Next())) {

         cout << "on type " << tt->GetName() << " " << endl;
         // Get pdf associated with state from simpdf
         RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;

         // Generate observables defined by the pdf associated with this state
         RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
         //      obstmp->Print();


         obs = ((RooRealVar*)obstmp->first());

         TIterator* it = mc->GetNuisanceParameters()->createIterator();
         RooRealVar* var = NULL;
         while(nPlots<nPlotsMax && (var = (RooRealVar*) it->Next())){
            TCanvas* c2 = new TCanvas("c2");
            RooPlot* frame = obs->frame();
            frame->SetName(Form("frame%d",nPlots));
            frame->SetYTitle(var->GetName());

            cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
            cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
            data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));

            Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;

            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal());
               var->Print();
            } else{
               var->setVal(0);
            }
            // w->allVars().Print("v");
            // mc->GetNuisanceParameters()->Print("v");
            // pdftmp->plotOn(frame,LineWidth(2.));
            // mc->GetPdf()->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            //pdftmp->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            normCount = pdftmp->expectedEvents(*obs);
            pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;

            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal()+0.05);
               var->Print();
            } else{
               var->setVal(nSigmaToVary);
            }
            // pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2));
            // mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            //pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            normCount = pdftmp->expectedEvents(*obs);
            pdftmp->plotOn(frame,LineWidth(2.),LineColor(kRed),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ;

            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal()-0.05);
               var->Print();
            } else{
               var->setVal(-nSigmaToVary);
            }
            // pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2));
            // mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            //pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            normCount = pdftmp->expectedEvents(*obs);
            pdftmp->plotOn(frame,LineWidth(2.),LineColor(kGreen),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ;



            // set them back to normal
            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal());
               var->Print();
            } else{
               var->setVal(0);
            }

            list->Add(frame);

            // quit making plots
            ++nPlots;

            frame->Draw();
            c2->SaveAs(Form("%s_%s_%s.pdf",tt->GetName(),obs->GetName(),var->GetName()));
            delete c2;
         }
      }
   }



   // -------------------------------------------------------


   // now make plots
   TCanvas* c1 = new TCanvas("c1","ProfileInspectorDemo",800,200);
   if(list->GetSize()>4){
      double n = list->GetSize();
      int nx = (int)sqrt(n) ;
      int ny = TMath::CeilNint(n/nx);
      nx = TMath::CeilNint( sqrt(n) );
      c1->Divide(ny,nx);
   } else
      c1->Divide(list->GetSize());
   for(int i=0; i<list->GetSize(); ++i){
      c1->cd(i+1);
      list->At(i)->Draw();
   }





}