예제 #1
0
void Create_One_Piece( SWIFT_Tri_Mesh* m, SWIFT_Array<int>& piece_ids,
                       SWIFT_Array< SWIFT_Array<int> >& mfs,
                       SWIFT_Array< SWIFT_Array<SWIFT_Tri_Face> >& vfs )
{
    int i;

    piece_ids.Create( m->Num_Faces() );
    mfs.Create( 1 );
    mfs[0].Create( m->Num_Faces() );
    for( i = 0; i < m->Num_Faces(); i++ ) {
        mfs[0][i] = i;
        piece_ids[i] = 0;
    }

    vfs.Create( 1 );
}
예제 #2
0
void Convex_Initialize( SWIFT_Tri_Mesh* m )
{
    int i;
    Convex_Utilities_Initialize( m );

    // Store the mesh's twin info in the twin's list
    twins.Create( m->Num_Faces() );
    for( i = 0; i < m->Num_Faces(); i++ ) {
        twins[i][0] = m->Faces()[i].Edge1().Twin();
        twins[i][1] = m->Faces()[i].Edge2().Twin();
        twins[i][2] = m->Faces()[i].Edge3().Twin();
    }
}
예제 #3
0
파일: gui.cpp 프로젝트: ipa-nhg/kukadu
void Compute_Leaves( SWIFT_BV* piece )
{
    int i;

    if( piece == mesh->Root() ) {
        leaves.Destroy();
        leaves.Create( num_leaves );
        leaves.Set_Length( 0 );
    }

    if( piece->Is_Leaf() ) {
        leaves.Add( piece );
    } else {
        for( i = 0; i < piece->Num_Children(); i++ ) {
            Compute_Leaves( piece->Children()[i] );
        }
    }
}
예제 #4
0
파일: gui.cpp 프로젝트: ipa-nhg/kukadu
void Compute_Piece_Centers_Of_Mass( )
{
    int i, j;
    SWIFT_Real area;
    SWIFT_Real total_area;
    SWIFT_Triple areav;
    SWIFT_Triple com;

    if( model_faces.Length() != 0 ) {
        piece_coms.Create( model_faces.Length() );
        for( i = 0; i < model_faces.Length(); i++ ) { 
            com.Set_Value( 0.0, 0.0, 0.0 );
            total_area = 0.0;
            for( j = 0; j < model_faces[i].Length(); j++ ) {
                areav = (mesh->Faces()[model_faces[i][j]].Edge1().Origin()->Coords() -
                         mesh->Faces()[model_faces[i][j]].Edge2().Origin()->Coords()) %
                        (mesh->Faces()[model_faces[i][j]].Edge1().Origin()->Coords() -
                         mesh->Faces()[model_faces[i][j]].Edge3().Origin()->Coords());
                area = 0.5 * areav.Length();
                total_area += area;
                com += area * (mesh->Faces()[model_faces[i][j]].Edge1().Origin()->Coords() +
                               mesh->Faces()[model_faces[i][j]].Edge2().Origin()->Coords() +
                               mesh->Faces()[model_faces[i][j]].Edge3().Origin()->Coords() );
            }
            for( j = 0; j < virtual_faces[i].Length(); j++ ) {
                areav = (virtual_faces[i][j].Edge1().Origin()->Coords() -
                        virtual_faces[i][j].Edge2().Origin()->Coords()) %
                        (virtual_faces[i][j].Edge1().Origin()->Coords() -
                        virtual_faces[i][j].Edge3().Origin()->Coords());
                area = 0.5 * areav.Length();
                total_area += area;
                com += area * (virtual_faces[i][j].Edge1().Origin()->Coords() +
                               virtual_faces[i][j].Edge2().Origin()->Coords() +
                               virtual_faces[i][j].Edge3().Origin()->Coords() );
            }

            piece_coms[i] = com / (3.0 * total_area);
        }
    }
}
예제 #5
0
파일: gui.cpp 프로젝트: ipa-nhg/kukadu
void Gui_Init_Before_TclTk( char* filename )
{
#ifdef DECOMP_GRAPHICS
    if( g ) {
        // toggle and radio button variables
        backface = 1;
        wireframe = 0;
        color = 1;
        axes = 1;

        explode = 0;
        prevdh = DRAW_DECOMPOSITION;
        dh = DRAW_DECOMPOSITION;
        edge_conv = 0;
        vfaces = 0;
        save_vfaces = 1;    // turn vfaces on by default for the hierarchy

        tcolor = 0;
        uleaves = 0;

        level = 0;

        // Mode variables
        dragging = false;

        VIEWER_Initialize();
    }
#endif

    mesh = NULL;

    Mesh_Utils_Initialize();

    if( filename != NULL ) {
        int i, j, k;

        if( !Load_File( filename, mesh, split, already_decomp, already_hier,
                        piece_ids, model_faces, virtual_faces )
        ) {
            cerr << "Exiting..." << endl;
            exit( 0 );
            return;
        }

        if( already_hier ) {
            // Have to compute the mesh geometry
            mesh->Compute_All_Hierarchy_Geometry();
        }

        mesh->Compute_Edge_Convexities( edge_convexities );
        if( !already_decomp ) {
            if( jitter ) {
                cerr << "Jittering with amplitude = " << jampl << endl << endl;
                Jitter( mesh, jampl );
            }
            if( ef ) {
                // Flip edges
                cerr << "Flipping edges with tolerance = " << edge_flip_tol
                     << endl << endl;
                Edge_Flip( mesh, edge_flip_tol );
                if( ef_filename != NULL ) {
                    cerr << "Saving edge flipped mesh" << endl << endl;
                    Save_Model_File( ef_filename, mesh );
                }
            }
            if( one_piece ) {
                cerr << "Creating one piece" << endl;
                Create_One_Piece( mesh, piece_ids, model_faces, virtual_faces );
                num_pieces = 1;
            } else {
                Decompose_Mesh( );
            }

            // Write the result to a file if that option is on
            if( w ) {
                cerr << "Saving decomposition result" << endl << endl;
                Save_Decomposition_File( decomp_filename, mesh, piece_ids,
                                         model_faces, virtual_faces );
            }
        } else if( !already_hier ) {
            num_pieces = model_faces.Length();
        } else {
            num_pieces = (mesh->Num_BVs()+1)/2;
        }

        if( hierarchy ) {
            // Create the bounding volume hierarchy
            num_leaves = num_pieces;
            if( !already_hier ) {
                cerr << "Creating convex hierarchy" << endl;
                mesh->Create_BV_Hierarchy( split, piece_ids, model_faces,
                                           virtual_faces, st_faces, st_twins );
                if( hier_filename != NULL ) {
                    cerr << "Saving convex hierarchy" << endl << endl;
                    Save_Hierarchy_File( hier_filename, mesh,
                                         st_faces, st_twins );
                }
            }
#ifdef DECOMP_GRAPHICS
        } else {
            if( g ) {
                // Compute the virtual face normals
                for( i = 0; i < virtual_faces.Length(); i++ ) {
                    for( j = 0; j < virtual_faces[i].Length(); j++ ) {
                        virtual_faces[i][j].Edge1().Compute_Direction_Length();
                        virtual_faces[i][j].Edge2().Compute_Direction_Length();
                        virtual_faces[i][j].Edge3().Compute_Direction_Length();
                        virtual_faces[i][j].Compute_Plane_From_Edges();
                    }
                }
            }
#endif
        }
        cerr << "COM = " << mesh->Center_Of_Mass() << endl;

#ifdef DECOMP_GRAPHICS
        if( g ) {
            if( hierarchy ) {
                // Hierarchy has been created.

                if( already_hier ) {
                    // Create the piece_ids and the virtual faces
                    piece_ids.Create( mesh->Num_Faces() );
                    virtual_faces.Create( num_pieces );
                    for( i = 0, k = 0; i < mesh->Num_BVs(); i++ ){
                        if( !mesh->BVs()[i].Is_Leaf() ) {
                            continue;
                        }
                        for( j = 0; j < mesh->BVs()[i].Num_Other_Faces(); j++ ){
                            piece_ids[mesh->Face_Id(
                                    mesh->BVs()[i].Other_Faces()[j] )] = k;
                        }
                        virtual_faces[k].Create( mesh->BVs()[i].Num_Faces() );
                        for( j = 0; j < virtual_faces[k].Length(); j++ ) {
                            virtual_faces[k][j] = mesh->BVs()[i].Faces()[j];
                            virtual_faces[k][j].Edge1().Nullify_Twins();
                            virtual_faces[k][j].Edge2().Nullify_Twins();
                            virtual_faces[k][j].Edge3().Nullify_Twins();
                        }
                        k++;
                    }

                    // Create the model faces
                    model_faces.Create( num_pieces );
                    for( i = 0; i < mesh->Num_Faces(); i++ ) {
                        model_faces[piece_ids[i]].Add_Grow( i, 10 );
                    }
                }

                Compute_Leaves( mesh->Root() );

                which_pieces.Create( 1 );
                which_pieces[0] = mesh->Root();
            }

            which_cps.Create( num_pieces );
            for( i = 0; i < num_pieces; i++ ) {
                which_cps[i] = i;
            }
            Compute_Piece_Centers_Of_Mass();
            Initialize_For_New_Model();
            Save_Camera( 1 );
        }
#endif
    } else {
        cerr << "No filename given to initialize -- Exiting..." << endl;
    }
}
예제 #6
0
int Decompose_DFS( SWIFT_Tri_Mesh* m, SWIFT_Array<int>& piece_ids,
                   SWIFT_Array< SWIFT_Array<int> >& mfs,
                   SWIFT_Array< SWIFT_Array<SWIFT_Tri_Face> >& vfs,
                   bool random )
{
    // Start performing DFS on the dual graph maintaining a convex hull along
    // the way.

    cerr << endl << "Starting ";
    if( random ) { 
        cerr << "randomized ";
    }
    cerr << "DFS decomposition" << endl;

    const unsigned int max_faces_in_a_chull = (m->Num_Vertices() - 2) << 1;
    int i, j, k, l, p;
    int created_faces = 0;
    int top, id;
    // The faces stack
    SWIFT_Array<SWIFT_Tri_Face*> sfs;
    // Keeps track of all the faces that were marked as failed so that they can
    // be unmarked efficiently.
    SWIFT_Array<SWIFT_Tri_Face*> mark_failed;
    // The current convex hull
    SWIFT_Array<SWIFT_Tri_Face> chull;
    // Pointers to faces indicating whether the face on the convex hull is a
    // model face or a virtual face (entry is NULL)
    SWIFT_Array<SWIFT_Tri_Face*> cfs;
    // Which faces on the original model are allowed to be added
    SWIFT_Array<bool> fallowed;
    // Which vertices exist on the convex hull
    SWIFT_Array<bool> cvs;
    // Ids of vertices belonging to the convex hull 
    SWIFT_Array<int> cvs_idx;
    // Ids of faces that are added at each iteration
    SWIFT_Array<int> addedfs;
    // The model face ids that belong to a single convex hull
    SWIFT_Array<int> temp_mfs_1d;
    // The model face ids that belong to each convex hull
    SWIFT_Array< SWIFT_Array<int> > temp_mfs_2d;

    sfs.Create( m->Num_Faces() );
    mark_failed.Create( m->Num_Faces() );
    chull.Create( max_faces_in_a_chull );
    cfs.Create( max_faces_in_a_chull );
    fallowed.Create( m->Num_Faces() );
    cvs.Create( m->Num_Vertices() );
    cvs_idx.Create( m->Num_Vertices() );
    addedfs.Create( m->Num_Faces() );
    temp_mfs_1d.Create( m->Num_Faces() );
    temp_mfs_2d.Create( m->Num_Faces() );

    vfs.Create( m->Num_Faces() );
    piece_ids.Create( m->Num_Faces() );

    Prepare_Mesh_For_Decomposition( m );

    for( i = 0; i < m->Num_Faces(); i++ ) {
        fallowed[i] = true;
    }
    for( i = 0; i < m->Num_Vertices(); i++ ) {
        cvs[i] = false;
    }
    cvs_idx.Set_Length( 0 );

    id = 0;
    for( p = 0; p < m->Num_Faces(); ) {
        // Try to advance p
        for( ; p < m->Num_Faces() && m->Faces()[p].Marked(); p++ );
        if( p == m->Num_Faces() ) break;
        if( random ) {
            // Find a random i in the range [p,m->Num_Faces()-1]
            while( m->Faces()[i = (int) ((SWIFT_Real)(m->Num_Faces()-p) *
                                         drand48()) + p].Marked() );
        } else {
            i = p;
        }

        top = 0;
        sfs[0] = m->Faces()(i);
        mark_failed.Set_Length( 0 );
        temp_mfs_1d.Set_Length( 0 );

        Create_First_Face( m->Faces()(i), chull, cfs );

        // Unset all the vertex membership flags
        for( j = 0; j < cvs_idx.Length(); j++ ) { 
            cvs[cvs_idx[j]] = false;
        }
        cvs_idx.Set_Length( 0 );

        // Mark the first three vertices as added to the hull
        cvs_idx.Add( m->Vertex_Id( m->Faces()[i].Edge1().Origin() ) );
        cvs_idx.Add( m->Vertex_Id( m->Faces()[i].Edge2().Origin() ) );
        cvs_idx.Add( m->Vertex_Id( m->Faces()[i].Edge3().Origin() ) );
        cvs[cvs_idx[0]] = true;
        cvs[cvs_idx[1]] = true;
        cvs[cvs_idx[2]] = true;

        // Add the first face
        piece_ids[i] = id;
        m->Faces()[i].Mark();
        temp_mfs_1d.Add( i );
        l = 1;
        addedfs.Set_Length( 1 );
        addedfs[0] = i;
        fallowed[i] = false;

        while( top != -1 ) {
            if( sfs[top]->Edge1().Marked() &&
                sfs[top]->Edge1().Twin()->Adj_Face()->Unmarked()
            ) {
                if( Add_To_Convex_Hull( m, chull, cfs, fallowed, cvs, addedfs,
                            sfs[top]->Edge1().Twin()->Adj_Face(),
                            sfs[top]->Edge1P(),
                            sfs[top]->Edge1().Twin()->Prev()->Origin() )
                ) {
                    cvs_idx.Add( m->Vertex_Id(
                                 sfs[top]->Edge1().Twin()->Prev()->Origin() ) );
                    sfs[top+1] = sfs[top]->Edge1().Twin()->Adj_Face();
                    top++;
                    // Mark all the faces that were added to the chull
                    for( j = l; j < addedfs.Length(); j++ ) {
                        fallowed[addedfs[j]] = false;
                        if( m->Faces()[addedfs[j]].Unmarked() ) {
                            m->Faces()[addedfs[j]].Mark();
                            piece_ids[addedfs[j]] = id;
                            temp_mfs_1d.Add( addedfs[j] );
                        }
                    }
                    l = addedfs.Length();
                    continue;
                } else {
                    mark_failed.Add( sfs[top]->Edge1().Twin()->Adj_Face() );
                    sfs[top]->Edge1().Twin()->Adj_Face()->Mark();
                    fallowed[m->Face_Id(sfs[top]->Edge1().Twin()->Adj_Face())]
                        = false;
                }
            }
            if( sfs[top]->Edge2().Marked() &&
                sfs[top]->Edge2().Twin()->Adj_Face()->Unmarked()
            ) {
                if( Add_To_Convex_Hull( m, chull, cfs, fallowed, cvs, addedfs,
                            sfs[top]->Edge2().Twin()->Adj_Face(),
                            sfs[top]->Edge2P(),
                            sfs[top]->Edge2().Twin()->Prev()->Origin() )
                ) {
                    cvs_idx.Add( m->Vertex_Id(
                                 sfs[top]->Edge2().Twin()->Prev()->Origin() ) );
                    sfs[top+1] = sfs[top]->Edge2().Twin()->Adj_Face();
                    top++;
                    // Mark all the faces that were added to the chull
                    for( j = l; j < addedfs.Length(); j++ ) {
                        fallowed[addedfs[j]] = false;
                        if( m->Faces()[addedfs[j]].Unmarked() ) {
                            m->Faces()[addedfs[j]].Mark();
                            piece_ids[addedfs[j]] = id;
                            temp_mfs_1d.Add( addedfs[j] );
                        }
                    }
                    l = addedfs.Length();
                    continue;
                } else {
                    mark_failed.Add( sfs[top]->Edge2().Twin()->Adj_Face() );
                    sfs[top]->Edge2().Twin()->Adj_Face()->Mark();
                    fallowed[m->Face_Id(sfs[top]->Edge2().Twin()->Adj_Face())]
                        = false;
                }
            }
            if( sfs[top]->Edge3().Marked() &&
                sfs[top]->Edge3().Twin()->Adj_Face()->Unmarked()
            ) {
                if( Add_To_Convex_Hull( m, chull, cfs, fallowed, cvs, addedfs,
                            sfs[top]->Edge3().Twin()->Adj_Face(),
                            sfs[top]->Edge3P(),
                            sfs[top]->Edge3().Twin()->Prev()->Origin() )
                ) {
                    cvs_idx.Add( m->Vertex_Id(
                                 sfs[top]->Edge3().Twin()->Prev()->Origin() ) );
                    sfs[top+1] = sfs[top]->Edge3().Twin()->Adj_Face();
                    top++;
                    // Mark all the faces that were added to the chull
                    for( j = l; j < addedfs.Length(); j++ ) {
                        fallowed[addedfs[j]] = false;
                        if( m->Faces()[addedfs[j]].Unmarked() ) {
                            m->Faces()[addedfs[j]].Mark();
                            piece_ids[addedfs[j]] = id;
                            temp_mfs_1d.Add( addedfs[j] );
                        }
                    }
                    l = addedfs.Length();
                    continue;
                } else {
                    mark_failed.Add( sfs[top]->Edge3().Twin()->Adj_Face() );
                    sfs[top]->Edge3().Twin()->Adj_Face()->Mark();
                    fallowed[m->Face_Id(sfs[top]->Edge3().Twin()->Adj_Face())]
                        = false;
                }
            }

            top--;
        }

        // Unmark all the failed faces.
        for( j = 0; j < mark_failed.Length(); j++ ) {
            mark_failed[j]->Unmark();
            fallowed[m->Face_Id( mark_failed[j] )] = true;
        }

        // Copy the virtual faces for this piece
        for( j = 0, k = 0; j < chull.Length(); j++ ) {
            if( chull[j].Unmarked() && cfs[j] == NULL ) {
                k++;
            }
        }
        created_faces += k;

        vfs[id].Create( k );
        for( j = 0, k = 0; j < chull.Length(); j++ ) {
            if( chull[j].Unmarked() && cfs[j] == NULL ) {
                vfs[id][k].Set_Normal_N( chull[j].Normal() );
                vfs[id][k].Set_Distance( chull[j].Distance() );
                vfs[id][k].Edge1().Set_Direction_N(
                                                chull[j].Edge1().Direction() );
                vfs[id][k].Edge2().Set_Direction_N(
                                                chull[j].Edge2().Direction() );
                vfs[id][k].Edge3().Set_Direction_N(
                                                chull[j].Edge3().Direction() );
                vfs[id][k].Edge1().Set_Length( chull[j].Edge1().Length() );
                vfs[id][k].Edge2().Set_Length( chull[j].Edge2().Length() );
                vfs[id][k].Edge3().Set_Length( chull[j].Edge3().Length() );
                vfs[id][k].Edge1().Set_Origin( chull[j].Edge1().Origin() );
                vfs[id][k].Edge2().Set_Origin( chull[j].Edge2().Origin() );
                vfs[id][k].Edge3().Set_Origin( chull[j].Edge3().Origin() );
                vfs[id][k].Edge1().Set_Twin( chull[j].Edge1().Twin() );
                vfs[id][k].Edge2().Set_Twin( chull[j].Edge2().Twin() );
                vfs[id][k].Edge3().Set_Twin( chull[j].Edge3().Twin() );
                chull[j].Edge1().Twin()->Set_Twin( vfs[id][k].Edge1P() );
                chull[j].Edge2().Twin()->Set_Twin( vfs[id][k].Edge2P() );
                chull[j].Edge3().Twin()->Set_Twin( vfs[id][k].Edge3P() );
                k++;
            }
        }

        // Copy the model faces for this piece
        temp_mfs_2d[id].Copy_Length( temp_mfs_1d );

        id++;
        if( !random ) {
            p++;
        }
    }
    temp_mfs_2d.Set_Length( id );
    vfs.Set_Length( id );

    // Unmark all the faces and edges
    for( i = 0; i < m->Num_Faces(); i++ ) {
        m->Faces()[i].Unmark();
        m->Faces()[i].Edge1().Unmark();
        m->Faces()[i].Edge2().Unmark();
        m->Faces()[i].Edge3().Unmark();
    }

    // Copy the mfs
    mfs.Copy_Length( temp_mfs_2d );
    for( i = 0; i < temp_mfs_2d.Length(); i++ ) {
        temp_mfs_2d[i].Nullify();
    }

    cerr << "Created " << id << " pieces" << endl;
    cerr << "Original faces = " << m->Num_Faces() << endl;
    cerr << "Created virtual faces = " << created_faces << endl << endl;

    return id;
}
예제 #7
0
int Decompose_Cresting_BFS( SWIFT_Tri_Mesh* m, SWIFT_Array<int>& piece_ids,
                            SWIFT_Array< SWIFT_Array<int> >& mfs,
                            SWIFT_Array< SWIFT_Array<SWIFT_Tri_Face> >& vfs )
{
    // Start performing BFS on the dual graph maintaining a convex hull along
    // the way.

    cerr << endl << "Starting cresting BFS decomposition" << endl;

    const unsigned int max_faces_in_a_chull = (m->Num_Vertices() - 2) << 1;
    int i, j, k, l;
    int created_faces = 0;
    int front, id;
    bool add_children;
    SWIFT_Tri_Edge* e;
    SWIFT_Tri_Vertex* v;
    SWIFT_Array<SWIFT_Tri_Face*> qfs;   // The queue
    SWIFT_Array<SWIFT_Tri_Face*> qfs_parents;
    SWIFT_Array<int> qmap;
    SWIFT_Array<int> qmap_idx;
    SWIFT_Array<SWIFT_Tri_Face*> mark_failed;
    SWIFT_Array<SWIFT_Tri_Face> chull;
    SWIFT_Array<SWIFT_Tri_Face*> cfs;
    SWIFT_Array<bool> fallowed;
    SWIFT_Array<bool> cvs;
    SWIFT_Array<int> cvs_idx;
    SWIFT_Array<int> addedfs;
    SWIFT_Array<int> temp_mfs_1d;
    SWIFT_Array< SWIFT_Array<int> > temp_mfs_2d;

    // The priority queue
    SWIFT_Array<int> lengths( m->Num_Faces() );
    SWIFT_Array<int> bmap( m->Num_Faces() );
    SWIFT_Array<int> fmap( m->Num_Faces() );

    qfs.Create( m->Num_Faces() );
    qfs_parents.Create( m->Num_Faces() );
    qmap.Create( m->Num_Faces() );
    qmap_idx.Create( m->Num_Faces() );
    mark_failed.Create( m->Num_Faces() );
    chull.Create( max_faces_in_a_chull );
    cfs.Create( max_faces_in_a_chull );
    fallowed.Create( m->Num_Faces() );
    cvs.Create( m->Num_Vertices() );
    cvs_idx.Create( m->Num_Vertices() );
    addedfs.Create( m->Num_Faces() );
    temp_mfs_1d.Create( m->Num_Faces() );
    temp_mfs_2d.Create( m->Num_Faces() );

    vfs.Create( m->Num_Faces() );
    piece_ids.Create( m->Num_Faces() );

    Prepare_Mesh_For_Decomposition( m );

    cvs_idx.Set_Length( 0 );
    qmap_idx.Set_Length( 0 );
    for( i = 0; i < m->Num_Vertices(); i++ ) {
        cvs[i] = false;
    }
    for( i = 0; i < m->Num_Faces(); i++ ) {
        fallowed[i] = true;
        piece_ids[i] = -1;
        qmap[i] = -1;
        bmap[i] = fmap[i] = i;
        if( m->Faces()[i].Edge1().Unmarked() ||
            m->Faces()[i].Edge2().Unmarked() ||
            m->Faces()[i].Edge3().Unmarked()
        ) {
            lengths[i] = 0;
            qmap_idx.Add( i );
        } else {
            lengths[i] = -1;
        }
    }

    id = 0;

    // Calculate distances for each face and create priority queue
    if( !qmap_idx.Empty() ) {
        // This is a convex object
        for( i = 0; i < qmap_idx.Max_Length(); i++ ) {
            if( m->Faces()[qmap_idx[i]].Edge1().Twin() != NULL ) {
                k = m->Face_Id(
                        m->Faces()[qmap_idx[i]].Edge1().Twin()->Adj_Face() );
                if( lengths[k] == -1 ) {
                    lengths[k] = lengths[qmap_idx[i]]+1;
                    qmap_idx.Add( k );
                }
            }
            if( m->Faces()[qmap_idx[i]].Edge2().Twin() != NULL ) {
                k = m->Face_Id(
                        m->Faces()[qmap_idx[i]].Edge2().Twin()->Adj_Face() );
                if( lengths[k] == -1 ) {
                    lengths[k] = lengths[qmap_idx[i]]+1;
                    qmap_idx.Add( k );
                }
            }
            if( m->Faces()[qmap_idx[i]].Edge3().Twin() != NULL ) {
                k = m->Face_Id(
                        m->Faces()[qmap_idx[i]].Edge3().Twin()->Adj_Face() );
                if( lengths[k] == -1 ) {
                    lengths[k] = lengths[qmap_idx[i]]+1;
                    qmap_idx.Add( k );
                }
            }
        }

        Build_Heap( lengths, bmap, fmap );
    }
    qmap_idx.Set_Length( 0 );

    // Process the priority queue by doing BFS
    while( !lengths.Empty() ) {
        i = bmap[0];

        // Unset all the qmappings
        for( j = 0; j < qmap_idx.Length(); j++ ) { 
            qmap[qmap_idx[j]] = -1;
        }
        qmap_idx.Set_Length( 0 );
        qfs.Set_Length( 0 );
        qfs_parents.Set_Length( 0 );
        front = 0;

        if( m->Faces()[i].Edge1().Marked() &&
            m->Faces()[i].Edge1().Twin()->Adj_Face()->Unmarked()
        ) {
            j = m->Face_Id( m->Faces()[i].Edge1().Twin()->Adj_Face() );
            qmap_idx.Add( j );
            qmap[j] = qfs.Length();
            qfs.Add( m->Faces()(j) );
            m->Faces()(j)->Mark();
            qfs_parents.Add( m->Faces()(i) );
        }
        if( m->Faces()[i].Edge2().Marked() &&
            m->Faces()[i].Edge2().Twin()->Adj_Face()->Unmarked()
        ) {
            j = m->Face_Id( m->Faces()[i].Edge2().Twin()->Adj_Face() );
            qmap_idx.Add( j );
            qmap[j] = qfs.Length();
            qfs.Add( m->Faces()(j) );
            m->Faces()(j)->Mark();
            qfs_parents.Add( m->Faces()(i) );
        }
        if( m->Faces()[i].Edge3().Marked() &&
            m->Faces()[i].Edge3().Twin()->Adj_Face()->Unmarked()
        ) {
            j = m->Face_Id( m->Faces()[i].Edge3().Twin()->Adj_Face() );
            qmap_idx.Add( j );
            qmap[j] = qfs.Length();
            qfs.Add( m->Faces()(j) );
            m->Faces()(j)->Mark();
            qfs_parents.Add( m->Faces()(i) );
        }

        mark_failed.Set_Length( 0 );
        temp_mfs_1d.Set_Length( 0 );

        Create_First_Face( m->Faces()(i), chull, cfs );

        // Unset all the vertex membership flags
        for( j = 0; j < cvs_idx.Length(); j++ ) { 
            cvs[cvs_idx[j]] = false;
        }
        cvs_idx.Set_Length( 0 );

        // Mark the first three vertices as added to the hull
        cvs_idx.Add( m->Vertex_Id( m->Faces()[i].Edge1().Origin() ) );
        cvs_idx.Add( m->Vertex_Id( m->Faces()[i].Edge2().Origin() ) );
        cvs_idx.Add( m->Vertex_Id( m->Faces()[i].Edge3().Origin() ) );
        cvs[cvs_idx[0]] = true;
        cvs[cvs_idx[1]] = true;
        cvs[cvs_idx[2]] = true;

        // Add the first face
        piece_ids[i] = id;
        m->Faces()[i].Mark();
        temp_mfs_1d.Add( i );
        l = 1;
        addedfs.Set_Length( 1 );
        addedfs[0] = i;
        fallowed[i] = false;


        // The strategy here is a bit different from that of DFS.  Whatever
        // is at the front of the queue is tested for validity and if so, it
        // is added and the unmarked neighbors are placed at the end of the
        // queue.
        while( front < qfs.Length() ) {

            if( qmap[ m->Face_Id( qfs[front] ) ] >= 0 ) {
                if( qfs[front]->Edge1().Twin() != NULL &&
                    qfs_parents[front] == qfs[front]->Edge1().Twin()->Adj_Face()
                ) {
                    e = qfs[front]->Edge1().Twin();
                    v = qfs[front]->Edge3().Origin();
                } else if( qfs[front]->Edge2().Twin() != NULL &&
                    qfs_parents[front] == qfs[front]->Edge2().Twin()->Adj_Face()
                ) {
                    e = qfs[front]->Edge2().Twin();
                    v = qfs[front]->Edge1().Origin();
                } else {
                    e = qfs[front]->Edge3().Twin();
                    v = qfs[front]->Edge2().Origin();
                }
                add_children = Add_To_Convex_Hull( m, chull, cfs, fallowed,
                                                   cvs, addedfs,
                                                   qfs[front], e, v );
                if( add_children ) {
                    // Add the face to the current piece
                    cvs_idx.Add( m->Vertex_Id( v ) );
                    // Mark all the faces that were added to the chull
                    for( j = l; j < addedfs.Length(); j++ ) {
                        fallowed[addedfs[j]] = false;
                        if( piece_ids[addedfs[j]] == -1 ) {
                            // Remove faces that were added if they exist in q
                            if( qmap[addedfs[j]] == -1 ) {
                                qmap_idx.Add( addedfs[j] );
                            }
                            qmap[addedfs[j]] = -2;
                            piece_ids[addedfs[j]] = id;
                            temp_mfs_1d.Add( addedfs[j] );
                            Delete_From_Heap( lengths, bmap, fmap,
                                              fmap[addedfs[j]] );
                        }
                    }
                    l = addedfs.Length();
                }
            } else {
                add_children = true;
            }

            if( add_children ) {
                // Expand the front by adding unmarked neighbors to the queue
                if( qfs[front]->Edge1().Marked() &&
                    qfs[front]->Edge1().Twin()->Adj_Face()->Unmarked()
                ) {
                    j = m->Face_Id( qfs[front]->Edge1().Twin()->Adj_Face() );
                    if( qmap[j] == -2 ) {
                        qmap[j] = -1;
                    } else {
                        qmap[j] = qfs.Length();
                        qmap_idx.Add( j );
                    }
                    qfs.Add( m->Faces()(j) );
                    m->Faces()(j)->Mark();
                    qfs_parents.Add( qfs[front] );
                }
                if( qfs[front]->Edge2().Marked() &&
                    qfs[front]->Edge2().Twin()->Adj_Face()->Unmarked()
                ) {
                    j = m->Face_Id( qfs[front]->Edge2().Twin()->Adj_Face() );
                    if( qmap[j] == -2 ) {
                        qmap[j] = -1;
                    } else {
                        qmap[j] = qfs.Length();
                        qmap_idx.Add( j );
                    }
                    qfs.Add( m->Faces()(j) );
                    m->Faces()(j)->Mark();
                    qfs_parents.Add( qfs[front] );
                }
                if( qfs[front]->Edge3().Marked() &&
                    qfs[front]->Edge3().Twin()->Adj_Face()->Unmarked()
                ) {
                    j = m->Face_Id( qfs[front]->Edge3().Twin()->Adj_Face() );
                    if( qmap[j] == -2 ) {
                        qmap[j] = -1;
                    } else {
                        qmap[j] = qfs.Length();
                        qmap_idx.Add( j );
                    }
                    qfs.Add( m->Faces()(j) );
                    m->Faces()(j)->Mark();
                    qfs_parents.Add( qfs[front] );
                }
            } else {
                mark_failed.Add( qfs[front] );
            }
            front++;
        }

        // Unmark all the failed faces.
        for( j = 0; j < mark_failed.Length(); j++ ) {
            mark_failed[j]->Unmark();
        }

        // Copy the virtual faces for this piece
        for( j = 0, k = 0; j < chull.Length(); j++ ) {
            if( chull[j].Unmarked() && cfs[j] == NULL ) {
                k++;
            }
        }
        created_faces += k;

        vfs[id].Create( k );
        for( j = 0, k = 0; j < chull.Length(); j++ ) {
            if( chull[j].Unmarked() && cfs[j] == NULL ) {
                vfs[id][k].Set_Normal_N( chull[j].Normal() );
                vfs[id][k].Set_Distance( chull[j].Distance() );
                vfs[id][k].Edge1().Set_Direction_N(
                                                chull[j].Edge1().Direction() );
                vfs[id][k].Edge2().Set_Direction_N(
                                                chull[j].Edge2().Direction() );
                vfs[id][k].Edge3().Set_Direction_N(
                                                chull[j].Edge3().Direction() );
                vfs[id][k].Edge1().Set_Length( chull[j].Edge1().Length() );
                vfs[id][k].Edge2().Set_Length( chull[j].Edge2().Length() );
                vfs[id][k].Edge3().Set_Length( chull[j].Edge3().Length() );
                vfs[id][k].Edge1().Set_Origin( chull[j].Edge1().Origin() );
                vfs[id][k].Edge2().Set_Origin( chull[j].Edge2().Origin() );
                vfs[id][k].Edge3().Set_Origin( chull[j].Edge3().Origin() );
                vfs[id][k].Edge1().Set_Twin( chull[j].Edge1().Twin() );
                vfs[id][k].Edge2().Set_Twin( chull[j].Edge2().Twin() );
                vfs[id][k].Edge3().Set_Twin( chull[j].Edge3().Twin() );
                chull[j].Edge1().Twin()->Set_Twin( vfs[id][k].Edge1P() );
                chull[j].Edge2().Twin()->Set_Twin( vfs[id][k].Edge2P() );
                chull[j].Edge3().Twin()->Set_Twin( vfs[id][k].Edge3P() );
                k++;
            }
        }

        // Copy the model faces for this piece
        temp_mfs_2d[id].Copy_Length( temp_mfs_1d );

        id++;

        // Remove this face from the priority queue
        Delete_From_Heap( lengths, bmap, fmap, fmap[i] );
    }
    temp_mfs_2d.Set_Length( id );
    vfs.Set_Length( id );

    // Unmark all the faces and edges
    for( i = 0; i < m->Num_Faces(); i++ ) {
        m->Faces()[i].Unmark();
        m->Faces()[i].Edge1().Unmark();
        m->Faces()[i].Edge2().Unmark();
        m->Faces()[i].Edge3().Unmark();
    }

    // Copy the mfs
    mfs.Copy_Length( temp_mfs_2d );
    for( i = 0; i < temp_mfs_2d.Length(); i++ ) {
        temp_mfs_2d[i].Nullify();
    }

    cerr << "Created " << id << " pieces" << endl;
    cerr << "Original faces = " << m->Num_Faces() << endl;
    cerr << "Created virtual faces = " << created_faces << endl << endl;

    return id;
}