void Fortran_to_C::translateArraySubscript(SgPntrArrRefExp* pntrArrRefExp) { // get lhs operand SgVarRefExp* arrayName = isSgVarRefExp(pntrArrRefExp->get_lhs_operand()); SgExpression* baseExp = isSgExpression(arrayName); // get array symbol SgVariableSymbol* arraySymbol = arrayName->get_symbol(); // get array type and dim_info SgArrayType* arrayType = isSgArrayType(arraySymbol->get_type()); ROSE_ASSERT(arrayType); SgExprListExp* dimInfo = arrayType->get_dim_info(); // get rhs operand SgExprListExp* arraySubscript = isSgExprListExp(pntrArrRefExp->get_rhs_operand()); if(arrayType->findBaseType()->variantT() == V_SgTypeString) { arraySubscript->prepend_expression(buildIntVal(1)); } /* No matter it is single or multi dimensional array, pntrArrRefExp always has a child, SgExprListExp, to store the subscript information. */ if(arraySubscript != NULL) { // get the list of subscript SgExpressionPtrList subscriptExprList = arraySubscript->get_expressions(); // get the list of dimension inforamtion from array definition. SgExpressionPtrList dimExpressionPtrList = dimInfo->get_expressions(); // Create new SgExpressionPtrList for the linearalized array subscript. SgExpressionPtrList newSubscriptExprList; // rank info has to match between subscripts and dim_info ROSE_ASSERT(arraySubscript->get_expressions().size() == dimInfo->get_expressions().size()); if(subscriptExprList.size() == 1) { Rose_STL_Container<SgExpression*>::iterator j1 = subscriptExprList.begin(); Rose_STL_Container<SgExpression*>::iterator j2 = dimExpressionPtrList.begin(); SgExpression* newIndexExp = get0basedIndex(*j1, *j2); pntrArrRefExp->set_rhs_operand(newIndexExp); } else { Rose_STL_Container<SgExpression*>::reverse_iterator j1 = subscriptExprList.rbegin(); Rose_STL_Container<SgExpression*>::reverse_iterator j2 = dimExpressionPtrList.rbegin(); SgExpression* newIndexExp = get0basedIndex(*j1, *j2); SgPntrArrRefExp* newPntrArrRefExp = buildPntrArrRefExp(baseExp, newIndexExp); baseExp->set_parent(newPntrArrRefExp); j1 = j1 + 1; j2 = j2 + 1; for(; j1< (subscriptExprList.rend()-1); ++j1, ++j2) { SgExpression* newIndexExp = get0basedIndex(*j1, *j2); baseExp = isSgExpression(newPntrArrRefExp); newPntrArrRefExp = buildPntrArrRefExp(baseExp, newIndexExp); baseExp->set_parent(newPntrArrRefExp); } newIndexExp = get0basedIndex(*j1, *j2); pntrArrRefExp->set_lhs_operand(newPntrArrRefExp); pntrArrRefExp->set_rhs_operand(newIndexExp); newIndexExp->set_parent(pntrArrRefExp); } } }
void Fortran_to_C::linearizeArraySubscript(SgPntrArrRefExp* pntrArrRefExp) { // get lhs operand SgVarRefExp* arrayName = isSgVarRefExp(pntrArrRefExp->get_lhs_operand()); // get array symbol SgVariableSymbol* arraySymbol = arrayName->get_symbol(); // get array type and dim_info SgArrayType* arrayType = isSgArrayType(arraySymbol->get_type()); ROSE_ASSERT(arrayType); SgExprListExp* dimInfo = arrayType->get_dim_info(); // get rhs operand SgExprListExp* arraySubscript = isSgExprListExp(pntrArrRefExp->get_rhs_operand()); /* No matter it is single or multi dimensional array, pntrArrRefExp always has a child, SgExprListExp, to store the subscript information. */ if(arrayType->findBaseType()->variantT() == V_SgTypeString) { arraySubscript->prepend_expression(buildIntVal(1)); } if(arraySubscript != NULL) { // get the list of subscript SgExpressionPtrList subscriptExprList = arraySubscript->get_expressions(); // get the list of dimension inforamtion from array definition. SgExpressionPtrList dimExpressionPtrList = dimInfo->get_expressions(); // Create new SgExpressionPtrList for the linearalized array subscript. SgExpressionPtrList newSubscriptExprList; // rank info has to match between subscripts and dim_info ROSE_ASSERT(arraySubscript->get_expressions().size() == dimInfo->get_expressions().size()); /* The subscript conversion is following this example: case 1: dimension a(d1,d2,d3,d4) ====> dimension a(d1*d2*d3*d4) a(s1,s2,s3,s4) ====> a(s1-1 + d1*(s2-1 + d2*( s3-1 + d3*(s4-1)))) case 2: dimension a(d1L:d1H,d2L:d2H) ====> dimension a((d1H-d1L+1)*(d2H-d2L+1)) a(s1,s2) ====> a(s1-d1L + (d1H-d1L+1)*(s2-d2L)) */ Rose_STL_Container<SgExpression*>::reverse_iterator j1 = subscriptExprList.rbegin(); Rose_STL_Container<SgExpression*>::reverse_iterator j2 = dimExpressionPtrList.rbegin(); // Need to know current size of both current and previous dimension SgExpression* newSubscript; while((j1 != subscriptExprList.rend()) && (j2 != dimExpressionPtrList.rend())) { // get the lowerBound for each dimension SgExpression* newDimIndex; SgExpression* dimSize; /* get the dimension size at each dimension */ SgSubscriptExpression* subscriptExpression = isSgSubscriptExpression(*j2); /* This is for the 1st type of array declaration: a(10,15,20) Fortran is 1-based array. Lowerbound is 1 by default. */ if(subscriptExpression == NULL) { dimSize = deepCopy(*j2); } /* This is for the 2nd type of array declaration: a(1:10,5:15,10:20) Actual dimension size = upperBound - lowerBound + 1 */ else { dimSize = buildAddOp(buildSubtractOp(deepCopy(subscriptExpression->get_upperBound()), deepCopy(subscriptExpression->get_lowerBound())), buildIntVal(1)); } // convert the 1-based subscript to 0-based subscript newDimIndex = get0basedIndex(*j1, *j2); if(j1 != subscriptExprList.rbegin()) { newSubscript = buildAddOp(newDimIndex, buildMultiplyOp(dimSize,newSubscript)); } else { newSubscript = newDimIndex; delete(dimSize); } ++j1; ++j2; } // end of while loop newSubscriptExprList.push_back(newSubscript); SgExprListExp* newSubscriptList = buildExprListExp(newSubscriptExprList); // un-link and remove the rhs operand pntrArrRefExp->get_rhs_operand()->set_parent(NULL); removeList.push_back(pntrArrRefExp->get_rhs_operand()); // add the new subscriptExpression into rhs operand pntrArrRefExp->set_rhs_operand(newSubscriptList); newSubscriptList->set_parent(pntrArrRefExp); } // end of arraySubscript != NULL }
int main( int argc, char * argv[] ) { // Option to linearize the array. Rose_STL_Container<std::string> localCopy_argv = CommandlineProcessing::generateArgListFromArgcArgv(argc, argv); int newArgc; char** newArgv = NULL; vector<string> argList = localCopy_argv; if (CommandlineProcessing::isOption(argList,"-f2c:","linearize",true) == true) { isLinearlizeArray = true; } CommandlineProcessing::generateArgcArgvFromList(argList,newArgc, newArgv); // Build the AST used by ROSE SgProject* project = frontend(newArgc,newArgv); AstTests::runAllTests(project); if (SgProject::get_verbose() > 2) generateAstGraph(project,8000,"_orig"); // Traversal with Memory Pool to search for variableDeclaration variableDeclTraversal translateVariableDeclaration; traverseMemoryPoolVisitorPattern(translateVariableDeclaration); for(vector<SgVariableDeclaration*>::iterator dec=variableDeclList.begin(); dec!=variableDeclList.end(); ++dec) { /* For the Fortran AST, a single variableDeclaration can be shared by multiple variables. This violated the normalization rules for C unparser. Therefore, we have to transform it. */ SgVariableDeclaration* variableDeclaration = isSgVariableDeclaration(*dec); ROSE_ASSERT(variableDeclaration); if((variableDeclaration->get_variables()).size() != 1) { updateVariableDeclarationList(variableDeclaration); statementList.push_back(variableDeclaration); removeList.push_back(variableDeclaration); } } // reset the vector that collects all variable declaration. We need to walk through memory pool again to find types variableDeclList.clear(); traverseMemoryPoolVisitorPattern(translateVariableDeclaration); for(vector<SgVariableDeclaration*>::iterator dec=variableDeclList.begin(); dec!=variableDeclList.end(); ++dec) { SgVariableDeclaration* variableDeclaration = isSgVariableDeclaration(*dec); ROSE_ASSERT(variableDeclaration); SgInitializedNamePtrList initializedNameList = variableDeclaration->get_variables(); for(SgInitializedNamePtrList::iterator i=initializedNameList.begin(); i!=initializedNameList.end();++i) { SgInitializedName* initiallizedName = isSgInitializedName(*i); SgType* baseType = initiallizedName->get_type(); if(baseType->variantT() == V_SgArrayType) { SgArrayType* arrayBase = isSgArrayType(baseType); // At this moment, we are still working on the Fortran-stype AST. Therefore, there is no nested types for multi-dim array. if(arrayBase->findBaseType()->variantT() == V_SgTypeString) { arrayBase->reset_base_type(translateType(arrayBase->findBaseType())); arrayBase->set_rank(arrayBase->get_rank()+1); } } else { initiallizedName->set_type(translateType(baseType)); } } } // replace the AttributeSpecificationStatement Rose_STL_Container<SgNode*> AttributeSpecificationStatement = NodeQuery::querySubTree (project,V_SgAttributeSpecificationStatement); for (Rose_STL_Container<SgNode*>::iterator i = AttributeSpecificationStatement.begin(); i != AttributeSpecificationStatement.end(); i++) { SgAttributeSpecificationStatement* attributeSpecificationStatement = isSgAttributeSpecificationStatement(*i); ROSE_ASSERT(attributeSpecificationStatement); translateAttributeSpecificationStatement(attributeSpecificationStatement); statementList.push_back(attributeSpecificationStatement); removeList.push_back(attributeSpecificationStatement); } // replace the parameter reference parameterTraversal translateParameterRef; traverseMemoryPoolVisitorPattern(translateParameterRef); for(vector<SgVarRefExp*>::iterator i=parameterRefList.begin(); i!=parameterRefList.end(); ++i) { SgVarRefExp* parameterRef = isSgVarRefExp(*i); if(parameterSymbolList.find(parameterRef->get_symbol()) != parameterSymbolList.end()) { SgExpression* newExpr = isSgExpression(deepCopy(parameterSymbolList.find(parameterRef->get_symbol())->second)); ROSE_ASSERT(newExpr); newExpr->set_parent(parameterRef->get_parent()); replaceExpression(parameterRef, newExpr, false); } } /* Parameters will be replaced by #define, all the declarations should be removed */ for(map<SgVariableSymbol*,SgExpression*>::iterator i=parameterSymbolList.begin();i!=parameterSymbolList.end();++i) { SgVariableSymbol* symbol = i->first; SgInitializedName* initializedName = symbol->get_declaration(); SgVariableDeclaration* decl = isSgVariableDeclaration(initializedName->get_parent()); statementList.push_back(decl); removeList.push_back(decl); } // Traversal with Memory Pool to search for arrayType arrayTypeTraversal translateArrayType; traverseMemoryPoolVisitorPattern(translateArrayType); for(vector<SgArrayType*>::iterator i=arrayTypeList.begin(); i!=arrayTypeList.end(); ++i) { if(isLinearlizeArray) { linearizeArrayDeclaration(*i); } else { translateArrayDeclaration(*i); } } // Traversal with Memory Pool to search for pntrArrRefExp pntrArrRefTraversal translatePntrArrRefExp; traverseMemoryPoolVisitorPattern(translatePntrArrRefExp); for(vector<SgPntrArrRefExp*>::iterator i=pntrArrRefList.begin(); i!=pntrArrRefList.end(); ++i) { if(isLinearlizeArray) { linearizeArraySubscript(*i); } else { translateArraySubscript(*i); } } Rose_STL_Container<SgNode*> functionList = NodeQuery::querySubTree (project,V_SgFunctionDeclaration); for (Rose_STL_Container<SgNode*>::iterator i = functionList.begin(); i != functionList.end(); i++) { if((isSgProcedureHeaderStatement(*i) != NULL) || (isSgProgramHeaderStatement(*i) != NULL)){ SgFunctionDeclaration* functionBody = isSgFunctionDeclaration(*i); bool hasReturnVal = false; if(isSgProcedureHeaderStatement(functionBody)) { hasReturnVal = isSgProcedureHeaderStatement(functionBody)->isFunction(); } fixFortranSymbolTable(functionBody->get_definition(),hasReturnVal); } } // Traversal with Memory Pool to search for equivalenceStatement equivalencelTraversal translateEquivalenceStmt; traverseMemoryPoolVisitorPattern(translateEquivalenceStmt); for(vector<SgEquivalenceStatement*>::iterator i=equivalenceList.begin(); i!=equivalenceList.end(); ++i) { SgEquivalenceStatement* equivalenceStatement = isSgEquivalenceStatement(*i); ROSE_ASSERT(equivalenceStatement); translateEquivalenceStatement(equivalenceStatement); statementList.push_back(equivalenceStatement); removeList.push_back(equivalenceStatement); } // Simple traversal, bottom-up, to translate the rest f2cTraversal f2c; f2c.traverseInputFiles(project,postorder); // removing all the unsed statement from AST for(vector<SgStatement*>::iterator i=statementList.begin(); i!=statementList.end(); ++i) { removeStatement(*i); (*i)->set_parent(NULL); } // deepDelete the removed nodes for(vector<SgNode*>::iterator i=removeList.begin(); i!=removeList.end(); ++i) { deepDelete(*i); } /* 1. There should be no Fortran-specific AST nodes in the whole AST graph after the translation. TODO: make sure translator generating clean AST */ //generateDOT(*project); if (SgProject::get_verbose() > 2) generateAstGraph(project,8000); return backend(project); }