DirectLightingIntegrator::DirectLightingIntegrator( const ShadingContext& shading_context, const LightSampler& light_sampler, const ShadingPoint& shading_point, const Vector3d& outgoing, const BSDF& bsdf, const void* bsdf_data, const int bsdf_sampling_modes, const int light_sampling_modes, const size_t bsdf_sample_count, const size_t light_sample_count, const bool indirect) : m_shading_context(shading_context) , m_light_sampler(light_sampler) , m_shading_point(shading_point) , m_point(shading_point.get_point()) , m_geometric_normal(shading_point.get_geometric_normal()) , m_shading_basis(shading_point.get_shading_basis()) , m_time(shading_point.get_time()) , m_outgoing(outgoing) , m_bsdf(bsdf) , m_bsdf_data(bsdf_data) , m_bsdf_sampling_modes(bsdf_sampling_modes) , m_light_sampling_modes(light_sampling_modes) , m_bsdf_sample_count(bsdf_sample_count) , m_light_sample_count(light_sample_count) , m_indirect(indirect) { assert(is_normalized(outgoing)); }
void compute_ibl_environment_sampling( SamplingContext& sampling_context, const ShadingContext& shading_context, const EnvironmentEDF& environment_edf, const ShadingPoint& shading_point, const Vector3d& outgoing, const BSDF& bsdf, const void* bsdf_data, const int env_sampling_modes, const size_t bsdf_sample_count, const size_t env_sample_count, Spectrum& radiance) { assert(is_normalized(outgoing)); const Vector3d& geometric_normal = shading_point.get_geometric_normal(); const Basis3d& shading_basis = shading_point.get_shading_basis(); radiance.set(0.0f); // todo: if we had a way to know that a BSDF is purely specular, we could // immediately return black here since there will be no contribution from // such a BSDF. sampling_context.split_in_place(2, env_sample_count); for (size_t i = 0; i < env_sample_count; ++i) { // Generate a uniform sample in [0,1)^2. const Vector2d s = sampling_context.next_vector2<2>(); // Sample the environment. InputEvaluator input_evaluator(shading_context.get_texture_cache()); Vector3d incoming; Spectrum env_value; double env_prob; environment_edf.sample( input_evaluator, s, incoming, env_value, env_prob); // Cull samples behind the shading surface. assert(is_normalized(incoming)); const double cos_in = dot(incoming, shading_basis.get_normal()); if (cos_in < 0.0) continue; // Discard occluded samples. const double transmission = shading_context.get_tracer().trace( shading_point, incoming, ShadingRay::ShadowRay); if (transmission == 0.0) continue; // Evaluate the BSDF. Spectrum bsdf_value; const double bsdf_prob = bsdf.evaluate( bsdf_data, false, // not adjoint true, // multiply by |cos(incoming, normal)| geometric_normal, shading_basis, outgoing, incoming, env_sampling_modes, bsdf_value); if (bsdf_prob == 0.0) continue; // Compute MIS weight. const double mis_weight = mis_power2( env_sample_count * env_prob, bsdf_sample_count * bsdf_prob); // Add the contribution of this sample to the illumination. env_value *= static_cast<float>(transmission / env_prob * mis_weight); env_value *= bsdf_value; radiance += env_value; } if (env_sample_count > 1) radiance /= static_cast<float>(env_sample_count); }
void compute_ibl_bsdf_sampling( SamplingContext& sampling_context, const ShadingContext& shading_context, const EnvironmentEDF& environment_edf, const ShadingPoint& shading_point, const Vector3d& outgoing, const BSDF& bsdf, const void* bsdf_data, const int bsdf_sampling_modes, const size_t bsdf_sample_count, const size_t env_sample_count, Spectrum& radiance) { assert(is_normalized(outgoing)); const Vector3d& geometric_normal = shading_point.get_geometric_normal(); const Basis3d& shading_basis = shading_point.get_shading_basis(); radiance.set(0.0f); for (size_t i = 0; i < bsdf_sample_count; ++i) { // Sample the BSDF. // todo: rendering will be incorrect if the BSDF value returned by the sample() method // includes the contribution of a specular component since these are explicitly rejected // afterward. We need a mechanism to indicate that we want the contribution of some of // the components only. Vector3d incoming; Spectrum bsdf_value; double bsdf_prob; const BSDF::Mode bsdf_mode = bsdf.sample( sampling_context, bsdf_data, false, // not adjoint true, // multiply by |cos(incoming, normal)| geometric_normal, shading_basis, outgoing, incoming, bsdf_value, bsdf_prob); // Filter scattering modes. if (!(bsdf_sampling_modes & bsdf_mode)) return; // Discard occluded samples. const double transmission = shading_context.get_tracer().trace( shading_point, incoming, ShadingRay::ShadowRay); if (transmission == 0.0) continue; // Evaluate the environment's EDF. InputEvaluator input_evaluator(shading_context.get_texture_cache()); Spectrum env_value; double env_prob; environment_edf.evaluate( input_evaluator, incoming, env_value, env_prob); // Apply all weights, including MIS weight. if (bsdf_mode == BSDF::Specular) env_value *= static_cast<float>(transmission); else { const double mis_weight = mis_power2( bsdf_sample_count * bsdf_prob, env_sample_count * env_prob); env_value *= static_cast<float>(transmission / bsdf_prob * mis_weight); } // Add the contribution of this sample to the illumination. env_value *= bsdf_value; radiance += env_value; } if (bsdf_sample_count > 1) radiance /= static_cast<float>(bsdf_sample_count); }
void DiagnosticSurfaceShader::evaluate( SamplingContext& sampling_context, const PixelContext& pixel_context, const ShadingContext& shading_context, const ShadingPoint& shading_point, ShadingResult& shading_result) const { switch (m_shading_mode) { case Color: { shading_result.set_main_to_opaque_pink_linear_rgba(); const Material* material = shading_point.get_material(); if (material) { const Material::RenderData& material_data = material->get_render_data(); #ifdef APPLESEED_WITH_OSL // Execute the OSL shader if there is one. if (material_data.m_shader_group) { shading_context.execute_osl_shading( *material_data.m_shader_group, shading_point); } #endif if (material_data.m_bsdf) { InputEvaluator input_evaluator(shading_context.get_texture_cache()); material_data.m_bsdf->evaluate_inputs( shading_context, input_evaluator, shading_point); const Vector3d direction = -normalize(shading_point.get_ray().m_dir); material_data.m_bsdf->evaluate( input_evaluator.data(), false, false, shading_point.get_geometric_normal(), shading_point.get_shading_basis(), direction, direction, ScatteringMode::All, shading_result.m_main.m_color); shading_result.m_color_space = ColorSpaceSpectral; } } } break; case Coverage: shading_result.set_main_to_linear_rgb(Color3f(1.0f)); break; case Barycentric: shading_result.set_main_to_linear_rgb( vector2_to_color(shading_point.get_bary())); break; case UV: shading_result.set_main_to_linear_rgb( uvs_to_color(shading_point.get_uv(0))); break; case Tangent: case Bitangent: case ShadingNormal: { #ifdef APPLESEED_WITH_OSL const Material* material = shading_point.get_material(); if (material) { const Material::RenderData& material_data = material->get_render_data(); // Execute the OSL shader if there is one. if (material_data.m_shader_group) { sampling_context.split_in_place(2, 1); shading_context.execute_osl_bump( *material_data.m_shader_group, shading_point, sampling_context.next_vector2<2>()); } } #endif const Vector3d v = m_shading_mode == ShadingNormal ? shading_point.get_shading_basis().get_normal() : m_shading_mode == Tangent ? shading_point.get_shading_basis().get_tangent_u() : shading_point.get_shading_basis().get_tangent_v(); shading_result.set_main_to_linear_rgb(vector3_to_color(v)); } break; case GeometricNormal: shading_result.set_main_to_linear_rgb( vector3_to_color(shading_point.get_geometric_normal())); break; case OriginalShadingNormal: shading_result.set_main_to_linear_rgb( vector3_to_color(shading_point.get_original_shading_normal())); break; case WorldSpacePosition: { const Vector3d& p = shading_point.get_point(); shading_result.set_main_to_linear_rgb( Color3f(Color3d(p.x, p.y, p.z))); } break; case Sides: shading_result.set_main_to_linear_rgb( shading_point.get_side() == ObjectInstance::FrontSide ? Color3f(0.0f, 0.0f, 1.0f) : Color3f(1.0f, 0.0f, 0.0f)); break; case Depth: shading_result.set_main_to_linear_rgb( Color3f(static_cast<float>(shading_point.get_distance()))); break; case ScreenSpaceWireframe: { // Initialize the shading result to the background color. shading_result.set_main_to_linear_rgba(Color4f(0.0f, 0.0f, 0.8f, 0.5f)); if (shading_point.is_triangle_primitive()) { // Film space thickness of the wires. const double SquareWireThickness = square(0.00025); // Retrieve the time, the scene and the camera. const double time = shading_point.get_time().m_absolute; const Scene& scene = shading_point.get_scene(); const Camera& camera = *scene.get_camera(); // Compute the film space coordinates of the intersection point. Vector2d point_ndc; camera.project_point(time, shading_point.get_point(), point_ndc); // Loop over the triangle edges. for (size_t i = 0; i < 3; ++i) { // Retrieve the end points of this edge. const size_t j = (i + 1) % 3; const Vector3d vi = shading_point.get_vertex(i); const Vector3d vj = shading_point.get_vertex(j); // Compute the film space coordinates of the edge's end points. Vector2d vi_ndc, vj_ndc; if (!camera.project_segment(time, vi, vj, vi_ndc, vj_ndc)) continue; // Compute the film space distance from the intersection point to the edge. const double d = square_distance_point_segment(point_ndc, vi_ndc, vj_ndc); // Shade with the wire's color if the hit point is close enough to the edge. if (d < SquareWireThickness) { shading_result.set_main_to_linear_rgba(Color4f(1.0f)); break; } } } else { assert(shading_point.is_curve_primitive()); // todo: implement. } } break; case WorldSpaceWireframe: { // Initialize the shading result to the background color. shading_result.set_main_to_linear_rgba(Color4f(0.0f, 0.0f, 0.8f, 0.5f)); if (shading_point.is_triangle_primitive()) { // World space thickness of the wires. const double SquareWireThickness = square(0.0015); // Retrieve the world space intersection point. const Vector3d& point = shading_point.get_point(); // Loop over the triangle edges. for (size_t i = 0; i < 3; ++i) { // Retrieve the end points of this edge. const size_t j = (i + 1) % 3; const Vector3d& vi = shading_point.get_vertex(i); const Vector3d& vj = shading_point.get_vertex(j); // Compute the world space distance from the intersection point to the edge. const double d = square_distance_point_segment(point, vi, vj); // Shade with the wire's color if the hit point is close enough to the edge. if (d < SquareWireThickness) { shading_result.set_main_to_linear_rgba(Color4f(1.0f)); break; } } } else { assert(shading_point.is_curve_primitive()); // todo: implement. } } break; case AmbientOcclusion: { // Compute the occlusion. const double occlusion = compute_ambient_occlusion( sampling_context, sample_hemisphere_uniform<double>, shading_context.get_intersector(), shading_point, m_ao_max_distance, m_ao_samples); // Return a gray scale value proportional to the accessibility. const float accessibility = static_cast<float>(1.0 - occlusion); shading_result.set_main_to_linear_rgb(Color3f(accessibility)); } break; case AssemblyInstances: shading_result.set_main_to_linear_rgb( integer_to_color(shading_point.get_assembly_instance().get_uid())); break; case ObjectInstances: shading_result.set_main_to_linear_rgb( integer_to_color(shading_point.get_object_instance().get_uid())); break; case Regions: { const uint32 h = mix_uint32( static_cast<uint32>(shading_point.get_object_instance().get_uid()), static_cast<uint32>(shading_point.get_region_index())); shading_result.set_main_to_linear_rgb(integer_to_color(h)); } break; case Primitives: { const uint32 h = mix_uint32( static_cast<uint32>(shading_point.get_object_instance().get_uid()), static_cast<uint32>(shading_point.get_region_index()), static_cast<uint32>(shading_point.get_primitive_index())); shading_result.set_main_to_linear_rgb(integer_to_color(h)); } break; case Materials: { const Material* material = shading_point.get_material(); if (material) shading_result.set_main_to_linear_rgb(integer_to_color(material->get_uid())); else shading_result.set_main_to_opaque_pink_linear_rgba(); } break; case RaySpread: { const ShadingRay& ray = shading_point.get_ray(); if (!ray.m_has_differentials) break; const Material* material = shading_point.get_material(); if (material) { const Material::RenderData& material_data = material->get_render_data(); #ifdef APPLESEED_WITH_OSL // Execute the OSL shader if there is one. if (material_data.m_shader_group) { shading_context.execute_osl_shading( *material_data.m_shader_group, shading_point); } #endif if (material_data.m_bsdf) { const Dual3d outgoing( -ray.m_dir, ray.m_dir - ray.m_rx.m_dir, ray.m_dir - ray.m_ry.m_dir); InputEvaluator input_evaluator(shading_context.get_texture_cache()); material_data.m_bsdf->evaluate_inputs( shading_context, input_evaluator, shading_point); const void* bsdf_data = input_evaluator.data(); BSDFSample sample(shading_point, outgoing); material_data.m_bsdf->sample( sampling_context, bsdf_data, false, false, sample); if (!sample.m_incoming.has_derivatives()) break; // The 3.0 factor is chosen so that ray spread from Lambertian BRDFs is approximately 1. const double spread = max( norm(sample.m_incoming.get_dx()), norm(sample.m_incoming.get_dy())) * 3.0; shading_result.set_main_to_linear_rgb( Color3f(static_cast<float>(spread))); } } } break; case FacingRatio: { const Vector3d& normal = shading_point.get_shading_normal(); const Vector3d& view = shading_point.get_ray().m_dir; const double facing = abs(dot(normal, view)); shading_result.set_main_to_linear_rgb( Color3f(static_cast<float>(facing))); } break; default: assert(false); shading_result.set_main_to_transparent_black_linear_rgba(); break; } }